

NASA CONTRACTOR REPORT

NASA CR-120700

A MONTE CARLO INVESTIGATION OF THRUST IMBALANCE OF SOLID ROCKET MOTOR PAIRS

By Richard H. Sforzini, Winfred A. Foster, Jr., and Joseph S. Johnson Auburn University Engineering Experiment Station Auburn, AL 36830

November 1974

Prepared for

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, AL 35812

	•	TECHNI	CAL REPORT STAN	DARD TITLE P
1. REPORT NO.	2. GOVERNMENT ACC		3. RECIPIENT'S C	ATALOG NO.
NASA-CR-120700				
4. TITLE AND SUBTITLE			5. REPORT DATE	
A Monte Carlo Investigation	of Thrust Imbala	ance of Solid	November	
Rocket Motor Pairs		mee of boild	6. PERFORMING O	RGANIZATION COD
			0130	
7. AUTHOR(S)			8. PERFORMING OR	GANIZATION REPO
Richard H. Sforzini, Winfre		Joseph S. Joh		
9. PERFORMING ORGANIZATION NAME AND	ADDRESS		10. WORK UNIT NO	•
Auburn University				
Engineering Experiment Sta	ation		11. CONTRACT OR COOperative	Agreement M
Auburn, AL 36830			13. TYPE OF REPOR	
AUDUTH, AL 50850				
12. SPUNSURING AGENCY NAME AND ADDRE	.55		Final Repor	ct
George C. Marshall Space	Flight Center		14. SPONSORING A	GENCY CODE
Marshall Space Flight Cente	er, AL 35812		TH. SPUNSORING A	
15. SUPPLEMENTARY NOTES				
			·	
Technical Coordinator, Ben	n W. Shackleford	I, EP25		
		•		
16. ABSTRACT	······································	·····		
A technique is described for	theoretical. st	atistical eval	uation of the th	hrust imbala
	-			
of pairs of solid-propellant	: rocket motors (SRMs) firing i	n parallel. Sets.	s of the
significant variables, deter	mined as a part	of the researc	h, are selected	using a rar
sampling technique and the i	-		-	-
	invarance carcula	Led IOL a larg	e mumber of more	
"simplified computer program				
	" described in p	revious NASA C	ontractor Report	ts (Nos. CR·
129024 and CR-129025) is use	n" described in p ed to evaluate the	revious NASA C e performance	ontractor Report of the SRM pairs	ts (Nos. CR- s. The perfo
129024 and CR-129025) is use mance model is upgraded to i	" described in p d to evaluate the nclude the effec	revious NASA C e performance ts of statisti	ontractor Report of the SRM pairs cal variations i	ts (Nos. CR• s. The perfo in the ovali
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c	a" described in p ed to evaluate the nclude the effec ase and mandrel.	revious NASA C e performance ts of statisti Effects of cr	Contractor Report of the SRM pairs cal variations i oss-correlations	ts (Nos. CR s. The perfo in the ovali s of variabl
129024 and CR-129025) is use mance model is upgraded to i	a" described in p ed to evaluate the nclude the effec ase and mandrel.	revious NASA C e performance ts of statisti Effects of cr	Contractor Report of the SRM pairs cal variations i oss-correlations	ts (Nos. CR s. The perfo in the ovali s of variabl
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c	" described in p d to evaluate the nclude the effec ase and mandrel. for the most part	revious NASA C e performance ts of statisti Effects of cr completely in	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input	ts (Nos. CR- s. The perfo in the ovali s of variabl variables,
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im	" described in p ed to evaluate the nclude the effec ase and mandrel. for the most part balance is evalue	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va	ts (Nos. CR- s. The perfo in the ovali s of variabl variables, arying para-
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin	" described in p ed to evaluate the include the effec- ase and mandrel. for the most part balance is evalu- agle valued ones y	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject t	ts (Nos. CR s. The perfo in the ovali s of variables, arying para- to statistic
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of	" described in p ed to evaluate the include the effec- ase and mandrel. for the most part balance is evalu- ngle valued ones the thrust imbala	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di	ts (Nos. CR- s. The perfo in the ovali s of variables, variables, arying para- to statistic ia. SRMs of
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- ngle valued ones the thrust imbala	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va res are subject t rs of 146 in. di RTRAN IV compute	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program o
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR	" described in p ed to evaluate the nclude the effec- ase and mandrel. for the most part balance is evalu- gle valued ones the thrust imbala Shuttle is pres- structions for i	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va es are subject t rs of 146 in. di RTRAN IV compute luded. Performa	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler.	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR s. The perfo in the ovali- s of variables, arying para- to statistic ia. SRMs of er program o ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR s. The perfo in the ovali- s of variables, arying para- to statistic ia. SRMs of er program o ance computa
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. КЕҮ WORDS Thrust imbalance Grain design Internal ballistics	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	ontractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program o ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	ontractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program o ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	ontractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. КЕҮ WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject t rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program o ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique Space Shuttle Thrust reproducibility	" described in p ed to evaluate the nclude the effec- case and mandrel. For the most part abalance is evalu- ngle valued ones with the thrust imbala Shuttle is present structions for it Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	ontractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique Space Shuttle	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- ngle valued ones the thrust imbala Shuttle is pres- astructions for i Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	ontractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique Space Shuttle Thrust reproducibility Impulse reproducibility 9. SECURITY CLASSIF. (of this report)	" described in p ed to evaluate the nclude the effec- ase and mandrel. For the most part abalance is evalu- agle valued ones the thrust imbala shuttle is pres- astructions for i Ms is approximate 20. SECURITY CLASS	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	Contractor Report of the SRM pairs cal variations i oss-correlations dependent input of six time - va- res are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique Space Shuttle Thrust reproducibility	" described in p ed to evaluate the nclude the effec- case and mandrel. For the most part abalance is evalu- ngle valued ones with the thrust imbala Shuttle is present structions for it Ms is approximate	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	Contractor Report of the SRM pairs cal variations is oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program c ance computa /155 using t
129024 and CR-129025) is use mance model is upgraded to i and alignment of the motor c are minimized by selecting f over forty in number. The im meters as well as eleven sin analysis. A sample study of type to be used on the Space the analysis and complete in tion time for one pair of SR FORTRAN H compiler. 7. KEY WORDS Thrust imbalance Grain design Internal ballistics Monte Carlo technique Space Shuttle Thrust reproducibility Impulse reproducibility 9. SECURITY CLASSIF. (of the report)	" described in p ed to evaluate the include the effec- ase and mandrel. For the most part abalance is evalua- agle valued ones of the thrust imbala- e Shuttle is pres- astructions for i Ms is approximate 20. SECURITY CLASS UNCLASSIF	revious NASA C e performance ts of statisti Effects of cr completely in ated in terms which themselv ance of 50 pai ented. The FO ts use are inc ely 35 seconds 18. DISTRIBUTION S Unclassifie	Contractor Report of the SRM pairs cal variations is oss-correlations dependent input of six time - va- es are subject to rs of 146 in. di RTRAN IV compute luded. Performa on the IBM 370/	ts (Nos. CR- s. The perfo in the ovali s of variables, arying para- to statistic ia. SRMs of er program of ance computa /155 using to 22. PRICE NTIS

FINAL REPORT

A MONTE CARLO INVESTIGATION OF THRUST IMBALANCE OF SOLID ROCKET MOTOR PAIRS

by

Richard H. Sforzini Professor

Winfred A. Foster, Jr. Assistant Professor

and

Joseph S. Johnson, Jr. Application EDP Programmer

Aerospace Engineering Department

Prepared under

Modification No. 12 to the Cooperative Agreement Dated October 6, 1969, between

George C. Marshall Space Flight Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

and -

AUBURN UNIVERSITY

Engineering Experiment Station Auburn University Auburn, Alabama 36830

November 1974

ACKNOWLEDGEMENTS

The authors express appreciation to personnel at the George C. Marshall Space Flight Center for their many useful suggestions which materially aided this investigation and in particular to B. W. Shackelford, Jr. (NASA Project Coordinator) who additionally provided data for analysis and helpful encouragement to this effort.

The participation of Edwin C. Word, Jr., Graduate Research Assistant in Aerospace Engineering, Auburn University, whose efforts in the early phases of the investigation provided some valuable insights for the ovality analysis, is also acknowledged. Finally, the authors express grateful appreciation to Mrs. Marjorie N. McGee who typed the manuscript.

Acknowledgements
List of Figures
List of Tables
Nomenclature
I. Introduction and Summary
II. Analysis
Internal Ballistics (Main Program)
Internal Ballistics (Area Subroutine)
Ovality and Malalignment (Oval Subroutine)
Statistical Analysis
III. Discussion of Input and Output
IV. The Computer Program
Input Data
Program Listing
V. Sample Study
VI. Concluding Remarks
References
Appendix

TABLE OF CONTENTS

111

LIST OF FIGURES

Figure	11-1.	Geometry for analysis of ovality and malalignment 8
Figure	II-2.	General flowchart of setup and input subroutines 12
Figure	II-3.	Example of the two general types of CDFs 13
Figure	111-1.	Basic motor dimensions
Figure	III-2.	Standard star grain cross-section 25
Figure	111-3	Truncated (slotted tube) star grain cross-section. 26
Figure	III-4	Wagon-wheel grain cross-section. Calculated variables are circled
Figure	IV-1.	Schematic of data deck
Figure	IV-2.	Block diagram of computer program
Figure	V-1.	Thrust versus time for one pair of SRMs of sample case (CalComp plot reduced size)
Figure	V-2.	Thrust during tailoff versus time for one pair of SRMs of sample case (CalComp plot-reduced size) 111
Figure	V-3.	Thrust imbalance versus time for one pair of SRMs of sample case (CalComp plot)
Figure	V-4.	Impulse imbalance versus time for one pair of SRMs of sample case (CalComp plot)
Figure	V-5.	Absolute impulse imbalance versus time for one pair of SRMs of sample case (CalComp plot)114
Figure	V-6.	Histogram of absolute thrust imbalance values for fifty motor pairs from the sample study 117
Figure	A-1.	Thrust versus time for two SRMs with propellant density ρ difference of 3%
Figure	A-2.	Thrust versus time for two SRMs with burning rate coefficient, a_1 and a_2 , difference of 3%

LIST OF FIGURES (CONT'D)

.

.:.=

Figure A-3.	Thrust versus time for two SRMs with burning rate exponent, n_1 and n_2 , difference of 3%
Figure A-4.	Thrust versus time for two SRMs with characteristic velocity C* difference of 3%
Figure A-5.	Thrust versus time for two SRMs with ratio of specific heats γ difference of 3%
Figure A-6.	Thrust versus time for two SRMs with nozzle exit diameter D _e difference of 3%
Figure A-7.	Thrust versus time for two SRMs with nozzle initial throat diameter D* difference of 3%
Figure A-8.	Thrust versus time for two SRMs with nozzle exit divergence angle α_n difference of 0.3° (2.7%) 128
Figure A-9.	Thrust versus time for two SRMs with aft end grain tapered length L_{T_a} difference of 3%
Figure A-10.	Thrust versus time for two SRMs with aft end radial displacement of tapered grain x_{Ta} difference of 0.3 inches (9.9%)
Figure A-11.	Thrust versus time for two SRMs with radial displacement of the main portion of the grain due to bore taper z_0 difference of 0.3 inches (12.4%) 131
Figure A-12.	Thrust versus time for two SRMs with radial dis- placement of the main portion of the grain due to exterior taper difference z _c of 0.3 inches (0 base value)
Figure A-13.	Thrust versus time for two SRMs with out-of- round conditions of the grain exterior at the aft end ΔR_{cn} of 0 and 0.5 inches ($\alpha_{an} = 0$) 133
Figure A-14.	Thrust versus time for two SRMs with out-of-round conditions of the grain exterior at the aft end ΔR_{cn} of 0 and 0.5 inches ($\alpha_{an} = 90^{\circ}$)
Figure A-15.	Thrust versus time for two SRMs with out-of-round conditions of the grain bore at the aft end ΔR_{gn} of 0 and 0.5 inches

v

LIST OF FIGURES (CONT'D)

Figure A-16.	Thrust versus time for two SRMs with out-of-round conditions of the grain bore at the head end ΔR_{gh} of 0 and 0.5 inches
Figure A-17.	Thrust versus time for two SRMs with eccentricities of grain exterior and interior at the aft end e _{xn} of 0 and 0.5 inches
Figure A-18.	Thrust versus time for two SRMs with eccentricities of centers of grain exterior and interior at the head end e_{xh} of 0 and -0.5 inches
Figure A-19.	Thrust versus time for two SRMs with eccentricities of centers of grain exterior and interior at the head end e _{xh} of 0 and -0.5 inches (e _{xn} for Figs. A-18 and A-19 is 0 and +0.5, respectively) 139
Figure A-20.	Thrust versus time for two SRMs with radial nozzle throat erosion rate E _{ref} difference of 20% 140
Figure A-21.	Thrust versus time for two SRMs with bulk propellant temperature T_{gr} difference of 3°F
Figure A-22.	Thrust versus time for two SRMs with ignition delay T difference of 0.4 sec
Figure A-23.	Thrust versus time for two SRMs with average grain outside diameter D _o difference of 0.3 inches (0.2%)
Figure A-24.	Thrust versus time for two SRMs with average grain inside diameter D_1 difference of 0.3 inches (0.5%) . 144
Figure A-25.	Thrust versus time for two SRMs with angle of aft burning surface θ_{G} difference of 3° (28.8%)
Figure A-26.	Thrust versus time for two SRMs with length of circular perforated grain L _{Gci} difference of 3.0 inches (0.3%)
Figure A-27.	Thrust versus time for two SRMs with length of . grain L_{Gni} associated with θ_G difference of 3% 147

