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Lower bounds on mutual information
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We correct claims about lower bounds on mutual information (MI) between real-valued random variables
made by Kraskov et al., Phys. Rev. E 69, 066138 (2004). We show that non-trivial lower bounds on MI in terms
of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance
of MI under reparametrizations, because linear correlations are not invariant under them. The simplest bounds
are obtained for Gaussians, but the most interesting ones for practical purposes are obtained for uniform marginal
distributions. The latter can be enforced in general by using the ranks of the individual variables instead of their
actual values, in which case one obtains bounds on MI in terms of Spearman correlation coefficients. We show
with gene expression data that these bounds are in general nontrivial, and the degree of their (non)saturation
yields valuable insight.
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Mutual information [1] between two objects is the dif-
ference between the combined lengths of their individual
descriptions and the length of a joint description, all descrip-
tions being “optimal,” i.e. lossless and redundancy-free. In
the framework of algorithmic information theory [2], this is
taken literally, i.e. the “objects” are sequences of letters of
some alphabet, and “description” means a compression of the
sequence on some specified but otherwise arbitrary universal
Turing machine. In the framework of Shannon theory, in
contrast, we deal with random variables, and “description
length” is to be understood as the minimal average information
needed to specify their realizations, given the probability
distributions.

In the following we shall only use the Shannon framework,
but we shall not forget entirely about individual objects.
When confronted with them, we make some (explicit or
implicit) estimate about the probability distribution (assuming
that the observed objects are in some sense “typical”);
computing their MI is actually a problem of statistical
inference.

More precisely, consider two random variables X and Y

with realizations x and y and probability densities pX(x) and
pY (y). For simplicity we shall assume that x and y are both
scalars taken either from a finite interval or from the interval
[−∞,∞]. In both cases pX and py are normalized to 1. The
joint distribution is p(x,y). The MI is then defined as

I (X : Y ) =
∫

dxdyp(x,y) log
p(x,y)

pX(x)pY (y)
, (1)

where the base of the logarithm specifies the units in
which information is measured. Bits correspond to logarithm
base 2.

From this one sees that I is symmetrical, I (X : Y ) = I (Y :
X), and positive definite: I (X : Y ) = 0 if and only if X and Y

are strictly independent. Thus I (X : Y ) is a universal measure
of dependency, being nonzero whenever X and Y have any-
thing in common. This can also be seen in the following way:
the (differential) entropy H (X) = − ∫

dxpX(x) log pX(x) is

the (negative) average log-likelihood of x, and

I (X : Y ) = H (X) − H (X|Y ) (2)

is the logarithm of the ratio between the unconditioned
likelihood of x and the posterior likelihood conditioned on
the value y of Y .

For the differential entropy, there is a well-known upper
bound in terms of the variance: H (X) is maximal for a
Gaussian with the same variance as the data [1]. Indeed, this
is true also for multivariate distributions. In the Appendix
of [3], a formal proof based on Lagrangian multipliers was
given that analogous bounds hold also for the MI. According
to [3], a given covariance matrix implies a lower bound on the
MI. Unfortunately, this proof is wrong, and the claim made
in [3] is incorrect (see also the Erratum [4]). The error in [3]
was subtle: The unique solution of the Lagrangian variational
problem was given correctly, but the fact was missed that this
solution is in general a saddle point, the correct bound being
an infimum which is not reached by any actual distribution (at
least not by a distribution in the class admitted in the variational
problem).

Indeed, it is easily seen that the MI can be arbitrarily
small for any value of the correlation. Assume that the joint
distribution is a sum of a δ peak with weight 1 − ε centered
at (x,y) = (1,1) and a two-dimensional (2D) Gaussian with
weight ε centered at the origin,

p(x,y) = (1 − ε)δ(x − 1)δ(y − 1) + ε

2πσ 2
e
− x2+y2

2σ2 . (3)

Then the correlation between X and Y varies between zero
and one as the width σ shrinks to zero, for any fixed ε > 0.
But the MI is bounded for all σ by I (X : Y ) � −ε log ε −
(1 − ε) log(1 − ε), which tends to zero as ε → 0. Thus the MI
can be arbitrarily close to zero, even when the correlation is
arbitrarily close to 1—although this is unlikely to appear in
real applications, except for outliers.

