51 research outputs found
Cholestérol-24S-hydroxylase (CYP46A1) et homéostasie du cholestérol dans la rétine en conditions physiologiques et pathologiques
Le cholestérol est le principal stérol présent dans la rétine. Dans sa forme libre, le cholestérol est distribué dans toutes les couches cellulaires de la rétine, alors que le cholestérol estérifié s accumule essentiellement à la base de l épithélium pigmentaire rétinien. La capacité intrinsèque de la rétine à synthétiser le cholestérol paraît limitée, ce qui implique nécessairement que des voies extra-rétiniennes participent activement à suppléer la rétine en cholestérol. Les cellules gliales de Müller contribueraient à l apport de cholestérol aux neurones de la rétine, en particulier pour la formation des synapses. Les conséquences délétères d une accumulation ou à l inverse d un déficit en cholestérol dans les neurones sur leur survie souligne l importance de maintenir l équilibre entre l apport et la néosynthèse du cholestérol d une part et son élimination d autre part. Pour cela, la rétine neurale a en particulier la capacité de convertir, pour l éliminer, le cholestérol en 24S-hydroxycholestérol. En effet, le transport du 24S-hydroxycholestérol au travers des membranes est facilité par la présence d un groupe hydroxyle supplémentaire, lui conférant une polarité plus importante par rapport au cholestérol. L enzyme qui catalyse cette réaction est la cholestérol-24S-hydroxylase (CYP46A1). Des liens ont été établis entre CYP46A1, 24S-hydroxycholestérol et processus neurodégénératifs dans le cerveau, suggérant un rôle potentiel dans certaines pathologies comme la maladie d Alzheimer. CYP46A1 est exprimée dans la rétine neurale, et plus particulièrement dans les cellules ganglionnaires de la rétine. Le rôle de CYP46A1 dans la rétine reste pour l instant inconnu. Cependant, par analogie avec le cerveau, nous pouvons supposer une fonction dans le contrôle de l homéostasie du cholestérol dans les neurones et envisager une association avec des pathologies dégénératives de la rétine comme la Dégénérescence Maculaire Liée à l Âge (DMLA) ou le glaucome. Dans ce contexte, l objectif de nos travaux a consisté à évaluer le rôle de la cholestérol-24S-hydroxylase dans la rétine en conditions physiologiques et pathologiques. Par une approche clinique, nous avons trouvé qu un polymorphisme génétique dans CYP46A1 était un facteur de risque de glaucome (Risque relatif=1,26, intervalle de confiance à 95%=1,006-1,574, p<0,05) (Fourgeux et al. 2009, Invest Ophthalmol Vis Sci 50:5712-7). Par contre, ce polymorphisme génétique n a pas été retrouvé, en tant que tel, comme facteur de risque chez des patients DMLA, mais pourrait l être chez les patients non porteurs d allèles à risque dans les gènes CFH et LOC388715 (Fourgeux et al. 2012, Invest Ophthalmol Vis Sci 53:7026-33). Deux approches expérimentales nous ont permis de suggérer qu il existe un lien entre le stress des cellules de la rétine et le 24S-hydroxycholestérol. En effet, dans une étude in vivo faite chez le rat, après avoir reproduit une caractéristique principale du glaucome par l augmentation de la pression intraoculaire, nous avons suggéré le rôle crucial de la glie dans le maintien de l expression de CYP46A1 au cours de la neurodégénérescence de la rétine (Fourgeux et al. 2012, Acta Ophthalmol, Sep 23 ; doi: 10.1111/j.1755-3768.2012.02490.x.). Enfin, l inhibition pharmacologique de l activité CYP46A1 dans la rétine par le voriconazole injecté in vivo chez le rat nous a permis de mettre en évidence que la diminution du contenu en 24S-hydroxycholestérol de la rétine était associée à une dysfonction des cellules ganglionnaires, évaluée par électrorétinographie. En parallèle, nous avons observé une activation gliale, dont l amplitude était amplifiée par l inhibition de l activation microgliale induite par la minocycline [...]Cholesterol is the major sterol found in the retina. In its free form, cholesterol is present in all cell layers of the retina, whereas cholesteryl esters mainly accumulate at the basement of the retinal pigment epithelium. The intrinsic capacity of the retina to synthetize cholesterol appears limited. Some extra-retinal pathways actively participate to cholesterol uptake to the retina. Müller glial cells may contribute to cholesterol supply to retinal neurons, especially for synaptic formation. Cholesterol accumulation or conversely deficiency have deleterious consequences on neuron survival. Maintaining the equilibrium between cholesterol supply and neosynthesis