LIST OF FIGURES (CONT'D)

Figure A-28.	Thrust versus time for two SRMs with length of star grain L_{GSi} difference of 3.0 inches (1.6%) 148
Figure A-29.	Thrust versus time for two SRMs with radius of star grain fillet difference f of 0.3 inches (2.4%)
Figure A-30.	Thrust versus time for two SRMs with average initial radius of star grain truncation R_p difference of 0.3 inches (2.4%)
Figure A-31.	Thrust versus time for two SRMs with average web thickness of truncated star grain τ_s of 0.3 inches (3.7%)

LIST OF TABLES

TABLE IV-1.	EXAMPLE DATA SHEETS
TABLE IV-2.	MONTE CARLO PERFORMANCE ANALYSIS OF SRM PAIRS 51
TABLE V-1.	FIXED INPUT VALUES OF SAMPLE CASE 103
TABLE V-2.	INPUT DATA FOR STATISTICAL VARIABLES OF SAMPLE CASE
TABLE V-3.	PRINTOUT OF STATISTICAL INPUT DATA FROM SAMPLE CASE
TABLE V-4.	PRINTOUT OF INPUT VARIABLES FOR ONE SRM FROM SAMPLE CASE
TABLE V-5.	PORTION OF PRINTOUT OF TRANSIENT VALUES FOR ONE SRM FROM SAMPLE CASE
TABLE V-6.	OUTPUT VALUES FOR FINAL MOTOR PAIR AND STATISTICAL CHARACTERISTICS OF TWENTY-FIVE MOTOR PAIRS FROM
	SAMPLE STUDY
TABLE V-7.	SELECTED STATISTICAL CHARACTERISTICS OF FIFTY MOTOR PAIRS FROM THE SAMPLE STUDY

NOMENCLATURE

An asterisk before the symbols indicates an input variable. All input subscripted and non-subscripted variables are listed separately.

English Symbol	Definition	Units Used
^a c ^{,b} c	Major and minor semiaxis, respectively, of grain exterior used in the ovality analysis.	in.
*a1,*a2	Propellant burning rate coefficient above and below the transition pressure, re- spectively.	in/sec-psi ⁿ
*а _{с*р} ,а _{үр}	Pressure sensitivity of C* and γ , re-spectively.	
*a c*T	Temperature sensitivity of C*	/°F
ag,bg	Major and minor semiaxis of grain interior, respectively, used in ovality analysis.	in.
A _{bn} , A _{bp} , A _{bs}	Total burning surface associated with nozzle end, port and slot surfaces, respectively.	in ²
*A bnT	Burning surfaces (as a function of y) at nozzle end for tabular input.	in ²
*A _{bpT}	Burning surfaces (as a function of y) of port sides for tabular input.	in ²
*A bsT	Burning surfaces (as a function of y) of slo for tabular input.	ts in ²
*A _{phT} ,*A _{pnT}	Controlling port areas at head and aft ends, respectively (as a function of y) for purely tabular inputs.	in ²
C _v	Coefficient of variation; 1.e., the ratio of the standard deviation to the mean.	

English Symbol	Definition	Units Used
C*,*C _n *	Characteristic exhaust velocity at T _{gr} and P _{on} and at standard conditions, respectively.	ft/sec
*C •C	Integer designating shape of grain ends.	
D*,*D ₁ *	Instantaneous and initial diameters, respectively, of the nozzle throat.	in.
*De	Diameter of the nozzle exit.	in.
*D _i	Length average initial diameter of con- trolling length of circular perforated grain.	in.
*D_0	Length average outside diameter of circular perforated grain, excluding lengths in closures.	in.
*D ref	Reference nozzle throat diameter used in the nozzle throat erosion equation.	in.
*D _{TP}	Initial diameter of the thrust termination passageways in the grain.	in.
*f	Fillet radius at star valley.	in.
*e xh' *e yh	The eccentricities of the center of the grain interior with respect to the center of the grain exterior in the x_c and y_c directions, respectively, at the head end reference plane	
*e xn *e yn	The eccentricities of the center of the grain interior with respect to the center of the grain exterior in the x and y directions, respectively, at the nozzle end reference play	
^E n ^{,*E} ref	Radial erosion rate and reference erosion rate, respectively, of the nozzle throat.	in/sec
F	Thrust	lbf.
^g o	Gravitational constant (ft	/sec ²)1bm/1bf
*G op	Integer designating type of grain perforation	•
* ^h 1,* ^h 2	The half width of the first and second set of points, respectively, of a wagon-wheel gra	in. in.
*h b	Estimated burnout altitude.	ft.
h _{cn}	Axial length of nozzle closure.	in.

X

2

English Symbol	Definition	Units Used
*I eo	Integer designating option of ovality and malalignment calculations.	
*II	Number of steps in the integrations of perimeters in ovality analysis subroutine.	
*I op	Integer designating type of program input.	<u> </u>
*I po	Integer designating options of plotting results and obtaining special outputs.	
I _{sp} ,I _T	Specific and total impulse, respectively. 1	of-sec/1bm,1bf-sec
*I _{xi} ,I _{xf}	The initial and final seed numbers, re- spectively, for the random number generator.	
K .	Criterion value in Pearson's system for determining frequency curves.	· · · · ·
* ² 1, ^{*2} 2	The length of the two parallel sides of the first and second set of points, respectively of a wagon-wheel grain.	in.
^ℓ f	Distance between center line of motor and fillet center of standard star grain.	in.
l _s	Length of sides of truncated star point excluding fillets.	in.
* ² TP	Initial length of termination passages betwee centers of gravity of perimeters of bases.	en in.
*L	Total initial perforated grain length includ: gaps at slots.	ing in.
^L Gc' ^{*L} Gci	Instantaneous and initial total axial lengths respectively, of circular perforated grain (not including gaps).	s, in.
*L Gni	Initial slant length of grain surface at the nozzle end.	in.
*L _{Gsi}	Initial total length of star-shaped perforate grain.	ed in.

English Symbol	Definition	Jnits Used
*L Ta	Estimated length of grain at the aft end at start of first tailoff having an additional taper not represented by z_0 or θ_G .	in.
n	Number of observations of a statistically distributed variable or burning rate exponent	
*n1,*n2	Burning rate exponents above and below the transition pressure, respectively.	
*n n	Number of burning flat end surfaces of a star grain located at the extreme nozzle end of the chamber.	<u> </u>
*n p	Number of star points.	
*n s	Number of burning flat end surfaces of a star grain not located at the nozzle end of the chamber.	
*N(j)	Integer designating whether or not a specific output plot is desired.	·
P	Pressure.	lbf/in ²
P h max	Maximum head end chamber pressure calculated by the program.	psia
*P ref	Reference average nozzle stagnation pressure used in the nozzle throat erosion equation.	psia
*P tran	Transition pressure at which the burning rate coefficient and exponent change.	e psia
*Qop	Integer designating grain arrangement.	
r	Burning rate.	in/sec
*R _{is} ,*R _{iws} ,*R _{iww}	Initial inside radius of the propellant web of a standard star, truncated star, and wagon-wheel grain, respectively.	in.
R ₇	Distance from center of curvature of a spherical end of circular perforated grain to the burning surface associated with θ_{G} .	in.
*R c	Outside radius of a star grain.	in.
*R _{OAL}	The propellant oxidizer to aluminum weight ratio.	_

English Symbol	Definition	Units Used
*R D	Initial radius of truncated star points.	in.
*S	Number of burning flat slot sides of a circular perforated grain not including the nozzle end.	·
*S op	Integer designating type of star grain.	·
t	Time	sec.
t, b	Calculated total operating time of motor.	sec.
*t _{b1}	Estimated time at burnout.	sec.
*t _{igr}	Ignition delay at 60°F grain temperature.	sec.
*t max q	Estimated time at which maximum dynamic pressure on the vehicle occurs.	sec.
ti	Earlier time at which tailoff begins in a motor pair.	sec.
*T gr	Bulk temperature of the propellant grain.	°F
*V ciT	Initial volume of chamber gases associated with tabular input.	in ³
W _{p1} ,W _{p2} ,W _p	Total masses of propellant burned based on mass discharge rate, volume calculations and the arithmetic average of W_{p1} and W_{p2} .	lbm.
x	Value of general statistical variable.	Units vary
^x c ^{,y} c	Coordinates of the grain exterior used in the ovality analysis.	in.
×g, ^y g	Coordinates of the grain interior used in the ovality analysis.	in.
*x out	Distance burned at which propellant breaks up	p. in.
*× _{Ta}	Difference in web thicknesses at ends of L _{Ta}	. in.
*xTz	Difference between the initial circular per- forated grain diameter and the nozzle end of L_{Gci} and the nominal value of D_i less z_o and less twice x_{Ta} .	in.
у	Distance propellant has burned from initial surface.	in.

English Symbol	Definition	Units Used
*z _o ,z	Initial and instantaneous differences, re- spectively, between web thicknesses due to grain bore taper at head and nozzle ends of controlling grain length, excluding any initial length associated with L_{Ta} or θ_{G} .	in.
*z C	Initial difference between web thicknesses due to grain exterior taper at the head and aft ends of the controlling grain length.	in.
Greek Symbol		
$*\alpha_{ah},*\alpha_{an}$	The angular orientation of the ovality of the grain interior with respect to the grain exterior at the head and nozzle end of the grain, respectively.	degrees
*α1,*α2	The angle between the slant sides of a wagon- wheel grain point and the center line of the point for the first and second set of points, respectively.	degrees
*α eb	Erosive burning coefficient in the in ^{2.8} -ft Robillard-Lenoir rule.	0.8/sec ^{1.8} 1bf ^{0.8}
*a n	Nozzle exit half angle.	degrees
*β	Erosive burning pressure coefficient in the Robillard-Lenoir rule.	
^β 1, ^β 2	Ratio of the square of the third moment about the mean to the cube of the second moment and the ratio of the fourth moment to the square of the second moment, re-	
· .·	<pre>spectively, for a statistically distributed variable.</pre>	
ΔΡ _c /Δy	Rate of change of chamber pressure with respect to distance burned.	lbf/in ³
*(AP/Ay)	Depressurization rate at which propellant is extinguished for computation control purposes	lbf/in ³ .
$^{*\Delta R}$ ch, $^{*\Delta R}$ cn	One half the difference between the maximum and minimum diameter of the grain exterior at the head and nozzle end reference planes, respectively.	in

_

Greek Symbol	Definition	Units Used
∆Rgh,∆Rgn	One half the difference between the maximum and minimum diameter of the grain bore at the head and nozzle end reference planes, respectively.	in.
Δy,*Δy	Incremental distance burned and initial value of same, respectively.	in.
* ⁵ F	Thrust loss coefficient.	<u> </u>
*θ _{cn} ,*θ _{ch}	Approximate acute angle bonded circular perforated grain makes with motor center line at the head and nozzle closures, respectively. Also referred to as the grain contraction angles.	degrees
* ⁰ £	Angular location of fillet center of standard star from line of symmetry.	degrees
^θ fw	Angular location of fillet centers with respect to radial center line of wagon- wheel grain points.	radians
* ⁰ G	Angle burning surface element of circular grain makes with longitudinal axis of motor at the nozzle end of the chamber.	degrees
*0 n	Nozzle cant angle.	degrees
*0 P	Angle of standard star point.	degrees
θ s	Half angle of star grain sector.	radians
^θ s1	Angular location of slot side of truncated star grain.	radians
* ⁰ TP	Acute angle between axis of thrust termination passage and motor axis.	degrees
, λ	Volumetric loading density; i.e., initial volume occupied by propellant divided by empty case volume.	
^µ 2 ^{,µ} 3 ^{,µ} 4	Second, third and fourth moments, respec- tively, of a statistically distributed variable about its mean.	Units vary

xv

÷

Greek Symbol	Definition	Units Used
(^π p)K	Temperature sensitivity coefficient of pressure at constant $K = A_5/A^$.	/°F
*° p	Solid propellant density.	slugs/in ³
σ	The standard deviation of a statistically distributed variable; i.e., the square root of the second moment about its mean value.	Units vary
[°] 1, [°] 2	The square root of the second moment of a statistically distributed variable about zero (σ_1) and $\sigma_1/\sqrt{2}$, respectively.	Units vary o
τ 8	Thickness of propellant web at slot bottom of truncated star grain.	in.
* ^T Teff	Estimated "effective" web thickness of termination port.	in.
*τ ₩	Web thickness of main propellant grain.	in.
τ ws	Web thickness of standard star (same as τ_{w} except for some combination grains).	in.
T.ww	Web thickness of wagon-wheel grain.	in.

Subscripts

a	Value during web action time.
C	Case, grain exterior or chamber value.
f	Final.
g,G	Grain interior.
h	Head end of grain.
i	Initial.
ig	Ignition.
max	Maximum value.
min	Minimum value.
n	Nozzle or nozzle end of grain.
0	Stagnation.
q	Dynamic pressure.
t	Value during tailoff.
	· · ·

xvi

Subscripts (Cont'd)

w Value at web time.

100k Value when thrust has decayed to 100,000 lbs.

Superscripts

Choked throat value.

×

Arithmetic average value over Δy or statistical mean.

Time rate of change.