It is the purpose of the present paper to present correct
bounds replacing those given in [3]. As we shall see, to obtain
nontrivial bounds for the MI, one needs both the covariance
matrix and the marginal distributions. But the latter can be
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chosen arbitrarily to a large extent, since I (X : Y ) as defined
in Eq. (1) is invariant under homeomorphism. Let φ(x) be
a continuous and monotonic function, such that its inverse
φ−1(x) is also continuous and monotonic, and let X′ be a
random variable with realization x ′ = φ(x) if X has realization
x. Then

pX(x) =
∣∣∣∣dφ(x)

dx

∣∣∣∣ pX′(x ′), (4)

and I (X : Y ) = I (X′ : Y ). By symmetry, the same holds for
homeomorphisms of Y .

This leads to the following strategy for obtaining bounds
on I (X : Y ): One first transforms X and Y independently
so that they have a given distribution, e.g., a Gaussian or a
uniform distribution. Notice that the first and second moments
in general will change during such a transformation. After that
is done, one applies the bound suitable for the chosen marginal
distributions.

The case of Gaussian marginal distributions is the simplest
to treat theoretically. In that case the arguments given in the
Appendix of [3] apply, and the MI is bounded from below by
the MI of a joint Gaussian with the observed first and second
moments. But this is not the most practical choice, because
it is nontrivial to transform any empirical distribution into a
Gaussian.

For practical purposes much more suitable is transformation
to uniform distributions over finite intervals, say x ′ ∈ [−1,1]
and y ′ ∈ [−1,1]. This transformation, which also leads usually
to improved MI estimates, is de facto achieved by using for
x ′ and y ′ their normalized ranks. Assume that the empirical
data consist of N pairs (xi,yi), i = 1, . . . ,N . Then the rank ri

of xi is defined as the number of values xj which are less than
or equal to xi (here we assume that all xi are different, as is true
with probability 1 if X is drawn from a continuous distribution;
if there are degeneracies due, e.g., to discretization, we
remove them by adding small random fluctuations to xi).
Finally,

x ′
i = 2ri/N − 1. (5)

and analogously for y. Notice that this does not, strictly
speaking, define X′, as it defines the homeomorphism φ only
at the discrete values xi , but this does not pose a practical
problem. Furthermore, in the limit N → ∞ the “empirical
φ(x)” tends with probability 1 toward a true homeomorphism.
The linear correlation between the ranks of x and y is by
definition the Spearman coefficient S = CX′Y ′ [5].

To obtain a bound on the MI for given marginal distributions
and given first and second moments, we use the Lagrangian
method. Without loss of generality we assume that the data are
centered, i.e., 〈X〉 = 〈Y 〉 = 0. We use p(x,y) as independent
variables, and

pX(x) =
∫

dyp(x,y), pY (y) =
∫

dxp(x,y);

CXY =
∫∫

dxdyxyp(x,y)/[σXσY ] (6)

as constraints. The Lagrangian function is

L =
∫∫

dx dy p(x,y) log
p(x,y)

pX(x)pY (y)

+
∫

dxνX(x)

[
pX(x) −

∫
dy p(x,y)

]

+
∫

dyνY (y)

[
pY (y) −

∫
dx p(x,y)

]

+ λ

[
σXσY CXY −

∫∫
dx dy xyp(x,y)

]
, (7)

where νX(x), νY (y), and λ are Lagrangian parameters. The
variational equations are

