19,947 research outputs found

    Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2

    Get PDF
    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling

    Evaluation of nonmetallic thermal protection materials for the manned space shuttle. Volume 1, task 1: Assessment of technical risks associated with utilization of nonmetallic thermal protection system

    Get PDF
    Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook

    The Fund for New England: A New Environmental Philanthropy

    Get PDF
    New England has a new, regional philanthropy, the Fund for New England, which is concerned with the advancement of natural resources and environment in the six-state region. The fund is one of a class of new regional environmental funds/trusts that are emerging across the country. The history of New England\u27s own effort is described at the outset of the article, which also explores the experience and potential of the fund and its national counterparts with regard to advancing the novel concept of contributions in lieu of environmental fines. Finally, the process followed in establishing and operating the fund is examined in the context of other New England institutions. The article ends on the promising note that the Fund for New England and other such experiments across the country offer considerable potential for enhancing the environment and encouraging new forms of philanthropy

    Universality of collapsing two-dimensional self-avoiding trails

    Full text link
    Results of a numerically exact transfer matrix calculation for the model of Interacting Self-Avoiding Trails are presented. The results lead to the conclusion that, at the collapse transition, Self-Avoiding Trails are in the same universality class as the O(n=0) model of Blote and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν=12/23\nu=12/23, contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9 pages; 3 figure

    Lower Bounds on Mutual Information

    Get PDF
    We correct claims about lower bounds on mutual information (MI) between real-valued random variables made in A. Kraskov {\it et al.}, Phys. Rev. E {\bf 69}, 066138 (2004). We show that non-trivial lower bounds on MI in terms of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance of MI under reparametrizations, because linear correlations are not invariant under them. The simplest bounds are obtained for Gaussians, but the most interesting ones for practical purposes are obtained for uniform marginal distributions. The latter can be enforced in general by using the ranks of the individual variables instead of their actual values, in which case one obtains bounds on MI in terms of Spearman correlation coefficients. We show with gene expression data that these bounds are in general non-trivial, and the degree of their (non-)saturation yields valuable insight.Comment: 4 page

    A Monte Carlo investigation of thrust imbalance of solid rocket motor pairs

    Get PDF
    A technique is described for theoretical, statistical evaluation of the thrust imbalance of pairs of solid-propellant rocket motors (SRMs) firing in parallel. Sets of the significant variables, determined as a part of the research, are selected using a random sampling technique and the imbalance calculated for a large number of motor pairs. The performance model is upgraded to include the effects of statistical variations in the ovality and alignment of the motor case and mandrel. Effects of cross-correlations of variables are minimized by selecting for the most part completely independent input variables, over forty in number. The imbalance is evaluated in terms of six time - varying parameters as well as eleven single valued ones which themselves are subject to statistical analysis. A sample study of the thrust imbalance of 50 pairs of 146 in. dia. SRMs of the type to be used on the space shuttle is presented. The FORTRAN IV computer program of the analysis and complete instructions for its use are included. Performance computation time for one pair of SRMs is approximately 35 seconds on the IBM 370/155 using the FORTRAN H compiler

    Quantitative effects of abrupt deceleration on pulmonary diffusion in man Technical report,

    Get PDF
    Quantitative effects of abrupt deceleration on pulmonary diffusion in ma

    Optical implementation of systolic array processing

    Get PDF
    Algorithms for matrix vector multiplication are implemented using acousto-optic cells for multiplication and input data transfer and using charge coupled devices detector arrays for accumulation and output of the results. No two dimensional matrix mask is required; matrix changes are implemented electronically. A system for multiplying a 50 component nonnegative real vector by a 50 by 50 nonnegative real matrix is described. Modifications for bipolar real and complex valued processing are possible, as are extensions to matrix-matrix multiplication and multiplication of a vector by multiple matrices

    Solid propellant rocket motor internal ballistics performance variation analysis, phase 3

    Get PDF
    Results of research aimed at improving the predictability of off nominal internal ballistics performance of solid propellant rocket motors (SRMs) including thrust imbalance between two SRMs firing in parallel are reported. The potential effects of nozzle throat erosion on internal ballistic performance were studied and a propellant burning rate low postulated. The propellant burning rate model when coupled with the grain deformation model permits an excellent match between theoretical results and test data for the Titan IIIC, TU455.02, and the first Space Shuttle SRM (DM-1). Analysis of star grain deformation using an experimental model and a finite element model shows the star grain deformation effects for the Space Shuttle to be small in comparison to those of the circular perforated grain. An alternative technique was developed for predicting thrust imbalance without recourse to the Monte Carlo computer program. A scaling relationship used to relate theoretical results to test results may be applied to the alternative technique of predicting thrust imbalance or to the Monte Carlo evaluation. Extended investigation into the effect of strain rate on propellant burning rate leads to the conclusion that the thermoelastic effect is generally negligible for both steadily increasing pressure loads and oscillatory loads

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs
    corecore