Urine patch detection using LiDAR and RPAS/UAV produced photogrammetry

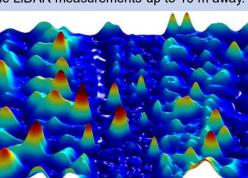
Rory L. Roten¹, Jaco Fourie¹, Jen Owens², Jason Trethewey¹, Dinanjana Ekanayake¹, Armin Werner¹, Kenji Irei¹, Michael Hagedorn¹, Keith Cameron² ¹Lincoln Agritech Ltd, Lincoln, Canterbury, NZ. ²Lincoln University, PO Box 7647, Lincoln, Christchurch 7640, NZ

Introduction

In grazed dairy pastures the largest N source for both nitrate leaching and nitrous oxide emissions is urine-N excreted by the animals. Additional application of N on urine patches as fertilizer may increase these losses so adapting N-fertilisation in these areas is necessary. The objective of this study was to examine the use of a tractor mounted LiDAR system to accurately identify and quantify areas affected by excess N, such as urine. Synthetic urine was randomly spot-applied within two 20 m x 20 m blocks. Weekly LiDAR scans were taken for 5 weeks and flights were taken with a remotely piloted aircraft system (RPAS/UAV) for aerial footage of the trial. Mosaics of RGB and NIR images were used to create photogrammetric contour maps. Both approaches (LiDAR & photogrammetry) show no significant difference in the identification and sizing of urine patch cluster.

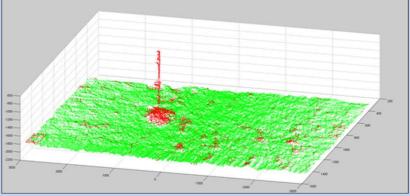
Experimental System

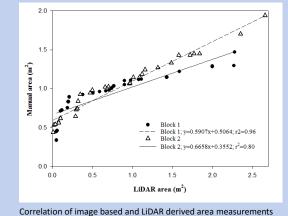
SICK LMS-511 PRO-HD uses a 905 nm, class 1 laser. Scanning frequency of 25 Hz was selected to provide 0.167° angular resolution. 16 m sampling swatch width. Tractor with the LiDAR unit (A), RTK-GPS (B), and ruggedized laptop (C).


LIDAR

Tractor with LIDAR, GPS, and ruggedized laptop

Results


LiDAR based contour maps of the pasture canopy were shown to accurately detect the asymmetric urine patches as well as calculate a percent area of urine based high N as early as one week after a simulated grazing event The proof-of-concept trial showed it was possible to detect a single urine patch using the height map from the LiDAR measurements up to 10 m away.



UAV photo ID of urine patches

3 weeks after grazing

LIDAR Point cloud with reference pole

Acknowledgements: This work was funded by NZ MBIE project: Optimum N – Nitrogen Sensing and Management

MEASURE. MODEL. MANAGE. Engineering and Science for Agriculture. Industry and the Environme