δL

δp(x,y)
= log

p(x,y)

pX(x)pY (y)
+ 1 − νX(x) − νY (y) − λxy = 0,

(8)
which can also be written as

p(x,y) = fX(x)fY (y)e−λ(x−y)2
(9)

with unknown functions fX,fY and unknown λ, all of
which are determined by the constraints. The Kolmogorov
consistency condition for pX(x), in particular, gives

pX(x)

fX(x)
=

∫
dyfY (y)e−λ(x−y)2

. (10)

In the following we shall discuss only the two cases of
Gaussian and uniform marginals. For Gaussian marginals, one
finds that p(x,y) is also Gaussian, and thus the results of [3]
are obtained,

I (X : Y ) � I−
Gauss(CXY ) ≡ − 1

2 log
(
1 − C2

XY

)
. (11)

For uniform marginals, we indeed do not solve the problem of
finding a bound I−

unif on the MI for given S, but we solve the
easier implicit problem of finding both I−

unif and S for given λ.
We do this recursively, starting with the zeroth approximation

f
(0)
X (x) = f

(0)
Y (y) = 1/2. (12)

From the kth approximation of fX and fY we obtain the
(k + 1)st approximations by means of

1

f
(k+1)
X (x)

= 2
∫ 1

−1
dyf

(k)
Y (y)e−λ(x−y)2

, (13)

1

f
(k+1)
Y (y)

= 2
∫ 1

−1
dxf

(k)
X (x)e−λ(x−y)2

. (14)

When doing this, we observe that f
(k)
X and f

(k)
Y are even

functions for each k, and that both indeed are equal. We can
thus drop the subscripts and write the recursion as

f (k+1)(x) =
[

2
∫ 1

−1
dyf (k)(y)e−λ(x−y)2

]−1

. (15)
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TABLE I. Spearman coefficient and lower bound on the MI (in
natural units).

λ S I−
unif

0.00 0.0000 0.0000
0.25 0.0829 0.0034
0.50 0.1633 0.0135
0.75 0.2390 0.0292
1.00 0.3086 0.0495
1.25 0.3713 0.0729
1.50 0.4270 0.0984
2.00 0.5189 0.1517
2.50 0.5897 0.2040
3.00 0.6428 0.2531
4.00 0.7177 0.3396
5.00 0.7666 0.4123
6.00 0.8007 0.4746
7.00 0.8260 0.5292
8.00 0.8455 0.5777
9.00 0.8610 0.6215

10.00 0.8736 0.6614
11.50 0.8887 0.7156
13.00 0.9005 0.7636
15.00 0.9128 0.8208
17.00 0.9224 0.8717
20.00 0.9333 0.9389
23.00 0.9415 0.9975
27.00 0.9498 1.0657
32.00 0.9572 1.1393
40.00 0.9654 1.2366
50.00 0.9721 1.3357

After convergence, the joint density is obtained as

p(x,y) ∝ lim
k→∞

f (k)(x)f (k)(y)e−λ(x−y)2
. (16)

Here we have left the normalization open, in order to allow
for errors in the numerical integration which might have ac-
cumulated during the recursion. The proportionality constant
is thus fixed by the normalization condition

∫
p = 1. Finally,

S and the lower bound I−
unif(S) on I (X : Y ) are obtained by

using Eq. (1) and

S = 3
∫∫ 1

−1
dx dy xy p(x,y)e−λ(x−y)2

. (17)

Numerical results for several values of λ, obtained by
using Gaussian quadrature for the integrals, are given in
Table I. Except for values of S close to ±1, I−

unif(S) is well
approximated by

I−
unif(S) ≈ − 1

2 (1 − 0.122S2 + 0.053S12) log(1 − S2). (18)

The two bounds for Gaussians [Eq. (11)] and for uniform
distributions [Eq. (18)] are shown in Fig. 1.