I. INTRODUCTION AND SUMMARY

This report presents the results of research performed at Auburn Unviersity during the period May 31 to November 30, 1974, under modification No. 6 to the Cooperative Agreement, dated October 6, 1969, between NASA Marshall Space Flight Center and Auburn University. The principal objective of the research was to develop a technique for statistically investigating the thrust imbalance of a pair of solid rocket motors (SRMs) firing in parallel.

The study of thrust balance and imbalance is of particular interest with regard to application to the NASA Space Shuttle because two very large solid motors fire in parallel on the Shuttle. Although a similar arrangement was utilized in the Titan program with somewhat smaller motors, because of the differences in the configuration of the Titan and Shuttle, it is more imperative that the thrust on the solid motor booster stage be uniform to assure proper guidance and control for the overall vehicle.

Past analyses of SRM reproducibility have been concerned mainly with characteristics of an entire population of single motors rather than pairs. Usually a non-time varying parameter such as average thrust and total impulse has been of interest, the distributions of variables affecting the parameter are assumed normal in the statistical sense, and crosscorrelation effects are neglected. Reference 1 typifies such an analysis.

For the present investigation the Monte Carlo technique (Reference 2) was selected. Sets of the significant variables are selected on a probability basis using a random sampling technique and the imbalance calculated for a large number of motor pairs using a mathematical model of the internal ballistics. This method is not limited to normal distributions of the input variables. Raw data, histograms, or cumulative distribution functions may be used for any of forty or more controlling variables to specify the statistical input.

Errors arising from neglecting the cross-correlation of variables are minimized in this study by selecting for the most part completely independent variables. However, the analysis may be readily extended to account for the cross-correlations where they are shown to exist and when they are calculable. The imbalance is evaluated in terms of six timevarying parameters as well as eleven single valued ones which themselves are subject to statistical analysis.

Application of the Monte Carlo method, which requires evaluation of a large number of motor pairs, is made practical and economical through the utilization of the simplified computer program for the internal ballistics presented in References 3, 4, and 5. Familiarity of the reader with References 3 and 4 or alternatively with 5, which is a consolidated

-1-

report on 3 and 4, is assumed. Although the simplified program makes use of numerous approximations, the effects of the vast majority of the variables affecting imbalance are represented. Also, the essence of the phenomena controlling the critical tailoff portion of the thrust trace are embodied in the program which has been upgraded during the current effort to refine the analysis and to incorporate additional input variables which may now be statistically distributed. It is fundamental to the approach that, in spite of bias in the performance calculated resulting from the approximations in the ballistic analysis, the bias will reflect equally in each motor of a pair. Thus the difference in performance calculations for a pair of SRMs will be of a higher degree of accuracy than the individual motor calculations assuming that the significant parameters causing the difference are incorporated into the model and their effects precisely determined.

Owing to the complexity of the problem it was not possible to include all variables or give precise representation of the influences of all those that are included. Nevertheless, it is felt that the model developed yields a good first estimate of the difference in performance between a pair of SRMs. Early in the study, the sensitivities of performance to the variation in the various input parameters was evaluated by changing each variable one at a time a small amount between a pair of SRMs and computing the performance of each motor. Partial results are given in the Appendix in the form of pairs of thrust-time traces obtained for each variable. These traces were obtained directly from the computer output using the CalComp plotter. Although only very minor performance differences were obtained in many cases, it was decided that for the Monte Carlo investigation all but a few of the variables would be statistically determined in order to minimize cumulative errors that might result from neglect of a large number of seemingly unimportant variables.

Illustrative of the comprehensiveness of the analysis is the capability which has been added to calculate as a computer program option the approximate effects of case and mandrel ovality, eccentricity, and malalignment. On the other hand, the effects of grain temperature gradient (as opposed to bulk temperature) variation between rocket motors are not within the capability of the program to evaluate. However, the ovality analysis would permit simulation of the approximate results of one special situation for temperature gradient from which insight into the effects of this important variable may be gleaned.

The Monte Carlo computer program retains the capability of the programs of References 3, 4, and 5 to treat segmented configurations with both star and circular perforated grains present in various arrangements in the same SRM as well as monolithic grains with either a circular perforation or one of the three most common types of star grains. However, the program is more accurate if most of the grain is circular perforated as in the Space Shuttle. Also, whereas tabular input may still be used to specify portions of the burning surface, the statistical input variables influence only the burning geometry that is computed from the program equations. Basic assumptions of the program are that the propellant does not break up and is not extinguished except by being completely consumed by burning normal to the propellant surface.

Ignition transients are not calculated in the analysis. However, the variations in the initial equilibrium chamber pressures as calculated by assuming the grains are completely ignited have been incorporated along with statistically determined values of ignition delay. It is believed that this treatment embodies the significant effects of ignition upon the remainder of the trace.

Perhaps the greatest limitation of the analysis is its reliance on the availability of reliable statistical data to specify accurately the distributions of the numerous variables. For example, there simply have not been enough SRMs built in the size class of those in the Space Shuttle stage to provide direct statistical samples. For small motors, where large populations exist from which data may be directly applied or scaled to another SRM, documentation of manufacturing variations is often incomplete or unavailable. In the test cases used in this report, drawing tolerance limits were taken in a number of cases to represent the ranges corresponding to six standard deviations in assumed normally distributed dimensions. Hopefully, this research will provide a stimulus for acquisition of statistical data which will reduce reliance on assumptions of this nature. As suggested earlier and as is demonstrated in the sample case, the computer program is virtually unlimited in its ability to treat the various types of statistical distributions.

The program which is written in FORTRAN IV requires approximately 2,000 computer cards not including the data cards necessary to specify the input variables and their statistical distributions. The compilation time is approximately 1 minute and 10 seconds on the IBM 370/155 computer. Performance computation time for 1 pair of SRMs using recommended increment sizes in the several integration processes involved is approximately 35 seconds using the FORTRAN H compiler.

Section II of this report discusses the changes made to the ballistic performance analysis program and also describes how the statistically distributed variables are treated and sets of random input variables selected. The basic mathematical details of the ovality and malalignment A discussion of the program input and output analysis are also given. is presented in Section III. Although most of the input variables are defined in References 3, 4, and 5, a complete discussion is given here for a ready reference and guide to the user in specification of his problem and the interpretation of the output. Section IV gives the information required to operate the program including data card format and the program listing which contains concise printed definitions of all input variables along with identification of the statistically determined variables to serve as a checklist. In Section V a sample study is presented to demonstrate the setup procedures, format and computational capabilities of the computer program.

- 3-

II. ANALYSIS

This section of the report describes the changes and additions that have been made to the ballistic analyses of References 3, 4, and 5, and presents the basic elements of the Monte Carlo analysis. Rationale to the selection of input variables is interspersed throughout the discussion. The section is divided into four parts: the first two parts give the changes to the "main" program and the "area" subroutine, the third part gives the ovality and malalignment analysis and the final part is the statistical presentation. It is assumed the reader is familiar with References 3, 4, and 5, and thus in discussing program revisions only information sufficient to identify the changes and the bases for them is given. Complete documentation of the program logic and computational changes is given in the program listing in Section IV. Although a number of completely new subroutines have been incorporated into the program, the methods used are straightforward applications of basic statistics and analytical geometry. Therefore, again concise descriptions of the analyses and their capabilities and limitations are given in lieu of detailed mathematical procedures which can be readily identified from the program listing.

Internal Ballistics (Main Program)

Inert parts and ignition. The computation of the weights of inert parts have been removed from the program since the program is now strictly a performance analysis rather than a design analysis. Also, the option of calculating the ignition transient by the methods of References 4 and 5 has been removed because the complications of the ignition transients make a detailed Monte Carlo impractical from a computer requirements standpoint. However, an ignition delay time has been incorporated as a statistical variable subject to both random variation and systematic variation due to the distribution of bulk temperature of the grain. Also, the initial equilibrium pressure is subject to variations arising from a number of sources. It is believed that this treatment of ignition embodies the significant effects of the ignition transient on the remainder of the thrust time trace.

Throat area. The throat relationship has been modified to account for Reynolds' number and Stanton's number effects of pressure and diameter on heat transfer (Ref. 6) as follows:

$$E_{n} = E_{n ref} (P_{on}/P_{ref})^{0.8} (D_{ref}/D^{*})^{0.2}$$
(1)

$$D^{*} = D_{1}^{*} + 2.0 \Sigma E_{n} \Delta t$$
(2)
A* = $\pi D^{*2}/4$ (3)

-4-

<u>Mach number</u>. To account for throat erosion effects, the Mach number at the nozzle exit from which the thrust coefficient is ultimately derived is now recalculated at each time step rather than just initially.

<u>Characteristic velocity and ratio of specific heats</u>. These variables, C* and γ , respectively, are calculated based on the oxidizer to aluminum ratio of the propellant R_{OA2} which is introduced as a new independent distributed variable. In this way the cross-correlation between C* and γ has been incorporated. Data for determining separate relationships for C* and γ as a function of R_{OA2} should be obtained from thermochemical analyses. The present program uses typical functional relationships obtained from a linear regression analysis of such data. Similar relationships must be established to fit the propellant system under consideration. More rigorously, additional composition components might be included. However, because of the relatively strong influence of the aluminum on the propellant chemistry the two-component oxidizer to aluminum system should convey the largest effects of composition on C* and γ .

Systematic variations in C* and γ have also been incorporated to give the effects of chamber pressure and propellant bulk temperature on C* and of chamber pressure on γ . The relationships are as follows:

$$C_{ref}^{*} = C_{n}^{*} \exp[a_{c*T}^{T}(T_{gr}^{-60})]$$
 (4)

$$C^* = C^*_{ref} (P_{on}/1000.0)^{a} C^* p$$
 (5)

$$\gamma = \gamma_n (P_{on}/1000.0)^{a\gamma p}$$
 (6)

The detailed attention given to these variables was motivated not only by the cross-correlation but also by the high sensitivity of performance to both C* and γ as revealed by the sensitivity study discussed in Section III. The effect of γ is largely due to its influence on exit Mach number and hence thrust coefficient. In the subsonic flow regime, Mach number is relatively insensitive to variation in γ and it is found convenient to neglect the variations in γ resulting from pressure variations in calculating the Mach number at the end of the grain.

The introduction of R_{OAl} as an independent variable raises the question of possible cross-correlation with other independent propellant variables, especially the burning rate coefficient a and density ρ . When such correlations can be identified they may of course be treated in a manner similar to that given for C* and γ . Although the matter has not been investigated fully as of this writing, it appears that factors such as oxidizer particle size distributions, amount of burning rate catalyst and other composition variables will play a more important role than the oxidizer to aluminum ratio in fixing the distributions of burning rate coefficient and density; cross-correlation between R_{OAL} and ρ are assumed negligible as have, with somewhat less justification, the correlation between a and ρ , themselves. The latter warrants further investigation as it is intuitively clear that at least a weak cross-correlation exists between a and ρ because of the effects of oxidizer particle size distribution on these parameters.

Burning rate coefficient. Bulk temperature has been introduced as an explicit variable subject to statistical variation. It modifies the burning rate coefficient:

$$a = a_{60} e \times p \left[(1-n) (\pi_p)_k (T_{gr} - 60) \right]$$
(7)

Also, the program now makes use of two sets of burning rate coefficients and exponents in recognition of the possibility of separate values applying above and below a specified transition pressure. In conjunction with this, the level above which burning of the propellant is permitted was changed from 30 psia to 5 psia as the thrust of some SRMs may still be significant at low pressure. Choked flow is still assumed at the lower pressure levels.

Time increments. Several changes were made in the calculation of time increments for the purpose of obtaining more accurate representation of the thrust-time characteristics of the individual SRM. First, the time increment is now calculated from the burning rate and incremental distance burned using the burning rate that applies during the increment under consideration rather than the previous increment. This is done except for the purpose of computing changes in port areas which must be known before the rate is calculated. The error in the latter case is minor and a time consuming iterative solution is avoided. Also, time values and corresponding output values are now obtained at the precise y positions that the lengths of grain associated with X_{Ta} and z begin to burnout. These times are identified in the program printout by "initial tailoff begins" and "final tailoff begins," respectively. It was found desirable in general to use a y increment (Δy) of approximately 0.001 of the web thickness. This gives good precision in the calculations and also sufficient values to obtain good graphical portrayals. However, the smaller increment size introduces a difficulty in satisfying the mass flow continuity relationship during rapid pressure changes; the effect of such changes tends to be overestimated in the simplified ballistic model when small increment sizes are used. In References 3, 4, and 5, this difficulty was avoided during tailoff by calculating the nozzle end stagnation pressure directly from the pressure gradient. In the new program, the same method is also applied to the period involving the burning of the length of grain associated with X_{Ta} as similar difficulties were encountered in the region when small increment sizes were used.

Internal Ballistics (Area Subroutine)

During the present study, an error was found in the first expression for A_{bnc} in Eqs. A4c of References 4 and 5. Specifically the first value of R_3 in the equation should be replaced by

$$\left[\left(D_{0}^{2} \right)^{2} - R_{7}^{2} \right]^{1/2} + \left[\left(D_{0}^{2} \right)^{2} - \left(R_{7}^{2} + y \right)^{2} \right]^{1/2}$$

and R₃ should be replaced by R₇ throughout the remainder of Eqs. A4c. The program listing contains the necessary changes to the computer program. It will be noted that additional changes applicable to Eq. A4c have been made to further refine the closure geometry effects for a circular perforated grain. Also, application of 4b and c has been modified in the computer program to avoid the possibility of negative square roots in terms such as $[D_0^2 - (D_1+2y)^2]^{\frac{1}{2}}$.