in the one hand and cholesterol elimination in the other hand is crucial. For that purpose, the inner retina converts cholesterol into 24S-hydroxycholesterol. The transport of 24S-hydroxycholesterol across membranes is facilitated by the addition of the hydroxyle group to cholesterol at position 24 of carbon chain since it renders cholesterol more hydrophilic. CYP46A1 (cholesterol 24S-hydroxylase) is the enzyme which catalyzes this reaction. Some links between CYP46A1, 24S-hydroxycholesterol and neurodegenerative processes have been reported in the brain, suggesting a potential role in several pathologies such as Alzheimer s disease. CYP46A1 is expressed in the neural retina and specifically in retinal ganglion cells. The contribution of CYP46A1 in the retina remains unknown. Moreover by analogy with the brain, we can suggest a function for CYP46A1 in the regulation of cholesterol homeostasis in retinal neurons. Possible associations between CYP46A1 and Age-related Macular Degeneration (AMD) and glaucoma were suspected. In this context, we aimed to evaluate the role of CYP46A1 in the retina in physiological and pathological conditions. Through a clinical approach, we found that a genetic polymorphism in CYP46A1 was a risk factor for glaucoma (Odd Ratio = 1.26 ; 95% CI=1.006-1.574, p<0.05) (Fourgeux et al. 2009, Invest Ophthalmol Vis Sci 50:5712-7). By contrast, this genetic polymorphism was not found as a risk factor in AMD patients, but may become an additional risk factor in patients who do not carry risk allele in CFH and LOC387715 genes (Fourgeux et al. 2012, Invest Ophthalmol Vis Sci 53:7026-33). Two experimental approaches suggested that a link between retinal stress and 24S-hydroxycholesterol does exist. Indeed, in a rat model of glaucoma of elevated intraocular pressure, we suggested the crucial role of CYP46A1 in maintaining CYP46A1 expression in the course of retinal neurodegeneration (Fourgeux et al. 2012, Acta Ophthalmol, Sep 23; doi: 10.1111/j.1755-3768.2012.02490.x.). Pharmacological inhibition of CYP46A1 activity in the retina by voriconazole administered in vivo in the rat highlighted that the decrease in retinal 24S-hydroxycholesterol levels was associated with RGC dysfunction evaluated by electroretinography. In parallel, we observed glial activation in which magnitude was exacerbated when microglia activation was inhibited by minocycline at the same time.In conclusion, by a dual clinical and experimental approach, our works suggest a crucial role for CYP46A1 in maintaining cholesterol homeostasis in the retina in physiological and pathological conditions. Müller glial cell intervention in this process may be suspected especially in pathological conditions of glaucomaDIJON-BU Doc.électronique (212319901) / SudocSudocFranceF
Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels
Purpose. Genetics has made significant contributions to the study of glaucoma over the past few decades. Cholesterol-24S-hydroxylase (CYP46A1) is a cholesterol-metabolizing enzyme that is especially expressed in retinal ganglion cells. CYP46A1 and its metabolic product, 24S-hydroxycholesterol, have been linked to neurodegeneration. A single-nucleotide polymorphism (SNP) in the CYP46A1 gene, designated as rs754203 and associated with Alzheimer disease, was evaluated as a genetic risk factor for primary open-angle glaucoma (POAG), as well as plasma 24S-hydroxycholesterol levels. Methods. The frequency of the CYP46*C and CYP46*T alleles was analyzed in 150 patients with POAG and 118 control subjects. Plasma 24S-hydroxycholesterol levels were quantified. Sex, age, alleles, and genotype frequencies between patients with POAG and control subjects were compared by using the {chi}2 and Student's t-tests. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression to assess the relative association between disease and age, sex, and genotypes. Results. The frequency of the TT genotype was significantly higher in patients with POAG than in control subjects (61.3% versus 48.3%, respectively, OR = 1.26; 95% CI = 1.006–1.574, P < 0.05). Plasma 24S-hydroxycholesterol levels did not differ between control subjects and patients with POAG. The ratio of estimated brain weight to liver volume as an estimate of the capacity of the human body to synthesize and metabolize 24S-hydroxycholesterol was found to correlate to plasma 24S-hydroxycholesterol in control subjects and patients with POAG. Conclusions. The rs754203 SNP in CYP46A1 was associated with a risk for POAG. This polymorphism was not associated with changes in plasma 24S-hydroxycholesterol, highlighting that despite its retinal origin, 24S-hydroxycholesterol cannot be used as a biomarker for POAG
