163 research outputs found

    Nearest Neighbor Distance in Relation to Behavior in White Faced Capuchin Monkeys, Cebus capucinus

    Full text link
    Articlehttp://deepblue.lib.umich.edu/bitstream/2027.42/96976/1/UMURF-Issue04_2007-GMOleson.pd

    Birds and people in Europe

    Get PDF
    At a regional scale, species richness and human population size are frequently positively correlated across space. Such patterns may arise because both species richness and human density increase with energy availability. If the species-energy relationship is generated through the 'more individuals' hypothesis, then the prediction is that areas with high human densities will also support greater numbers of individuals from other taxa. We use the unique data available for the breeding birds in Europe to test this prediction. Overall regional densities of bird species are higher in areas with more people; species of conservation concern exhibit the same pattern. Avian density also increases faster with human density than does avian biomass, indicating that areas with a higher human density have a higher proportion of small-bodied individuals. The analyses also underline the low numbers of breeding birds in Europe relative to humans, with a median of just three individual birds per person, and 4 g of bird for every kilogram of human

    Inconsistent patterns of body size evolution in co-occurring island reptiles

    Get PDF
    Aim Animal body sizes are often remarkably variable across islands, but despite much research we still have a poor understanding of both the patterns and the drivers of body size evolution. Theory predicts that interspecific competition and predation pressures are relaxed on small, remote islands, and that these conditions promote body size evolution. We studied body size variation across multiple insular populations of 16 reptile species co‐occurring in the same archipelago and tested which island characteristics primarily drive body size evolution, the nature of the common patterns, and whether co‐occurring species respond in a similar manner to insular conditions. Location Aegean Sea islands. Time period 1984–2016. Major taxa studied Reptiles. Methods We combined fieldwork, museum measurements and a comprehensive literature survey to collect data on nearly 10,000 individuals, representing eight lizard and eight snake species across 273 islands. We also quantified a large array of predictors to assess directly the effects of island area, isolation (both spatial and temporal), predation and interspecific competition on body size evolution. We used linear models and meta‐analyses to determine which predictors are informative for all reptiles, for lizards and snakes separately, and for each species. Results Body size varies with different predictors across the species we studied, and patterns differ within families and between lizards and snakes. Each predictor influenced body size in at least one species, but no general trend was recovered. As a group, lizards are hardly affected by any of the predictors we tested, whereas snake size generally increases with area and with competitor and predator richness, and decreases with isolation. Main conclusions No factor emerges as a predominant driver of Aegean reptile sizes. This contradicts theories of general body size evolutionary trajectories on islands. We conclude that overarching generalizations oversimplify patterns and processes of reptile body size evolution on islands. Instead, species’ autecology and island particularities interact to drive the course of size evolution

    Clutch size variability in an ostensibly fix-clutched lizard : effects of insularity on a Mediterranean gecko

    Get PDF
    The island syndrome describes the evolution of slow life history traits in insular environments. Animals are thought to evolve smaller clutches of larger offspring on islands in response to release from predation pressure and interspecific competition, and the resulting increases in population density and intraspecific competition. These forces become more pronounced with diminishing island size, and life histories are thus expected to become slowest on small, isolated islands. We measured clutch sizes in 12 insular populations of Mediodactylus kotschyi, a small gecko from the Cyclades Archipelago, a set of land-bridge islands in the Aegean Sea (Greece). We analyse variation in clutch size in relation to island area, island age, maternal body size, the presence of putative competitors and nesting seabirds (which increase resource abundance in the form of marine subsidies), and richness of predators. Clutch size of M. kotschyi decreases with increasing island area, in departure from classic island syndrome predictions, suggesting the evolution of faster life histories on smaller islands. There are no relationships between clutch size and island age, maternal size, the presence of competitors or predator richness. Instead, larger clutches on small islands could simply reflect the beneficial effect of marine subsidies derived from resident seabird colonies. Indeed, populations of M. kotschyi on islands with nesting seabirds have clutch sizes 30.9 % larger (1.82 vs. 1.39 eggs) than populations on islands without nesting seabirds. Thus, our data suggest that bottom-up effects of marine subsidies may supersede the expression of a simple island syndrome in the Aegean M. kotschyi

    Effective thermoregulation in a newly established population of Podarcis siculus in Greece: a possible advantage for a successful invader

    Get PDF
    Temperature affects all aspects of reptilian biology. In order to colonize new habitats and support viable populations lizards have to successfully deal with their thermal environment. Podarcis siculus is a notorious example of a successful colonizer that has invaded numerous habitats outside its natural distribution range. Though certain features of its thermal biology have been assessed so far, the thermoregulatory abilities of the species remain poorly described. Here we investigated a recently discovered population in Greece and evaluated the effectiveness of thermoregulation measuring three main thermal parameters: set-point range, operative and field body temperatures. The Greek P. siculus appear to be accurate, precise and effective thermoregulators achieving E = 0.96. This effective thermoregulation may be used to explain, among other special characteristics, its spreading success
    • 

    corecore