Ovality and Malalignment (Oval Subroutine)

Ovality and lack of concentricity of the grain perforation with respect to the motor case can clearly influence the ballistic performance of SRMs during the critical tailoff period. As a first approach to the problem it is assumed that the burning surface geometry embodying the effects of ovality and malalignment may be defined by specifying three radial reference planes - one near the head end of the rocket, one at the aft end of L_{Ta} and one at the aft end of z_0 . The reference planes must intersect the cylindrical portion of the rocket motor case to eliminate the effect of end closures on the geometric properties to be calculated. The implied assumption here is that the central portion of the rocket dominates the influences of ovality and malalignment.

The geometry of the reference planes is illustrated by Figure II-1. To fix ideas, both the exterior and interior (bore) surfaces of the grain are assumed to be distorted into oval shaped surfaces from nominally circular ones. However, as discussed later, with some restrictions and loss in accuracy, the analysis is also applicable to grains with the star-shaped perforations treated in the program.

The exterior and interior grain perimeters are next assumed to be elliptical and the interior grain surface to remain elliptical as burning progresses. The latter assumption is not rigorous for burning normal to the surface but the error introduced is insignificant for the small degrees of ovality to be encountered in practice. Thus, the ellipse defining the burning perimeter is given by Equation (8) where y is the distance burned

 $x_g^2/(a_g + y)^2 + y_g^2/(b_g + y)^2 = 1$ (8)

-8-

and a_g and b_g are semi-axes of the ellipse defining the initial burning grain perimeter. The exterior grain perimeter is expressed in the co-ordinates x_g and y_g of the interior perimeter by the equation

$$(x_{g}\cos \alpha - y_{g}\sin \alpha + e_{x})^{2} + (a_{c}^{2}/b_{c}^{2})(x_{g}\sin \alpha + y_{g}\cos \alpha + e_{y})^{2} = a_{c}^{2}$$
(9)

where a_c and b_c are the semi-axes of the ellipse defining the grain exterior. The burning perimeter at each reference plane is determined as follows. Equations (8) and (9) are rewritten in polar coordinates r and θ . The perimeter is determined through numerical integration of the equation 2π

S

$$\simeq \int_{0}^{\pi} r d\theta$$

(10)

At each value of θ in the integration the radial coordinate of the grain bore and exterior is computed from (8) and (9), respectively. If the exterior value exceeds the bore value at the θ position, r is given the value calculated for the bore; otherwise, a zero value is assigned.

Burning perimeters for each reference plane thus vary from one SRM to another as a result of eccentricity of the grain bore and exterior, which is specified by the independent variables e_x and e_y , orientation of the ovality of the bore with respect to the exterior, and the out-of-roundnesses of both the bore and exterior. It is possible that some correlation may exist between these variables in particular cases. However, if the case is segmented, it would appear that the head end and aft end geometric features are independent and they are treated as such in the remainder of this report. On the other hand, in general, there should be a close correspondence between the exterior grain geometries and the locations of the bore centers at the aft ends of L_{Ta} and z_0 , and it has been assumed that these are identical. The geometry of the interior grain is determined by the distributed variables D_i , z_o , and x_{Ta} ; i.e., these determine the initial semi-axes and the exterior geometry is determined by D_0 and z_c where zc has been introduced to account for axial variations in the outside diameter of the grain. It is clear that the independent specifications of e_x and e_v at both ends of the rocket provides for a statistically distributed malalignment of the grain bore and exterior.

From the burning perimeter values obtained as outlined above, correction factors are next calculated and applied to the standard calculations of perimeter to account for the ovality and malalignment. For this purpose when solution of the ovality equations indicates that burnthroughs have occurred at adjacent reference planes, the burning perimeters are assumed to vary linearly between the planes. When burnthrough has occurred at only one of two adjacent reference planes, the portion of the correction factor applicable to each end is weighted in proportion to the corresponding length that has or has not experienced burnthrough to determine the overall correction factors (computer symbols: SEN, SEH, CHINAV, CHIN and CHIH). It is recognized that the approach represents considerable idealization of the general behavior to be expected, particularly with respect to the assumed qualities of the axial distributions of the parameters between reference planes. Nevertheless, the model seems to capture the essence of the performance effects associated with ovality and malalignment. Even with highly nonlinearly distributed ovality and eccentricities between reference planes the effects on performance should be roughly the same as determined here. Also, factors such as the precise shape of the ovals would appear to play a secondary role in influencing performance variations.

Care has been taken in the above discussion to differentiate between the grain exterior and the case interior. As far as the equations go the pertinent item is the grain exterior. Its shape, however, may be influenced by the case and it is a choice of the user as to whether or not the statistical variations of ovality of the case alone should determine the variation in the grain exterior or if variation in insulation thickness should be statistically combined with the case variation to arrive at the qualities of the grain exterior.

As mentioned earlier, the analysis may also be applied to star grain configurations. In this case, the star points are in effect disregarded. The rationale for this is that by far the most important effects of malalignment and ovality occur just before and during tailoff and are dominated by the behavior of the remaining propellant web which may be approximated for this purpose by a circular perforated grain of the same web thickness. The capability to treat star grains has thus been incorporated into the computer program. However, it is applicable only when the entire grain is a star grain. When both circular perforated and star grains are present together, it is assumed that the circular perforated grains determine the performance characteristics in as far as the effects of ovality and malalignment are concerned.

An additional application for the ovality and malalignment is noteworthy. This has to do with the temperature gradient within the propellant grain which is an important variable that has not been taken directly into account in the analysis because no convenient way has yet been found to do so. Some insight into the gross effects of such gradients can be gleaned by statistically incorporating additional variations in the out-of-roundness of the grain to represent the general effects of having a biaxial burning rate which could be different in magnitude and orientation at the two main reference planes.

Statistical Analysis

This section describes the statistical analysis used in selecting values for the distributed variables. The basic computational methods as related to the logic of the statistical procedure used in the computer program are presented.

The computer routine is designed to accept several different types of data, perform the specified operations required to obtain a frequency dis-

tribution for each variable, and select a value based on its statistical frequency curve. The routine is divided into two subroutines. One subroutine, "setup," is called once and generates the required frequency curves for the statistical variables given. The other, "input," is called as required and provides specific values for each variable given. The latter subroutine utilizes the Monte Carlo technique for selection of values which will be discussed later. Figure II-2 is a general flow chart of the setup and input subroutines.

Frequency curves. The primary task of the setup subroutine is to obtain a frequency curve for each statistical variable from the data given. For each variable, the ultimate product of this subroutine, a cumulative distribution function (CDF), is obtained from its frequency curve. A CDF is a step function which jumps at regular intervals and is constant between jump points. At each jump point the magnitude of the jump is the probability that the variable will be within that interval; thus, as the name implies, the probabilities are accumulated over the range of the statistical variable. Examples of the types of CDFs produced by the setup subroutine are shown in Figure II-3. This CDF can be obtained in the present program from several types of input data, ranging from raw data points to specifying the actual CDF directly (See Section IV).

Basically, there are two classes of requests allowed for input statistical variables. The first class contains all variables which require little if any statistical analysis. This includes such requests as to hold certain variables constant or to obtain the CDF directly from a given histogram, as illustrated in Fig. II-3A. The other class requires statistical analysis to obtain the frequency curve. The analysis consists of obtaining the first four moments of the statistical variable and generating an equation which approximates the actual frequency curve for the data. The method selected for obtaining the frequency curve from the first four moments is known as Pearson's system (Ref. 7). The variables and sequence of calculations were chosen to parallel those of Pearson's system which is discussed in sufficient detail in Ref. 7 to permit direct adaptation to a computer program.

Basically, Pearson's system consists of a family of curves with a criterion value used to determine which equation of the family best describes the data. This criterion value, K, is evaluated as follows:

$$K = \beta_1 (\beta_2 + 3)^2 / 4 (4\beta_2 - 3\beta_1) (2\beta_2 - 3\beta_1 - 6)$$
(11)

where

$$\beta_1 = \mu_3^2 / \mu_2^3$$
 (12)

$$\beta_2 = \mu_0 / {\mu_2}^2$$
 (13)

Here $\mu_2,\,\mu_3,\,\mu_4$ are the second, third and fourth moments of the variable about its mean, respectively.

. General flowchart of setup and input subroutines. CDF is a common array of SETUP and INPUT. NOV is also common. The diagram of SETUP does not show the handling process of constant variables (Code 60). This was omitted due to the complicated mechanism for core savings which does not aid in the understanding of the general concept of SETUP.

-12-

The curve is determined to be one of the three main types as follows:

K < 0	0 < K < 1	K < 1
TYPE I	TYPE IV	TYPE VI

Transitional types exist, but are not incorporated in the present program.

The statistical analysis section of the subroutine initially obtains the first four moments. It then evaluates K and determines the appropriate type of curve to use. From these moments and the total number of data points for each statistical variable, the appropriate parameters for the proper equation are evaluated. Thus the equation representing the frequency curve is established. This equation is evaluated over the specified range and using Simpson's rule to integrate the curve, the CDF is obtained for each statistical variable, as shown in Fig. II-6B. The CDF for each variable is then stored in an array.

Monte Carlo. When called, the Monte Carlo or input subroutine generates values for all statistical variables. These values are determined based on the frequency curve for each variable. The Monte Carlo subroutine performs this function by obtaining a random number and using the CDF array produced earlier.

The CDF consists of values from 0. to 1. with corresponding variable (x) values over the appropriate range. A random number (RANDU) with a value between 0. and 1. is obtained from the random number generator discussed below. This value establishes the appropriate CDF value, and the corresponding x value is then selected from the array to fix the proper value of the variable. Each time the Monte Carlo routine is called, it determines new values for all the statistical variables; that is, it selects a new set of variables for each SRM whose performance is to be analyzed. This is accomplished as follows.

In the computer program, the CDF is stored in an array of 100 elements (a different number of elements may be specified by program changes). A second array (x) also contains 100 values corresponding to the possible values which the statistical variable may assume. For any x array value, the corresponding CDF array value is the accumulated area under the frequency curve to that point, expressed as a percentage of the total area:

(16)

 $CDF(N) = \int_{x(1)}^{x(N)} \frac{f(x)dx}{f(x)dx}$

where f(x) is the frequency distribution. The values of the CDF array, thus, will progressively increase from an initial value of zero to a final value of one at a rate depending on the given frequency curve. To randomly select a value for a given statistical variable, the random number generator (RANDU) is invoked to obtain a random number between zero and one. This random number is compared against CDF array values until the smallest CDF value that is larger than the random number is found. The value of the corresponding element of the x array is assigned as the appropriate random value for the given statistical variable. The random numbers, obtained from a rectangular distribution from zero to one, are thus transformed by the CDF in such a way that as a series of random numbers is selected for a single variable, the corresponding variable values occur at a frequency corresponding to their probability distributions.

Random number generator. Based on its size, five statements, this subroutine would not appear to be worthy of a lengthy discussion. The subject, however, is quite critical to the statistical portion of this program. Without some understanding of the random number generator (RNG) the results may prove both surprising and less than satisfactory.

The numbers generated by this routine are not actually random numbers. but rather are referred to as pseudo-random numbers. This fact may cause a less than comfortable feeling. It turns out, however, that the characteristics of pseudo-random numbers are adequate for the present purposes. Real random numbers do not cycle. The pseudo-random numbers have a cycle, but the period is reasonably large. For IBM 370 hardware configurations, approximately 2^{30} selections are made. It is unlikely that this program will be used extensively enough for this to become a problem. The major consideration when using the RNG is that it requires a number to initiate the random generation. After the initial "seed" number, the routine will automatically reset this number for the next iteration as is done when a new set of variables is to be selected for an SRM. For any given seed number, the random number produced is always the same and the new seed number generated will also be equivalent. Thus, if one hundred random numbers are generated from a given initial seed number, the same, exact set of numbers will be generated given that same initial seed number. Often this is a useful characteristic; however, it is essential to understand that to obtain two different sets of random numbers, two different initial seed values must be given.

III. DISCUSSION OF INPUT AND OUTPUT

In this section, each input parameter is defined in the order in which it is encountered in the program. The English or Greek symbol is given first followed by the computer symbol in parentheses. The English or Greek symbols are provided mainly for convenience in consulting the basic analyses of References 3, 4 and 5 as only a few of these are used in the present report. Where appropriate, additional discussion of the variable and recommended or typical nominal numerical values are given. Sketches of geometric characteristics are presented for clarification. Although many of the variables are the same as used in References 3, 4 and 5, the discussion relative to these is repeated here for ready reference. In addition, the present outputs of the program are defined. It is the aim of this section to provide a guide to the user in the specification of his problem and the interpretation of the outputs.

Concise printed definitions of all input variables are also given with the computer program listing (See Section IV). The definitions appear in groups throughout the "main" program and the "area" subroutines. In general, each group is divided in the computer program and in this section into two subgroups: the first group containing the variables describing the SRM which are always fixed for the Monte Carlo investigation and the second group containing those that are subject to being statistically distributed.