Human granzyme B regulatory B cells prevent effector CD4+CD25- T cell proliferation through a mechanism dependent from lymphotoxin alpha
IntroductionHuman Granzyme B (GZMB) regulatory B cells (Bregs) have suppressive properties on CD4+ effector T cells by a mechanism partially dependent on GZMB. Moreover, these cells may be easily induced in vitro making them interesting for cell therapy.MethodsWe characterized this population of in vitro induced GZMB+Bregs using single cell transcriptomics. To investigate their regulatory properties, Bregs or total B cells were also co-cultured with T cells and scRNAseq was used to identify receptor ligand interactions and to reveal gene expression changes in the T cells.ResultsWe find that Bregs exhibit a unique set of 149 genes differentially expressed and which are implicated in proliferation, apoptosis, metabolism, and altered antigen presentation capacity consistent with their differentiated B cells profile. Notably, Bregs induced a strong inhibition of T cell genes associated to proliferation, activation, inflammation and apoptosis compared to total B cells. We identified and validated 5 receptor/ligand interactions between Bregs and T cells. Functional analysis using specific inhibitors was used to test their suppressive properties and we identified Lymphotoxin alpha (LTA) as a new and potent Breg ligand implicated in Breg suppressive properties.DiscussionWe report for the first time for a role of LTA in GZMB+Bregs as an enhancer of GZMB expression, and involved in the suppressive properties of GZMB+Bregs in human. The exact mechanism of LTA/GZMB function in this specific subset of Bregs remains to be determined
Cholestérol-24S-hydroxylase (CYP46A1) et homéostasie du cholestérol dans la rétine en conditions physiologiques et pathologiques
Cholesterol is the major sterol found in the retina. In its free form, cholesterol is present in all cell layers of the retina, whereas cholesteryl esters mainly accumulate at the basement of the retinal pigment epithelium. The intrinsic capacity of the retina to synthetize cholesterol appears limited. Some extra-retinal pathways actively participate to cholesterol uptake to the retina. Müller glial cells may contribute to cholesterol supply to retinal neurons, especially for synaptic formation. Cholesterol accumulation or conversely deficiency have deleterious consequences on neuron survival. Maintaining the equilibrium between cholesterol supply and neosynthesis in the one hand and cholesterol elimination in the other hand is crucial. For that purpose, the inner retina converts cholesterol into 24S-hydroxycholesterol. The transport of 24S-hydroxycholesterol across membranes is facilitated by the addition of the hydroxyle group to cholesterol at position 24 of carbon chain since it renders cholesterol more hydrophilic. CYP46A1 (cholesterol 24S-hydroxylase) is the enzyme which catalyzes this reaction. Some links between CYP46A1, 24S-hydroxycholesterol and neurodegenerative processes have been reported in the brain, suggesting a potential role in several pathologies such as Alzheimer’s disease. CYP46A1 is expressed in the neural retina and specifically in retinal ganglion cells. The contribution of CYP46A1 in the retina remains unknown. Moreover by analogy with the brain, we can suggest a function for CYP46A1 in the regulation of cholesterol homeostasis in retinal neurons. Possible associations between CYP46A1 and Age-related Macular Degeneration (AMD) and glaucoma were suspected. In this context, we aimed to evaluate the role of CYP46A1 in the retina in physiological and pathological conditions.Through a clinical approach, we found that a genetic polymorphism in CYP46A1 was a risk factor for glaucoma (Odd Ratio = 1.26 ; 95% CI=1.006-1.574, p<0.05) (Fourgeux et al. 2009, Invest Ophthalmol Vis Sci 50:5712-7). By contrast, this genetic polymorphism was not found as a risk factor in AMD patients, but may become an additional risk factor in patients who do not carry risk allele in CFH and LOC387715 genes (Fourgeux et al. 2012, Invest Ophthalmol Vis Sci 53:7026-33). Two experimental approaches suggested that a link between retinal stress and 24S-hydroxycholesterol does exist. Indeed, in a rat model of glaucoma of elevated intraocular pressure, we suggested the crucial role of CYP46A1 in maintaining CYP46A1 expression in the course of retinal