As an application we show in Fig. 2 gene expression
data obtained from human B lymphocyte cells [6]. In that
experiment, the expressions of 12 600 different gene loci were
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FIG. 1. (Color online) Lower bounds of MI in terms of the
Spearman correlation coefficient (continuous line, red) and in terms of
the Pearson correlation coefficient in the case of Gaussian marginals
(dashed, green). For both curves, the MI is measured in natural units.

measured in 336 different conditions, with special interest in
tumor cells. For each pair of genes the data can thus be rep-
resented as 336 points in a two-dimensional plane. Spearman
coefficients were obtained by ranking both coordinates (after
disambiguating degeneracies by adding low-level noise as
explained above). Mutual informations were estimated using
the k-nearest-neighbor method of [3] with k = 40. Although
this was done for all 12 600 × 12 599/2 pairs, only results
for the 12 599 pairs involving the important cancer gene
BCL6 are shown in Fig. 2. We can make the following
observations:

(a) The bound is respected by most pairs, and it forms
roughly a lower envelope for the distribution.

(b) There are several pairs for which the bound is violated,
mostly for small values of S. This reflects the fact that the
MI estimator is not perfect. Indeed, no MI estimator can
be perfect. Most estimators are chosen such that they never
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FIG. 2. (Color online) Mutual informations (in nats) between
gene BCL6 and all the other 12 599 genes as measured in the
microarray gene expression experiment of [6]. Values of the MI were
estimated by means of k nearest neighbors with k = 40. The green
line is the lower bound discussed in this paper.
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FIG. 3. (Color online) Each panel shows the gene expression
intensities (arbitrary units) of two genes, one of which is BCL6
(x axis). The other gene (y axis) was chosen such as to have very large
MI with BCL6, but very small Spearman coefficient (the uppermost
two points in Fig. 2 with |S| < 0.1). The color coding (green for BCL6
expression <200 and AL079277 expression <500, red otherwise) is
such that the same cell conditions have in both panels the same color.
It suggests that the observed nonlinear correlations are related to the
existence of two cell populations with very different properties. The
two genes correspond to accession numbers AA978353 (top) and
AL079277 (bottom).

produce negative MI, which is achieved by tolerating a positive
bias. The estimator of [3] was constructed such that the bias
is minimized, at the cost of obtaining occasionally negative
values due to statistical fluctuations.

(c) For most pairs the bound is not saturated, showing
that there are important nonlinear dependencies between these
pairs. As an illustration for the latter we take the two points
with |S| < 0.1 and I > 0.3 and plot their gene expression
vectors in Fig. 3. They show the coexpression of BCL6 with
the genes with GenBank accession numbers AA978353 (top)
and AL079277 (bottom). In both panels of Fig. 3 we see very
strong dependencies which cannot be approximated by linear
correlations. Neither of these two genes is known to be related
to BCL6, maybe because such relations were overlooked
because of the small linear correlations. The data suggest the
presence of (at least) two different subpopulations of cells,
marked in Fig. 3 by different colors. In the subpopulation in
which BCL6 is strongly expressed (red points in Fig. 3) there
are also significant linear correlations.

In summary, we have derived lower bounds on the MI
between real-valued variables in terms of linear correlation
coefficients. We have seen that such bounds are not indepen-
dent of the marginal distribution, in contrast to the claims made
in the Appendix of [3]. But one can use the homeomorphism
invariance of the MI to transform the variables to new variables
with uniform distribution, in which case the linear correlation
coefficient becomes equal to the Spearman coefficient S.
At least in one specific and scientifically relevant example,
the resulting bound of the MI in terms of S was found to
be numerically nontrivial. In particular, large discrepancies
between the bound and the actual values gave hints at specific
structures in the data which then could be investigated in more
detail. The bound can also be useful in testing MI estimators.
Usually, an estimator is deemed unacceptable if it violates the
bound I (X : Y ) � 0. But it will be equally unacceptable if it
violates the stronger bound I (X : Y ) � I−.

Finally, our results also answer the question of how linear
correlations change under reparametrizations. There is no
reason to expect a universal exact answer, but approximately
they should change such that the numerical values of the
bounds I− stay the same.

We thank Andrea Califano for providing us the data of
Ref. [6], and Alexander Kraskov and Maya Paczuski for
discussions.
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