The original basis for classification of the two types of variables was to be the analysis of the sensitivities of the performance of the SRM to the variable under consideration. Of course, each variable considered would also have to be an independent one or at least relatively so. Each variable whose variation could reasonably be expected to influence the performance calculations for the SRM was examined one at a time. A few variables whose effects were obviously of very minor significance were omitted at this point and classified without further evaluation as nonstatistical (fixed value) variables. Among these were the temperature and pressure sensitivity coefficients of the propellant properties. The thrust loss coefficients were also classified as fixed, as there is no practical way of distinguishing in experimental data analysis between the variations in thrust due to the variation in the statistical variables and that due to other factors. A baseline design was then selected based on the nominal values for the sample case SRM of Section V and the performance of a pair of SRMs computed. One motor in the pair had the baseline values of the variable and the other had the baseline values except for the variable under consideration which was changed a small amount. The amount of the change was somewhat arbitrary but represents a rough estimate of the maximum range of variation for a wide variety of SRMs scaled to the size of the baseline SRM; i.e., the range reflects an estimate of the maximum variation to be expected when no special attention is given to control of the variables during manufacture. In the case of

-16-

the examination of the effects of grain ovality and malalignment, several variable changes were examined together in order to reduce computational time.

Partial results are given in the Appendix in the form of the pairs of thrust-time traces obtained for each variable. These plots should be of interest to the SRM developer as they indicate possible results of deviations from manufacturing specifications and tolerances. Their utility as far as the present study goes is somewhat limited as it was decided that for the Monte Carlo investigation all but a very few of the variables would be statistically determined in order to minimize cumulative errors that might result from neglect of a large number of seemingly unimportant variables. It will be noted that there are no plots in the Appendix for a few of the distributed variables listed in the computer program and in this section of the report. This is because either the variable has no influence for the design or option selected (e.g., θcņ and θ_{ch} for $C_{op} = 1$; the effects of the variable is an obvious one $(\bar{\theta})$; data is not presently available for a meaningful investigation (α and β); or the final selection of variables differed from that considered during the earlier sensitivity investigation (e.g., R_{OAL} was substituted for γ and C* and R_{is} and R_c were both introduced as independent variables eliminating τ_s).

The present section provides information only on nominal values and the units of the variables. Instructions for preparing the input for the description of the distribution of statistical (distributed) variables is given in Section IV based on the analysis of Section II. It should be noted here that the statistical variables may be held constant if desired by use of the proper code on the data cards for the variables. With minor program modifications it is also possible to accommodate additional distributed variables, the number of such variables being limited only by the core storage capacity of the computer. The listing of variables follows.

Seed Number

I_{xi} (IX1)

The seed number for the random number generator. An odd eight-digit integer should be used. This number initiates the generation of random numbers forming the basis for selection of the various sets of input variables for each SRM. The seed number must be changed to change the sets of variables generated when repeating an analysis of the same motor pairs (see Section II for further discussion).

User's Options - Fixed Values

I_{eo}(IEO) 0 For no consideration of grain ovality or malalignment.

1 For consideration of above. Calculations of ovality and malalignment effects approximately triples computer time requirements. These calculations should be by-passed by use of the option provided if there is a basis for assuming in a particular case that the effects are negligible.

I_{po}(IPO)

0 For no plots and no statistical or difference analysis of results.

- 1 For plots and tabular output of motor pair differences.
- 2 For tabular output of motor pair differences without plots.
- 3 For plots and statistical analysis of results only. Codes 1 and 2 will also yield statistical analysis of the motor pair results.

N(j)(NUMPLT(J) An integer designating whether or not a specific output plot is desired:

- 0 If a specific plot is desired.
- 1 If a specific plot is not desired.

The order of specification of NUMPLT(J) is as follows:

- 1 F versus T for the motor pair.
- 2 F versus T for the motor pair during tailoff.
- 3 Difference in F between the pair of motors versus T.
- 4 Difference in ITOT between the pair of motors versus T.
- 5 Time integral of absolute value of difference in F of motors versus T.

Propellant Characteristics - Distributed Values

ρ _p (RHO)	Density of the solid propellant (slugs/in ³)
a ₁ (Al),a ₂ (A2)	Propellant burning rate coefficients in the equation $r = aP^n$ above and below the transition pressure, respectively (in/sec-psia ⁿ).
n ₁ (N1),n ₂ (N2)	Burning rate exponents corresponding to a_1 and a_2 , respectively (1).
α (ALPHA)	Erosive burning coefficient in the Robillard-Lenoir burning rate rule (Equation III-11, Ref. 3)(in ^{2.8} -ft ^{0.8} /sec ^{1.8} lbf ^{0.8}).

R_{OAL} (ROAL) The oxidizer to aluminum ratio (1). Variations in this quantity determine variation in the thermochemically determined characteristic exhaust velocity CSTARN and the ratio of specific heats GAMN of the chamber gases. The latter variations are determined by a regression analysis which gives CSTARN and GAMN as functions of ROAL. The resultant functional relationship must be used in the program where indicated on the program listing (Section IV). CSTARN and GAMN are determined at 1000 psi chamber pressure and 60°F propellant bulk temperature. If no aluminum is present in the propellant CSTARN and GAMN should be set at this point to their nominal values at the reference conditions.

Basic Motor Dimensions - Fixed Values

L (L)

Total initial perforated grain length including gaps at slots (in.). This is used only in the erosive burning rate equation. An estimate will suffice.

τ (TAU) Estimated web thickness of the controlling propellant length (in.). (See ZO below for definition of controlling length.) The actual web thickness is calculated from DI and DO (or RC and RSI, RIWS or RIWW)and includes statistical variations. If the grain is tapered, the length average value should be specified excluding lengths having additional taper not represented by ZO and segments located anywhere having a step decrease in thickness. Such step decrease must be handled by the additive tabular input option if they introduce two significantly different web thicknesses for the same grain type; e.g., two circular perforated grains. If a circular perforated grain is used, it is assumed that it will have the approximate average web thickness of the controlling propellant length.

Basic Motor Dimensions - Distributed Values

- D_e (DE) Diameter of the nozzle exit (in.).
- D,* (DTI) Initial diameter of the nozzle throat (in.).
- θ_n (THETA) Cant angle of the nozzle with respect to the motor (degrees).
- α_n (ALFAN) Exit half angle of the nozzle (degrees).

- L (LTAP) Estimated axial length of grain at the aft end at start of first tailoff having an additional taper not represented by 20 or THETAG (in.). See Figure III-1. This variable permits the designer to specify an additional taper at the nozzle end of a circular perforated or star grain to produce regressivity shortly before tailoff.
- x
TaDifference in web thickness at ends of LTAP (in.).
See Figure III-1.

z (ZO)

- Initial difference between web thicknesses due to grain bore taper at the head and aft ends of controlling grain length, not including any initial length associated with LTAP or THETAG (in.). The controlling length of the grain is the axial distance between the head end of the grain and the position of expected maximum Mach number in the port. In general this length terminates whenever there is an abrupt decrease in web thickness near the aft end of the chamber.
- z (ZC) Initial difference between web thicknesses due to grain exterior taper at the head and aft ends of the controlling grain length (in.).

Ovality and Malalignment - Distributed Values

(Not required if IEO = 1). The following variables characterize the ovality and lack of concentricity of the grain interior and exterior at two reference radial cross-sections - one near the head end of the grain and one near the nozzle end. Based on the mathematical analysis of the burning perimeters at these two planes, correction factors are calculated and applied to the burning surface calculations to account for approximate effects of ovality and malalignment. The effects of interior and exterior grain taper are taken into account through the parameters ZO, ZC, and XT. See Section II for details.

ΔR_{cn} (RONDCN), ΔR_{ch} (RONDCH)	One half the difference between the maximum and minimum diameter of the grain exterior at the nozzle and head end reference planes, respectively (in.).
ΔR_{gn} (RONDGN), ΔR_{gh} (RONDGH)	One half the difference between the maximum and minimum diameter of the grain interior at the nozzle and head end reference planes, respectively (in.).
e _{xn} (EXN) e _{yn} (EYN)	The eccentricity of the center of the grain interior with respect to the center of the grain exterior in the x_c and y_c directions, respectively (See Fig. II-1) at the nozzle end reference plane (in.).

- an (ALPHAN),The angular orientation of the ovality of the grain
interior with respect to the grain exterior at the nozzle
and head end reference planes, respectively (degrees).

Basic Performance Constants - Fixed Values

- $\Delta y_1 \text{ (DELTAY)} \qquad \text{Initial desired burn increment (in.). This increment will} \\ \text{be used by the program for initial 5% of the web thickness} \\ \text{burned, for the period shortly preceding and following} \\ \text{tailoff and at such other times as the rate of pressure} \\ \text{change is large. Larger increments will automatically be} \\ \text{used at other times. An initial increment size of approximately <math>0.001\tau_W$ is recommended for the Monte Carlo program. If the increment size used is twice the recommended value, the maximum thrust imbalance calculated may be decreased by as much as 5 percent, representing a loss in program accuracy. \\ \end{aligned}
- I (II) Number of steps in the integrations of perimeters in the OVAL subroutine. Approximately 25 steps appears to offer a good compromise between accuracy and computation time, the latter being more strongly influenced than the former by the step size.
- x (XOUT) Distance burned at which the propellant breaks up (in.). This permits the option of specifying termination of burning resulting from possible structural breakup of propellant. If this option is not desired, XOUT should be set to some large value; e.g., 1000 in.
- (ΔP/Δy) out
 Rate of change of pressure with respect to distance burned at which the propellant is extinguished (lb/in³). This permits the option of specifying termination of burning when it is determined that an abrupt tailoff will not permit the computer to handle the rapid change in surface area. If a gradual tailoff is expected, DPOUT may be set to some large value; e.g., 10,000 psia/in. For large motors (120 in. dia. and up) where the tailoff is expected to be abrupt, a value of 500 psia/in. is recommended. In general, larger values may be used for smaller motors.

 $\zeta_{\rm F}$ (ZETAF) Thrust loss coefficient (1). In the absence of data to the contrary, a value of 0.98 is recommended.

- t (TMAXQ) Estimated time at which maximum dynamic pressure on the vehicle occurs (sec.). This permits the program to compute an estimate of the thrust differential of the motor pair at the time of maximum dynamic pressure.
- t_{bl}(TB) Estimated burning time (sec.). This and HB below permit the program to calculate delivered specific impulse and thrust based on an assumed trajectory which was determined from analysis of typical large SRM applications.
- h_b (HB) Estimated burnout altitude (ft.). To obtain sea level performance characteristics, HB should be set equal to zero.
- P ref (PREF) Reference average nozzle stagnation pressure used in the nozzle throat erosion equation (psia). See also ERREF below.
- D Reference nozzle throat diameter used in the nozzle throat erosion equation (in.). See also ERREF below.
- $(\pi_p)_k$ (PIPK) Temperature sensitivity coefficient of pressure at constant ratio K of burning surface to throat area (/°F).
- a (CSTART) Temperature sensitivity of CSTAR at constant K (/°F). (See Eq. 4, Section II). A typical value is 0.000038.
- a (CSTARP) Pressure sensitivity of CSTAR (1) (See Eq. 5, Section II).
- P_{tran}(PTRAN) Transition pressure at which the burning rate coefficient and exponent change (psia).
- a (GAMP) Pressure sensitivity of the ratio of specific heats (1) (See Eq. 6, Section II). A typical value is 0.00527.

Basic Performance Constants - Distributed Values

- E (ERREF) Reference nozzle throat erosion rate (in/sec)(See Eq. 1 Section II.) A set of typical values for a carbon tapephenolic impregnated throat is 0.00763 in/sec, 560 psia and 57.285 in. for ERREF, PREF and DTREF, respectively.
- T_{gr}(TGR) Bulk temperature of the propellant grain (°F).
- T (TIGR) Ingition delay (sec.) at a TGR of 60°F. The time required to reach ninety-five percent of initial equilibrium pressure should be used.

The Program and Basic Grain Configuration and Arrangement - Fixed Values

I (INPUT) 1 For only tabular input.

•

•

÷

•	For onl	y equation input.			
	For a c	ombination of 1 and 2.			
G _{op} (GRAIN)	For an	entirely circular perforated grain.			
	For sta	r grain only.			
	For a c	ombination of 1 and 2.			
S (STAR)	For an	entirely circular perforated grain.			
	For sta	ndard star (See Fig. III-2).			
	For tru	ncated star (See Fig. III-3).			
	For wag	on-wheel (See Fig. III-4).			
NOTE:	The differer ingle confi	t types of star grains may not be combined in a guration.			
n _t (NT)		rust termination passageways in grain (1) f there are no thrust termination passage-			
Q _{op} (ORDER)		ar grain is at head end and a circular ted grain at aft controlling end.			
		rcular perforated grain is at both ends. grain segment may still be present.			
		rcular perforated grain is at head end and at the aft controlling end.			
	If a st	ar grain is at both ends.			
	f grain = 1	, value of order must be 2.			
	If grain = 2, value of order must be 4.				
	ontrolling ozzle end s the one that ort), ORDER controlling TAR, NT and	ant to realize that ORDER establishes the port area equations to be used. Thus if the egment is not indeed the controlling one t establishes the maximum Mach number in the should be specified to designate the actual segment as the nozzle end segment. GRAIN, ORDER are not used for INPUT = 1, but values gned for continuity of computer operations.			

.

the burning perimeter is shown. Calculated variables are circled. First and third (final) burning zones are cross-hatched.

-26-

C (COP) For extreme ends of a circular perforated grain only:

> 0 If both ends are conical or flat.

1 If head end is conical or flat and aft end is spherical.

2 If both ends are spherical.

3 If head end is spherical and aft end is conical or flat.

Tabular Burning Surface and Port Areas - Fixed Values

A_{bpT} (ABPK) Burning area in the port (in^2) .

A_{bst} (ABSK) Burning area in the slots (in^2) .

A_{bnT} (ABNK) Burning area at the nozzle end (in^2) .

A (APHK) Port area at the nozzle end of the controlling grain length (in^2) .