neurodegeneration (Fourgeux et al. 2012, Acta Ophthalmol, Sep 23; doi: 10.1111/j.1755-3768.2012.02490.x.). Pharmacological inhibition of CYP46A1 activity in the retina by voriconazole administered in vivo in the rat highlighted that the decrease in retinal 24S-hydroxycholesterol levels was associated with RGC dysfunction evaluated by electroretinography. In parallel, we observed glial activation in which magnitude was exacerbated when microglia activation was inhibited by minocycline at the same time.In conclusion, by a dual clinical and experimental approach, our works suggest a crucial role for CYP46A1 in maintaining cholesterol homeostasis in the retina in physiological and pathological conditions. Müller glial cell intervention in this process may be suspected especially in pathological conditions of glaucomaLe cholestérol est le principal stérol présent dans la rétine. Dans sa forme libre, le cholestérol est distribué dans toutes les couches cellulaires de la rétine, alors que le cholestérol estérifié s’accumule essentiellement à la base de l’épithélium pigmentaire rétinien. La capacité intrinsèque de la rétine à synthétiser le cholestérol paraît limitée, ce qui implique nécessairement que des voies extra-rétiniennes participent activement à suppléer la rétine en cholestérol. Les cellules gliales de Müller contribueraient à l’apport de cholestérol aux neurones de la rétine, en particulier pour la formation des synapses. Les conséquences délétères d’une accumulation ou à l’inverse d’un déficit en cholestérol dans les neurones sur leur survie souligne l’importance de maintenir l’équilibre entre l’apport et la néosynthèse du cholestérol d’une part et son élimination d’autre part. Pour cela, la rétine neurale a en particulier la capacité de convertir, pour l’éliminer, le cholestérol en 24S-hydroxycholestérol. En effet, le transport du 24S-hydroxycholestérol au travers des membranes est facilité par la présence d’un groupe hydroxyle supplémentaire, lui conférant une polarité plus importante par rapport au cholestérol. L’enzyme qui catalyse cette réaction est la cholestérol-24S-hydroxylase (CYP46A1). Des liens ont été établis entre CYP46A1, 24S-hydroxycholestérol et processus neurodégénératifs dans le cerveau, suggérant un rôle potentiel dans certaines pathologies comme la maladie d’Alzheimer. CYP46A1 est exprimée dans la rétine neurale, et plus particulièrement dans les cellules ganglionnaires de la rétine. Le rôle de CYP46A1 dans la rétine reste pour l’instant inconnu. Cependant, par analogie avec le cerveau, nous pouvons supposer une fonction dans le contrôle de l’homéostasie du cholestérol dans les neurones et envisager une association avec des pathologies dégénératives de la rétine comme la Dégénérescence Maculaire Liée à l’Âge (DMLA) ou le glaucome. Dans ce contexte, l’objectif de nos travaux a consisté à évaluer le rôle de la cholestérol-24S-hydroxylase dans la rétine en conditions physiologiques et pathologiques. Par une approche clinique, nous avons trouvé qu’un polymorphisme génétique dans CYP46A1 était un facteur de risque de glaucome (Risque relatif=1,26, intervalle de confiance à 95%=1,006-1,574, p<0,05) (Fourgeux et al. 2009, Invest Ophthalmol Vis Sci 50:5712-7). Par contre, ce polymorphisme génétique n’a pas été retrouvé, en tant que tel, comme facteur de risque chez des patients DMLA, mais pourrait l’être chez les patients non porteurs d’allèles à risque dans les gènes CFH et LOC388715 (Fourgeux et al. 2012, Invest Ophthalmol Vis Sci 53:7026-33). Deux approches expérimentales nous ont permis de suggérer qu’il existe un lien entre le stress des cellules de la rétine et le 24S-hydroxycholestérol. En effet, dans une étude in vivo faite chez le rat, après avoir reproduit une caractéristique principale du glaucome par l’augmentation de la pression intraoculaire, nous avons suggéré le rôle crucial de la glie dans le maintien de l’expression de CYP46A1 au cours de la neurodégénérescence de la rétine (Fourgeux et al. 2012, Acta Ophthalmol, Sep 23 ; doi: 10.1111/j.1755-3768.2012.02490.x.). Enfin, l’inhibition pharmacologique de l’activité CYP46A1 dans la rétine par le voriconazole injecté in vivo chez le rat nous a permis de mettre en évidence que la diminution du contenu en 24S-hydroxycholestérol de la rétine était associée à une dysfonction des cellules ganglionnaires, évaluée par électrorétinographie. En parallèle, nous avons observé une activation gliale, dont l’amplitude était amplifiée par l’inhibition de l’activation microgliale induite par la minocycline [...
Cholesterol-24S-hydroxylase (CYP46A1) and cholesterol homeostasis in the retina in physiological and pathological conditions
Le cholestérol est le principal stérol présent dans la rétine. Dans sa forme libre, le cholestérol est distribué dans toutes les couches cellulaires de la rétine, alors que le cholestérol estérifié s’accumule essentiellement à la base de l’épithélium pigmentaire rétinien. La capacité intrinsèque de la rétine à synthétiser le cholestérol paraît limitée, ce qui implique nécessairement que des voies extra-rétiniennes participent activement à suppléer la rétine en cholestérol. Les cellules gliales de Müller contribueraient à l’apport de cholestérol aux neurones de la rétine, en particulier pour la formation des synapses. Les conséquences délétères d’une accumulation ou à l’inverse d’un déficit en cholestérol dans les neurones sur leur survie souligne l’importance de maintenir l’équilibre entre l’apport et la néosynthèse du cholestérol d’une part et son élimination d’autre part. Pour cela, la rétine neurale a en particulier la capacité de convertir, pour l’éliminer, le cholestérol en 24S-hydroxycholestérol. En effet, le transport du 24S-hydroxycholestérol au travers des membranes est facilité par la présence d’un groupe hydroxyle supplémentaire, lui conférant une polarité plus importante par rapport au cholestérol. L’enzyme qui catalyse cette réaction est la cholestérol-24S-hydroxylase (CYP46A1). Des liens ont été établis entre CYP46A1, 24S-hydroxycholestérol et processus neurodégénératifs dans le cerveau, suggérant un rôle potentiel dans certaines pathologies comme la maladie d’Alzheimer. CYP46A1 est exprimée dans la rétine neurale, et plus particulièrement dans les cellules ganglionnaires de la rétine. Le rôle de CYP46A1 dans la rétine reste pour l’instant inconnu. Cependant, par analogie avec le cerveau, nous pouvons supposer une fonction dans le contrôle de l’homéostasie du cholestérol dans les neurones et envisager une association avec des pathologies dégénératives de la rétine comme la Dégénérescence Maculaire Liée à l’Âge (DMLA) ou le glaucome. Dans ce contexte, l’objectif de nos travaux a consisté à évaluer le rôle de la cholestérol-24S-hydroxylase dans la rétine en conditions physiologiques et pathologiques. Par une approche clinique, nous avons trouvé qu’un polymorphisme génétique dans CYP46A1 était un facteur de risque de glaucome (Risque relatif=1,26, intervalle de confiance à 95%=1,006-1,574, p<0,05) (Fourgeux et al. 2009, Invest Ophthalmol Vis Sci 50:5712-7). Par contre, ce polymorphisme génétique n’a pas été retrouvé, en tant que tel, comme facteur de risque chez des patients DMLA, mais pourrait l’être chez les patients non porteurs d’allèles à risque dans les gènes CFH et LOC388715 (Fourgeux et al. 2012, Invest Ophthalmol Vis Sci 53:7026-33). Deux approches expérimentales nous ont permis de suggérer qu’il existe un lien entre le stress des cellules de la rétine et le 24S-hydroxycholestérol. En effet, dans une étude in vivo faite chez le rat, après avoir reproduit une caractéristique principale du glaucome par l’augmentation de la pression intraoculaire, nous avons suggéré le rôle crucial de la glie dans le maintien de l’expression de CYP46A1 au cours de la neurodégénérescence de la rétine (Fourgeux et al. 2012, Acta Ophthalmol, Sep 23 ; doi: 10.1111/j.1755-3768.2012.02490.x.). Enfin, l’inhibition pharmacologique de l’activité CYP46A1 dans la rétine par le voriconazole injecté in vivo chez le rat nous a permis de mettre en évidence que la diminution du contenu en 24S-hydroxycholestérol de la rétine était associée à une dysfonction des cellules ganglionnaires, évaluée par électrorétinographie. En parallèle, nous avons observé une activation gliale, dont l’amplitude était amplifiée par l’inhibition de l’activation microgliale induite par la minocycline [...]Cholesterol is the major sterol found in the retina. In its free form, cholesterol is present in all cell layers of the retina, whereas cholesteryl esters mainly accumulate at the basement of the retinal pigment epithelium. The intrinsic capacity of the retina to synthetize cholesterol appears limited. Some extra-retinal pathways actively participate to cholesterol uptake to the retina. Müller glial cells may contribute to cholesterol supply to retinal neurons, especially for