A_{pnT} (APNK) Port area at the head end of the grain (in^2) . APHK and APNK are not required when INPUT is 2 or 3; the equation inputs must be used to provide the information in these cases. Values of all A's must be specified to completely describe the burning surface and port areas versus distance burned. The program computes intermediate values by linear interpolation. The number of values required is arbitrary and limited only by the storage capacity of the computer, but values must be specified for y = 0. Also, as an example of the procedure for specifying terminal values which must be followed, burning surfaces must be specified as zero at burnout of the tabular surfaces and at a y exceeding the highest anticipated calculated performance value. Separate input cards must be prepared for each value of y and arranged as described in Section IV of this report. The use of these tabular values in conjunction with the equation inputs (INPUT = 3) increases the flexibility of the program considerably. Frequently it is easy to estimate burning surface effects which end constraints on the equation inputs neglect. In this case a table of input values can be readily prepared from estimates of the effects. Also, the program can be run first without the tabular values and outputs used as an aid in obtaining the estimate. For example, the burning perimeters of a star grain can be determined in this way and the values used to estimate the effects of a head end closure on the star grain.

V_{cit} (VCIT)

Initial volume of chamber gases associated with tabular input (in^3) .

x _{Tz} (XTZO)	Difference between the initial circular perforated grain
12	diameter at the nozzle end of LGCI and the nominal value
	of DI less ZO and less twice XT (in.)(See Fig. III-1).

S (S) Number of burning flat ends of a circular perforated grain not including an extreme aft grain end (1).

Geometry for Circular Perforated Grain - Distributed Values

- D₀ (DO) Length average outside diameter of circular perforated grain, excluding lengths extending into the closure (in.).
- D₁ (DI) Length average inside initial diameter of circular perforated grain (in.). Only the controlling length excluding LTAP should be considered in the averaging.
- $\theta_{\rm G}$ (THETAG) Angle burning surface element of circular perforated grain located at the extreme nozzle end of chamber makes with the motor axis (degrees). See Figure III-1. THETAG must be set to zero if a star grain is located at the nozzle end (GRAIN = 3, ORDER = 3) or if aft end burning surfaces are represented by tabular values. THETAG is 90° if the circular perforated grain represented by equations has a flat burning surface located at the extreme nozzle end of the chamber. If THETAG is less than or equal to 5°, a value must be assigned (zero is satisfactory), but the effect of THETAG on burning surface area is not computed (See also LGNI and LTAP). THETAG is zero if the end surface is flat and inhibited.
- L_{GC1} (LGCI) Initial total axial length of circular perforated grain represented by equation inputs not including gaps (in.). LGCI excludes lengths associated with THETAG.
- L_{Gni} (LGNI) Initial slant length of a burning conical circular perforated grain at the nozzle end (in.). LGNI is set equal to zero if THETAG is less than or equal to 5°. In this case the length otherwise associated with LGNI should be added to LGCI. If the error in burning surface area thus introduced is deemed significant, a correction may be introduced by making use of tabular inputs in combination with the equation inputs. Basic effects of small THETAG on tailoff may be accounted for by specification of LTAP. If a nozzle end burning surface is flat (THETAG = 90°) LGNI equals one half the difference between inside and outside local grain diameters.

 θ (THETCN) The contraction angle of a circular perforated grain bonded to the nozzle closure (degrees). See Figure III-1. Use an estimated value which yields approximately the correct volume of propellant burned. If a star shaped grain is located at the extreme nozzle end of the chamber or if tabular values are used to represent downstream burning surfaces, THETCN is 90°. THETCH is also 90° if the extreme aft end of the grain is inhibited, but only a flat-ended, inhibited grain (THETAG = 0) which does not extend into the nozzle closure may be accurately represented. THETCN is zero for a burning flat end (THETAG = 90°) which does not extend into the closure. THETCN must be assigned a value even if COP is 1 or 2, but it will not affect the numerical results.

θ (THETCH) The contraction angle of a circular perforated grain bonded to the head end (degrees). See Figure III-1. Use an estimated value which yields approximately the correct volume of propellant burned. THETCH is 90° if the extreme forward end of the circular perforated grain (bonded or not) represented by equations is flat. A head end flat burning surface is treated by proper specification of S. THETCH must be assigned a value even if COP is 2 or 3, but it will not affect the numerical results.

Basic Geometry for Star Grains - Fixed Values (The wagon-wheel is considered a type of star grain for the purpose of this program.)

- n (NS) Number of burning flat end surfaces of a star grain not located at extreme nozzle end of the chamber (1).
- n_p (NP) The number of star points (1).
- n (NN) Number of burning flat end surfaces (0 or 1) of a star grain located at the extreme nozzle end of the chamber (1).

Basic Geometry for Star Grains - Distributed Values

- L_{Gsi}(LGSI) Initial total axial length of star-shaped perforated grain represented by equations (in.). No provision comparable to the use of LGNI for circular perforated grains is made here to treat effects resulting from THETAG greater than 5°. Adjustments may be made, however, by use of tabular input values in conjunction with the equation inputs. Also, effects of taper, including additional small taper at the nozzle end, on tailoff may be treated by use of the variables ZO, XT and LTAP.
- R_c (RC) The star grain outside radius (in.).
- f (FILL) The fillet radius at star valleys (in.). See Figure III-2, 3, 4.

Special Geometry for Wagon-Wheel Grain - Distributed Values

- R_{iww}(RIWW) The length average initial radius of the inside of the propellant web (in.).
- l1,l2 (L1,L2) The lengths of the pairs of parallel sides of the first and second sets of grain points, respectively (in.). See Figure III-4).
- ^a1,^a2 (ALPHA1,ALPHA2) The angles between the slant sides and the center lines of the points of the first and second sets of grain points, respectively (degrees). The angles should not exceed 90 degrees.
- h (HW) The half-width of the star points (in.). HW must not exceed TAUWW (HW < TAUWW).

Special Geometry for Truncated Star Grain - Distributed Values

- R_p (RP) The length average initial radius of the truncation (in.). See Figure III-3.
- R_{is} (RIS) The length average initial radius of the inside of the propellant web at the bottom of the slots (in.).

Special Geometry for Standard Star Grain - Distributed Values

- θ (THETAF) Angular location of the fillet center of standard star from the line of symmetry (degrees).
- θ (THETAP) The apex angle of the star point (degrees).
- R (RIWS) The initial radius of the inside of the propellant web of standard star grain (in.). See Figure III-2. If the grain is tapered, the length average value should be used.

Geometry of Thrust Termination Passageways - Distributed Values

- LTP (LTP) Initial length of the termination passageway between the centers of gravity of perimeters of the bases (in.). See Figure III-1.
- D_{TP} (DTP) Initial diameter of the termination passage (in.).
- θ_{TP} (THETTP) The acute angle between the axis of the passage and the motor axis (degrees).
- ^Teff (TAUEFF) Estimated effective web thickness at the termination port (in.). The user must judge the distance burned at which the effect of the termination passage on modification of the burning surface geometry ceases to be significant. In general, this should be between two-thirds and full web thickness. The equation used to account for the burning surface is based on a passageway in a circular perforated grain terminated at the case by a flat inclined plane. Thus only a rough estimate of the effect of the termination passage is provided.

Special Equation Inputs -(Fixed Relationships required only at the option of the user. May be used when INPUT = 1, 2, or 3.)

- B. (BBP) Additive burning surface input as function of y for port burning surface (in^2) .
- B (BBS) Additive burning surface input as function of y for slot burning surface (in^2) .
- Bon (BBN)
 Additive burning surface input as function of y for nozzle end burning surface (in²). In order to make use of the option of specifying the B's, a minor program modification is required. The B's are all set equal to zero in the present program. If this option is to be used, the program statements assigning values to the B's are easily replaced with the desired equation inputs.

Program Outputs

The variables whose values are printed by the present program are defined below. Additional variables may also be printed with minor program modifications. In addition to the variables listed below, the present program prints out values of all input variables including those selected for each SRM from statistical distributions. The input characteristics of the statistical distributions are also printed.

Time dependent data - single motors

t (T)	Operating time (sec.). This is calculated from the time of initiation of ignition.				
y (Y)	Average distance burned (in.).				
Pon (PONOZ)	Stagnation pressure at the nozzle end of the chamber (lb/in^2) .				
P _h (PHEAD)	Pressure at the head end of the chamber $(1b/in^2)$.				
$A_{bp} + A_{bs} + A_{bn}$ (SUMAB)	The total burning surface of the propellant (in ²).				
F (F)	The delivered thrust based on the assumed trajectory (lbf). Losses are included.				
I _t (ITOT)	Total delivered specific impulse (lbf-sec). Losses are included.				

- W_{pl} (WP1) Propellant weight calculated from mass discharge rates (1bm).
- W p2 (WP2) Propellant weight calculated from the products of burning surfaces and incremental distances burned (1bm).
- W (WP) Arithmetic average of WP1 and WP2 (1bm). A check on the calculation accuracy is provided by comparison of this with WP1 and WP2.
- $P_{h max}$ (PHMAX) Maximum head end chamber pressure calculated by the program (1b/in²).
- Initial seed number for the current configuration. New seed numbers are automatically selected for each variable based upon this seed number. The initial seed number may be used as an input seed number to reproduce the calculations for the configuration. See Section II.
- I (IX) Final seed number for the current configuration. This final seed number may be used as an input seed number to continue the calculations without random number cycling before 2³⁰ random numbers have been selected.

<u>Time dependent data - motor pairs</u>. The following data are available in tabular and/or graphical form, subject to the option of the user (See IPO). To compute the imbalances between two motors the data for the motor which has the fewer computational y-steps is subtracted from the data of the other motor to determine the imbalances. No difficulty with regard to the interpretation of the results arises from this since in most instances it is the absolute value of the differences which is important. For those variables whose absolute values are not taken, changes in sign of the differences indicate points where the crossings between the two motors' traces occur.

AF (FDIFF) The difference in thrust between the two motors (lbf).

 ΔI_T (IDIFF) The difference in total impulse between the two motors (lbf-sec).

 $|\Delta I_T|$ (IADIFF) The absolute value of the difference in total impulse between the two motors (lbf-sec).

$$|\Delta I_{T}| = \int_{0}^{t} |F_{1} - F_{2}| dt$$

(17)

Time independent data - motor pairs

- (FMAX1, TFMX1, The maximum and minimum algebraic thrust imbalance (lbf) FMIN1, TFMN1) and the time (secs) at which they occur, respectively, during web action time.
- (FMAX2,TFMX2, FMIN2,TFMN2) The maximum and minimum algebraic thrust imbalance (lbf) and the times (secs) at which they occur, respectively, during tailoff.
- (TDFT01,TDFT02, The time at which tailoff begins for the first motor of DTW) a pair to begin tailoff, for the final motor to begin tailoff and the absolute value of the difference between the two times, respectively, (secs).
- (FW1,FW2,DFW) The thrust at the beginning of tailoff for the first motor of a pair to begin tailoff, for the final motor to begin tailoff and the absolute value of the difference between the two thrusts, respectively, (lbf).
- (DFT01,DFT02) The absolute value of the thrust imbalance when the first motor of a pair begins tailoff and the final motor begins tailoff, respectively.
- (DFMQ,TMAXQ) The absolute value of the thrust imbalance (lbf) which exists when the maximum dynamic pressure occurs on the vehicle and the estimated time (secs) at which this event occurs, respectively.
- (AFMAX, TFMAX, The absolute value of the maximum thrust imbalance (lbf) AFMAXT, TFMAXT) which exists and the time (secs) at which it occurs during web action time and tailoff, respectively.
- (FDIFIG, TDIFIG) The absolute value of the thrust imbalance (lbf) which occurs during the initial portion of operation ($t < 0.02 t_b$) and the time (secs) at which it occurs, respectively.
- (DIT,ADIT) The total impulse imbalance and the absolute value of the total impulse imbalance (lbf-secs) accumulated during tailoff, respectively:

$$\Delta I_{t} = \int_{t_{1}}^{t_{b}} (F_{1} - F_{2}) dt$$
 (18)

$$|\Delta I_t| = \int_{t+1}^{t_b} |F_1 - F_2| dt$$
 (19)

where t_{t1} (TDFT01) is the earlier time at which tailoff

begins in the two motors and t_b is the time at which operation of both motors ends.

(DF100K,T100K) The absolute value of the thrust imbalance (lbf) which exists when the last motor reaches 100,000 lb. thrust during tailoff and the time (secs) at which it occurs, respectively.

IV. THE COMPUTER PROGRAM

This section contains the instructions for the preparation and arrangement of the data cards. Also, a complete listing of the program statements is given. The program was written for use on an IBM 370/155 computer and requires approximately 168K storage locations on that machine. The program also is designed to be used with a CALCOMP 663 drum plotter. The plotter requires one external storage device (magnetic tape or disk). In addition to the one storage device required for the plotter, three other external storage units are required. Unit 1 is used to store the output data, pertinent to the imbalance calculations, for the first motor in each pair of motors. Unit 2 is used to store the nonstatistical data which remain constant for all of the motors. Unit 4 is used to store the values of the statistical variables for use with each motor. Only minor program modifications are required to eliminate the plotting capability of the program. Also, Unit 2 can be eliminated by using repeated sets of data cards for the nonstatistical variables. Hence, it is relatively simple to modify the program to require only 2 external storage units. Elimination of the other two external storage units would require significant program modification.

Input Data

The discussion below gives the general purpose, order and FORTRAN coding information for the input data.