synaptic formation. Cholesterol accumulation or conversely deficiency have deleterious consequences on neuron survival. Maintaining the equilibrium between cholesterol supply and neosynthesis in the one hand and cholesterol elimination in the other hand is crucial. For that purpose, the inner retina converts cholesterol into 24S-hydroxycholesterol. The transport of 24S-hydroxycholesterol across membranes is facilitated by the addition of the hydroxyle group to cholesterol at position 24 of carbon chain since it renders cholesterol more hydrophilic. CYP46A1 (cholesterol 24S-hydroxylase) is the enzyme which catalyzes this reaction. Some links between CYP46A1, 24S-hydroxycholesterol and neurodegenerative processes have been reported in the brain, suggesting a potential role in several pathologies such as Alzheimer’s disease. CYP46A1 is expressed in the neural retina and specifically in retinal ganglion cells. The contribution of CYP46A1 in the retina remains unknown. Moreover by analogy with the brain, we can suggest a function for CYP46A1 in the regulation of cholesterol homeostasis in retinal neurons. Possible associations between CYP46A1 and Age-related Macular Degeneration (AMD) and glaucoma were suspected. In this context, we aimed to evaluate the role of CYP46A1 in the retina in physiological and pathological conditions. Through a clinical approach, we found that a genetic polymorphism in CYP46A1 was a risk factor for glaucoma (Odd Ratio = 1.26 ; 95% CI=1.006-1.574, p<0.05) (Fourgeux et al. 2009, Invest Ophthalmol Vis Sci 50:5712-7). By contrast, this genetic polymorphism was not found as a risk factor in AMD patients, but may become an additional risk factor in patients who do not carry risk allele in CFH and LOC387715 genes (Fourgeux et al. 2012, Invest Ophthalmol Vis Sci 53:7026-33). Two experimental approaches suggested that a link between retinal stress and 24S-hydroxycholesterol does exist. Indeed, in a rat model of glaucoma of elevated intraocular pressure, we suggested the crucial role of CYP46A1 in maintaining CYP46A1 expression in the course of retinal neurodegeneration (Fourgeux et al. 2012, Acta Ophthalmol, Sep 23; doi: 10.1111/j.1755-3768.2012.02490.x.). Pharmacological inhibition of CYP46A1 activity in the retina by voriconazole administered in vivo in the rat highlighted that the decrease in retinal 24S-hydroxycholesterol levels was associated with RGC dysfunction evaluated by electroretinography. In parallel, we observed glial activation in which magnitude was exacerbated when microglia activation was inhibited by minocycline at the same time.In conclusion, by a dual clinical and experimental approach, our works suggest a crucial role for CYP46A1 in maintaining cholesterol homeostasis in the retina in physiological and pathological conditions. Müller glial cell intervention in this process may be suspected especially in pathological conditions of glaucom
Longitudinal analysis of immune cells in kidney transplantation rejection by single-cell RNA-seq
International audienc
Oxysterols: Influence on plasma membrane rafts microdomains and development of ocular diseases
Oxidation of cholesterol into oxysterols is a major way of elimination of cholesterol from the liver and extrahepatic tissues, including the brain and the retina. Oxysterols are involved in various cellular processes. Numerous links have been established between oxysterols and several disorders such as neurodegenerative pathologies, retinopathies and atherosclerosis. Different components of the lipid layer such as sphingolipids, sterols and proteins participate to membrane fluidity and forme lipid rafts microdomains. Few data are available on the links between lipids rafts and oxysterols. The purpose of this review is to suggest the potential role of lipid rafts microdomains in the development of retinopathies with special emphasis and opening perspectives of their interactions with oxysterols. Actually cholesterol oxidation mechanism may have deleterious effect on its ability to support rafts formation.This review suggest that the effect of oxysterols of lipid rafts would probably depend on the oxysterol molecule and cell type
Cholesterol metabolism via cyp46a1 in glaucoma
Cholesterol metabolism via cyp46a1 in glaucoma. International society for eye research (ISER) annual meetin
- …