Card 1 Total number of individual motors to be analyzed (42X, I2)

Col. 1-42 NUMBER OF CONFIGURATIONS TO BE TESTED =

43-44 Number of rocket motors to be analyzed

Card 2 Initial seed number (I10)

Col. 1-10 Initial 8-10 digit seed number

It is necessary to describe one type of statistical analysis for each statistical input variable. The method for doing this is described below using Cards 3 through 9. Note that only one type of statistical analysis may be requested for each variable. Hence, only the card or cards necessary for that particular type of statistical analysis are input for each variable. For example, to obtain a Type II analysis only Card 5 and Cards 5A would be would be used. In addition, it is necessary that the data cards for the variables to be used in a given configuration be placed in the order in which they are input into the computer program. In some cases certain variables are not required for an analysis. In such cases, the cards for those variables should be omitted. As many Cards 5 through Cards 9A as required may be used.

Card 3 Variable name (2A4) (one card for each variable)

- Col. 1-8 Name of statistical variable.
 - NOTE: One Card 3 immediately precedes the Card 4 thru Card 9B used for each variable. Also, END should be used as the last variable name before using Card 9B below.

Card 4 Input for Type I statistical analysis (12, 2X, 7E10.0)

Col. 1-2 Code = 10 Raw data given; obtain CDF directly from histogram. Code = 11 Raw data given; obtain CDF from Pearson's equation of the frequency curve.

- 5-14 X1 = Number of raw data points given.
- 15-24 X2 = Mean value of first interval of histogram.
- 25-34 X3 = Histogram interval width.

35-44 X4 = Number of intervals in histogram.

45–74 Blank

Card 4A Subsequent Type I data cards (10E8.0)

Col.

1-8 Raw data points equivalent to the number specified in X1. Ten data points per card for
9-16 as many cards as required (e.g., 46 data points would require 5 data cards with the last card having the final four fields blank).

Card 5 Data input for Type II statistical analysis (12, 2X, 7E10.0)

Col. 1-2 Code = 20 Histogram given; obtain CDF directly from histogram. Code = 21 Histogram given; obtain CDF from Pearson's equation of the frequency curve.

5-14 X1 = Number of intervals in histogram.

15-24 X2 = Mean value of first interval of histogram.

25-34 X3 = Interval width.

35–74 Blank

Col.	1-8	The same number of data
	9-16 : 72-80	points as specified in Xl, for as many data cards as necessary

Card 6 Input for Type III statistical analysis (I2, 2X, 7E10.0)

Col. 1-2 Code = 31 Four moments given; obtain CDF from Pearson's equation of the frequency curve.

5-14 X1 = First moment about zero.

15-24 X2 = Second moment about mean.

25-34 X3 = Third moment about mean.

35-44 X4 = Fourth moment about mean.

45-54 X5 = Histogram interval width.

55-64 X6 = Mean value of first interval of histogram.

65-74 X7 = Total number of data points used.

NOTE: No data cards required.

Card 7 Input for Type IV statistical analysis

Co1	. 1-	2 Coc	le = 4	io CD	Fg	iven;	read	in	the	given	CDF.	
-----	------	-------	--------	-------	----	-------	------	----	-----	-------	------	--

5-14 X1 = Number of intervals in CDF.

15-24 $\dot{X}2$ = Mean value of first interval of CDF.

25-34 X3 = Interval width.

35-74 Blank

Card 7A Subsequent Type IV data cards (10E8.0)

Col.	1-8	CDF values corresponding to the cumulative
	9-16	frequency up through each interval. Data
	• •	should be provided for as many intervals as
	72-80	indicated by the value given for X1.

-38A-

	Card 8 Input for Type V statistical analysis (Use appropriate					
		card below)				
	Card 8A	Normal distribution to obtain CDF.				
Col.	1-2	Code = 51				
	5-14	X1 = Mean of normal distribution.				
	15-24	X2 = Standard deviation.				
	13-24	$\lambda z = Standard deviation.$				
	25-34	X3 = Beginning X value of CDF (optional).				
	35-44	X4 = Ending X value of CDF (optional).				
	45-74	Blank				

NOTE: If either X3 or X4 is omitted, a three-sigma limit is assumed; thus, if both values are left blank, a six-sigma limit will be generated by the program. If a zero value is desired for X3 or X4, ±.0000001 should be used instead.

Card 8B Rectangular distribution to obtain CDF (12, 2X, 7E10.0)

Col. 1-2 Code = 52

5-14 X1 = Beginning X value.

- 15-24 X2 = Ending X value
- 25-74 Blank

Card 8C J-Distribution to obtain CDF

Col. 1-2 Code = 53

5-14 X1 = Mean(beginning X value).

15-24 X2 = Standard deviation.

Card 8C (Cont'd)

- Col. 25-34 X3 = Ending X value (optional)
 - 35-74 Blank
 - NOTE: The J-distribution is defined herein as the right half of a normal frequency curve. The X1 value specified should be the mean as if the full normal curve were being specified. The X3 value is optional; if not specified, a three sigma limit will be assumed. If zero is desired for the X3 value, +.0000001 should be used instead.
 - Card 9 Input for Type VI statistical analysis (use appropriate card below)

Card 9A Use a constant for this value (I2, 2X, 7E10.0)

Col. 1-2 Code = 60 Use a constant value for this variable.

5-14 X1 = Desired constant value.

15–74 Blank

Card 9B Indicates end of data (I2)

Col. 1-2 Code = 90

Card 10 Initialization of variables (22F3.1)

Col. 1-66 Zero's or blank card

Card 11 Ovality and output options (5X, I1, 5X, I1, 9X, 5I)

Col. 1-5 IEO =

$$6 \begin{pmatrix} 0 & No \text{ ovality analysis} \\ 1 & 0 \text{ vality analysis} \\ 7-11 & IPO = \end{pmatrix}$$

12 12 12 1 Plots, statistical analysis and tabular output 12 1 Plots, statistical analysis and tabular output 2 Tabular output and statistical analysis 3 Plots and statistical analysis Card 11 (Cont'd)

Col.	13-17	NUMPL	NUMPLT(J) =		
	18	٢٥	Plot thrust time trace Do not plot thrust time trace		
	10	$\lfloor 1$	Do not plot thrust time trace		
	10	$\left\{ \begin{array}{c} 0\\ 1 \end{array} \right.$	Plot tailoff thrust time trace		
	13	$\lfloor 1$	Do not plot tailoff thrust time trace		
	20		Plot thrust imbalance Do not plot thrust imbalance		
20	20	l_1	Do not plot thrust imbalance		
	21	$\left\{\begin{array}{c}0\\1\end{array}\right.$	Plot impulse imbalance Do not plot impulse imbalance		
	~~	l_1	Do not plot impulse imbalance		
	22	$\begin{cases} 0 \\ 1 \end{cases}$	Plot absolute impulse imbalance Do not plot absolute impulse imbalance		
		l_1	Do not plot absolute impulse imbalance		

Card 12 Nonstatistical motor dimensions (3X, F10.2, 5X, F10.3)

		-
Co1.	1-3	L ≈

- 4-13 Value of L
- 12-18 TAU =
- 19-28 Value of TAU

Card 13 Nonstatistical performance constants (requires 4 data cards)

Card 13A (8X, F10.3, 4X, 14, 6X, F10.2, 7X, F10.2, 7X, F10.4)

- **Col.** 1-8 / DELTAY =
 - 8-18 Value of DELTAY
 - 19-22 II =
 - 23-26 Value of II
 - 27-32 XOUT =
 - 33-42 Value of XOUT

-40-

- **Col.** 43-49 DPOUT =
 - 50-59 Value of DPOUT
 - 60-66 ZETAF =
 - 67-76 Value of ZETAF

Card 13B (4X, F10.1, 4X, F10.1, 6X, F10.2, 7X, F10.3, 6X, F10.5)

- Col. 1-4 TB =
 - 5-14 Value of TB
 - 15-18 HB =
 - 19-28 Value of HB
 - 29-34 PREF =
 - 35-44 Value of PREF
 - 45-51 DTREF =
 - 52-61 Value of DTREF
 - 62-67 PIPK =
 - 68-78 Value of PIPK

Card 13C (8X, F10.7, 7X, F10.2, 8X, F10.7, 6X, F10.7)

- Col. 1-8 CSTART =
 - 9-18 Value of CSTART
 - **19–25** PTRAN =
 - 26-35 Value of PTRAN
 - 36-43 CSTARP =
 - 44-53 Value of CSTARP
 - 54-59 GAMP =
 - 60-69 Value of GAMP

Card 13D (7X, F10.3)

- Col. 1-7 TMAXQ =
 - 8-17 Value of TMAXQ

Card 14 Description of type of grain configuration (9X, I2, 9X, I2, 8X, I2, 6X, F4.0, 9X, I2, 7X, I2)

- Col. 1-9 INPUT =
 - 10-11 Value of INPUT (1, 2 or 3)
 - 12-20 GRAIN =
 - 21-22 Value of GRAIN (1, 2 or 3)
 - 23-30 STAR =
 - 31-32 Value of STAR (0, 1, 2 or 3)
 - 33-38 NT =
 - 39-42 Value of NT
 - 43-51 ORDER =
 - 52-53 Value of ORDER (1, 2, 3 or 4)
 - 54-60 COP =
 - 61-62 Value of COP (0, 1, 2 or 3)
 - Card 15 Tabular values for geometry at y = 0.0 (requires 2 data cards) (Not required if INPUT = 2)

Card 15A (6X, F6.2, 10X, F11.2, 10X, F11.2, 8X, F11.2)

- 7-12 0.0
- 13-22 ABPK =
- 23-33 Value of ABPK
- 34-43 ABSK =
- 44-55 Value of ABSK

Col. 1-6 YT =

- Card 15A (Cont'd)
- Col. 55-62 ABNK =
 - 63-71 Value of ABNK

Card 15B (22X, F11.2, 9X, F11.2, 8X, F11.2)

- Col. 1-22 APHK =
 - 23-33 Value of APHK
 - 34-42 APNK =
 - 43-53 Value of APNK
 - 54-61 VCIT =
 - 62-72 Value of VCIT
 - Card 16 Tabular inputs for y greater than 0.0 (requires 2 data cards for each y value) (Not required for INPUT = 2)

Card 16A (6X, F6.2, 10X, F11.2, 10X, F11.2, 8X, F11.2)

- Col. 1-6 YT =
 - 7-12 Value of YT
 - 13-22 ABPK =
 - 23-33 Value of ABPK
 - 34-43 ABSK =
 - 44-54 Value of ABSK
 - 55-62 ABNK =
 - 63-73 Value of ABNK

Card 16B (22X, F11.2, 9X, F11.2)

Col. 1-22 APHK =

23-33 Value of APHK

- 34-42 APNK =
- 43-53 Value of APNK

	Card 17	Non-statistical c.p. grain geometry (Not required for GRAIN
		= 4) (6X, F10.3, 3X, F10.0)
Col.	1-6	XTZO =
	7-16	Value of XTZO
	17-19	S =
	20-29	Value of S
	Card 18	Non-statistical star grain geometry (Not required for GRAIN = 2) (4X, F10.0, 4X, F10.0, 4X, F10.0)
Col.	1-4	NS =
	5-14	Value of NS
	15-18	NP =
	19-28	Value of NP
	29-32	NN =
	33-42	Value of NN

Finally, Figure IV-1 is a schematic representation of the data deck construction, and Table IV-1 presents an example set of data. This is the same data as used in the sample case presented in Section V of this report. Note that these are all the data cards which are required for this example for any number of configurations.

Program Listing

Figure IV-2 shows a block diagram of the overall program and Table IV-2 presents the complete program listing.

As previously mentioned, the program has been designed to produce graphical presentations of the computational results. Program statements that must be removed in order to delete the plotter compilation requirements are indicated by check marks (>) in Table IV-2. Removal of these statements is necessary if the user's computer is not equipped for CALCOMP plotting. However, if other plotters are available, generally only the plotting subroutines need be replaced.

Figure IV-1. Schematic of data deck.

TABLE IV-1. EXAMPLE DATA SHEETS

	~-													_													_	
8					i	_				T	1	1	1	1			1	-		:								
2						_							1-1					+									- 1	
:				\rightarrow	+	_							<u> </u>		_							-						
									_					-					_	-+								
3																	1			i	i	. 1	. 1		· ·			
2				1		1					1	•	1					1										
2			1	Ī			0		-			0							_			i						
			+		-+			$ \rightarrow $				V								-+			-+			~		
												· · ·							_								$ \rightarrow $	
3							N	1 _ 1				. N	: 1		!		- 1		- 1		Í					- 1		
F			1	î									!			_	_	-	_	+					_			
7					-+	দ					<u> </u>							-+		-+				-				
ب ج						_		 +			_		· · · · ·	<u> </u>					_	_		_	_					_
\$						5	ii	i . !				5			1	1		. :	-		i	. 1						
	_			1		9						9	1			1		1			1				1			
8					-+								÷				-+	+	- +	-+	-+	-1						
						<u>m</u>					i	<u>m</u>								_	_	\rightarrow	-		_	_		
5		_			i	0	0				t	00]		_ !						
3		i				• 1	_ • I		;		1			1	.		1			ī								
8				,			*		1			40							_				- 1			_		
					-+															-+	-+							
3					-+								<u> </u>							-+				_				
3											!	1	!					. 1			- 1	!						
8	_		_			_					1		ī								i							[
=				+		1.					÷	5	<u> </u>				1			+	+					_		
						6	i di	<u> </u>					i	_	_									_	_		_	
8						5	0	i i	_ 1		i	50					1	1	- 1			i	1	L i	i			
2			-1	1	1	9	•		-		1	9.		1							-					_		
3				†	-1		_												-1		÷						-1	
					-+	m					—;						_+	÷			+							
						01					i	0 1	أ		<u>}</u>			_ !		لنہ]	Ì						
2				Ī		. 1			i		, i	•	·!								1]	i	.]			
2	1		i	,	-1	0					1	0	, ,			i	1	- 1	-1		ī	1		-		-		
3			{	-+	-+			++					-				-+	+	-+	-+	-+							
					+		<u> </u>	┝┈╼╇				<u>_</u>	\vdash						_	-+	\rightarrow							-
2				i								<u> </u>]								
2]		-1	1	1	-	-1	0		i		-	0	1					1		1	i	1						
-																				-+								
					-+		<u> </u>							_									_			_		-
2			i	i			0					0	:															
:	_			1		0						0 1						- 1	1									
:														-				+										_
-					-+			├ ── {					<u> </u>	·				+						_				
\$						0		$ \rightarrow $					1							-		_	_					
*					1	0	; j	1				0	·])					. 1		1	i						
:				1		~		1			1		1									_						
				+				<u> </u>									 †	+	-+		-+		-					
\$	3				+		0	L	_			0	\vdash	_	<u> </u>	_							_					
:			ļ	i		. !	! .	1			•	•	1	1			1	į, į	ł	. 1							l i	i
:	11					-	9					9				1	i					-						
÷					-+						-+		+-				-+	+	-	-+	+						-	
							>	<u> </u>				~		·	~				_	_		_						
\$	9			:	1		i	1			1		!	L	:	i					_ 1							
8	16			,				T i					T					1			1	_						
	2				-+				-			· · · ·	t				+	+						_				
	5				-+		<u> </u>																	_				
5	5			i											:	1			1		1							
2	W			1	1		0	1 1	i	- 1	1	0	. I	1				- 1	- [T	1		1				' i	
7	r													1		-			_			-						
												ŝ		•				+		+								
*					+		ŝ	<u> </u>										-+		+								
2	Ŵ			1		į						` ``			!]		. 1	i										
8	8				T		, , ,					:	ī .															
												~	t	· · ·					- 1									
-	_			_		1			!				<u></u>		_									_		_	_	
8	Ø	1		;	ļ	0	. 1	1				0	ł	1		i		i	1		. 1							
8	У					0					ī	0.	1	-				1		- 1								
2	>						-1					0	t					-+			-		-		i			
	ŀ	⊢∔				0	ل	┝──┤		<u> </u>	┝──┧		į—i		_			-+		<u> </u> ↓			-		\vdash		\vdash	-
3	S					0				i		00	1		1										لسل			
R.	NO					•				<u> </u>		•		1	:													
8	A		_	1			~		-			0.9		1		1	1	-1	1	1		_				1		1
	۲Ť						بحتب						۲	t	-		-t		-+				<u> </u>		<u> </u>			
	121	⊢ −					ĻЦ	<u>∔</u>		<u> </u>	 		+		<u>+</u>								┝╾┥	-	\vdash		┝╼┈┫	
8	77			5							I		-	-	<u>لــــــــــــــــــــــــــــــــــــ</u>										L			
ន (1			0	-1			i 1]		L I		1	L.	1		_ !	[_ 1	_ [_ 1		S					
	0			~	-1	5		1.1		1		5	T	1	1		1	- 1	1				m	_				
		-		_			i	i i		<u> </u>	├ ── i		+	<u>+</u>			_	+	-				m	_			-	
*	••••					h		<u> </u>			┝──┥	6	<u> </u>	 			<u> </u>			├ ── 								
8	2			0			0					6 6		.		L.,							ß					
10 20	6			0	1	3	: • :	1		[]	[]	m : •	!	1	<u> </u>						μ		3		1			
10 20	ZGUR						5					Oh		1							0		0		0			
10 20				0		- U -		ف		_	·		5						-		Ť.							
17 18 18 20	17			0				· .					1 1	;				·	_	L	•		· · ·					
17 18 18 20	NFZ			•		•															~		5					
17 18 18 20	DNEZ											0	-	 	•		L			_	0		0		0			
17 18 18 20	DNEZ			•		•													_		0		0					
17 18 19 20	NFZ			· 0		0						0	-								0		0					
13 14 15 16 17 18 19 20	CONFI			•		0						0	-								0		0					
12 13 14 15 16 17 18 19 20	FICONFZ			.0		0						0									0		0					
11 12 13 14 15 16 17 18 10 20	CONFI			.0		0	0					0									0				0			
11 12 13 14 15 16 17 18 10 20	FICONFZ			0 0		0	0					0									0		7 0					
10 11 12 13 14 15 18 18 17 18 19 20	DF CONFI			50 0		0	0.					0									0		7		0			
8 10 11 12 13 14 15 16 16 11 19 20	R OF COMPT	0		350 0.			3.0					3.0			: :								67		300			
8 10 11 12 13 14 15 16 16 11 19 20	R OF COMPT	0		350 0.			3.0					3.0									<u>ک</u>		7		0			
0 0 10 11 12 13 14 15 16 16 17 18 10 20	ER OF COMPT	70		350 0.		0	3.0			S ⁻		03.0									<u>ک</u>		. 67		430 0			
7 8 8 10 11 12 13 14 15 16 17 18 19 20	BER DF COMPT	970		06350 00		.0	3.0					3.0			3.5		0		o		35		5.67		. 430 0		0	
0 7 0 2 10 11 12 13 14 15 16 17 19 20	MBER DF CONFI	6970		.06350 0.		0	3.0			. 35		03.0			3.5		0				. 35		. 67		4.430 0		0	
• 7 • 1 10 11 12 13 14 15 14 15 14 19 10 10 10 20	WMBER OF CONFI	36970		.06350 0.		.0	3.0			S ⁻		03.0			3.5		0		0.0		. 35		5.67		. 430 0		0	
4 8 8 7 8 8 10 11 12 13 14 18 16 14 18 18 18 18 18 18 30 21	I'WMBER OF COMFI	236970		0.06350		11.0	3.0			0.35		0 0 0			0.35		0.0		0	-	4.3S		145.67		54.430 0		0.0	Z
4 8 8 7 8 8 10 11 12 13 14 15 16 17 18 18 50	I'WMBER OF COMFI	236970		0.06350		11.0	3.0			0.35		0 0 0			0.35		0.0		0	-	4.3S		145.67		54.430 0		0.0	Z
2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 50	I'WMBER OF COMFI	236970		0.06350		11.0	3.0			0.35		0 0 0			0.35		0.0		0	-	4.3S		145.67		54.430 0		0.0	Z
	I'WMBER OF COMFI	236970		0.06350		11.0	3.0			0.35		03.0			0.35		0.0		0	-	4.3S		145.67		54.430 0		0.0	Z

-46-

TABLE IV-1. EXAMPLE DATA SHEETS (CONT'D)

.

8			-				·										. ,						_	-					
:							<u> </u>						_							_						<u> </u>		<u></u> }	
1											— i			<u> </u>		-	· ÷					_				┡	;		-+
		t		 			<u> </u>	┢╾┥	\vdash	├	\vdash		_	i	_							_	 -	1—			 	<u> </u>	
틀		} —↓		<u> </u>				Ļ!		L	¦														L			⊾_÷	
			<u> </u>	<u> </u>				<u>ل</u>						<u> </u>											_			_	<u> </u>
5		ļ					L	L]				1
24 24 24																								1					ī
2				1												_		_		_						<u> </u>		; ;	
2				<u> </u>																						<u> </u>	-		
Ē			-	<u> </u>			\vdash	<u> </u>							— i											ļ		÷	<u>+</u> -
<u>-</u> +	-			<u> </u>			<u> </u>	<u>;</u>																		<u> </u>		_	+
<u></u>		1-1		<u> </u>			ليسلم									;	<u> </u>									<u>ــــــــــــــــــــــــــــــــــــ</u>	÷	<u>.</u>	
s		<u> </u>	L	I																	:						-		
3								i		i				i i	i				1				í	1		1	İ I	i İ	
<u>; </u>																													
8				—										; - ;	-														-
:				<u> </u>												_		-	_	_								1	
3	-	-					·						-																+
2																							—						+
						-	\vdash	\vdash						\vdash			_						-				ļ!		-+-
3				Ļ				h							$ \rightarrow $			_			. !							<u> </u>	
<u> </u>		L		L							:					1													:
8				l							i	İ			i		1												1
3														1	1		i				1								
1												-1					-†	-										T	t
-				-								1				-1					i						; I		1
3		1	+	<u> </u>					-			-		\vdash				-								-	<u>!</u> i	⊦—+	
3		1	†	<u></u> -			<u> </u>	<u> </u>			\vdash			·	;		_	_		-			·	\vdash		-	_	 	 -
		t		+			⊢ −−∣	┝──┤	i	i—-i	┝──┥					_					_	_	<u> </u>	-			<u> </u>	┢──┼	-+-
러		t		<u> </u>			<u> </u>	┝╼┥				!						_					ļ			<u> </u>		┝──	-+-
<u>-</u>	-	ł	 	} ¹			<u> </u>	\vdash			ļi			L_i			+	_	\square		<u> </u>					<u> </u>		 +	
3		I	ļ	L		-	 							L									1_	-					
5		L		1		L				L				L_Ī							1								!
2												1		1			1											1	1
:		[Ī					[-		ł				5								T
:				i												. 1	<u> </u>	-				_						:	1
È						r i						-1	-	+				-	—-i					<u> </u>					
-		t	$t \rightarrow$	<u>├</u> ──!			\vdash	┝┥		\vdash	-		-	┝╼╼┿								_					_		-+-
•		1	-				┟╾╾┙				ļ		_										-						
		+		<u> </u>			┣─┥	\vdash				_		÷	<u> </u>							_	-	<u>. </u>					
-		ł		<u> </u>		┝┤	'	┝╼╾┥	 	I								_	<u> </u>			_	┣					└ <u>`</u>	+-
2		╂	ļ				\vdash	$ \downarrow $	 					<u> </u>	_		1				1				\vdash	<u> </u>		<u> </u>	
:	ļ	 	<u> </u>	<u> </u>			 	 			ļi			:									L						i
•											i			1]			1										1 1	1
\$				1					L						1									1				· · · ·	
8		<u> </u>	1		i		<u> </u>		i					1														;	T
2		1-	1	1	—					1				i i	-											[-
5	· · ·	t	t—	t	<u> </u>		-		-	-				├ ─-†	-1								·	1					
2	·	t—	t—	1				+	t	t				┝─┤				-				_		1		i			
<u>-</u>	-	†—-		┼──			<u> </u>	<u></u>	-				_	; ;									-	†					
		t					<u> </u>	┢──┤	<u> </u>	 		1	_	<u> </u>			\rightarrow									<u> </u>			
-		 	Į	 	├		<u> </u>	┢╾┥		├	┝			┝─┤					<u> </u>					\vdash			-	\vdash	
2		 		 			⊢	\vdash						┝					⊢ −i	_									
<u>a</u>	· · · ·									<u> </u>				L										\square					
]					i										_		
8												i			i		į												
2															ī	1	1		1		÷								1
8								$ \neg \neg$		r1			_	⊧ †					1										T
Ē	<u> </u>		ł	<u>+</u> '					1		<u> </u>			⊢⁺				-								<u> </u>			
	<u> </u>	1-		+			<u> </u>	┝╍┥	$ \rightarrow $			-		┞──┤															÷
-		<u> </u>	 				\vdash	┝╍┥	 		-			┝─┤	<u> </u>		<u> </u>	-			_	_					_		i .
		<u></u> +		-			┢──┤	\vdash			┝								— –					┝─┤			_		<u>-</u> +-
a 1		<u> </u>	l	<u> </u>			Ľ	\vdash	Į.	<u> </u>				\vdash		;			<u> </u>			_				<u> </u>			-+-
		1	 	Ļ	<u> </u>		<u> </u>		ļ'	.							_						<u> </u>	1					
2		+		1			L	1		m		δ		m		3								L					
2	÷			· · · ·		2		1		ŝ		3		m.		η	!												· ·
221	·		-	N	-				-					· m·			;												
	·			2 7	_		i i	: 6		ŝ		ŝ		. 1.3.		∞						_		1		0			
				5		5		30		3		m m		m		33	; ;				1		L					0	·
CT CZ 12 02 01				35		35		m	1								i	2	<u> </u>		_	_		চ	-	•	_	0	
ST 52 12 02 01 01				235		235		3		30		80		3		3	i	ہ د		Я	_	5		১ ০		•	_		
17 18 18 28 28 28 28 28				0235		0235		023		083		80		033		033	i	0			_	_		ہ ہ		0	_	0	
10 11 10 10 20 21 21 21				.0235		.0235		. 023		.083		.083		033		.033	i	0		.05	_	.05		0		9	_	609	
14 14 17 18 18 20 21 21 23				0235		0235		023		083		0.083		033		0.033		0.0		0.05	_	sο		0		0	_	0	
14 19 16 17 18 19 20 21 23 23			E	0.0235		.0235		0.023		.083		0.083		033		0.033		0		0.05		0.05		0.0		9	_	609	
13 14 15 16 17 18 10 20 21 23 23			E	.0235		.0235		0.023		.083		0.083		0.033		0.033		0.0		0.05		0.05		0.0		9	_	609	
12 13 14 16 16 17 18 19 20 21 23 23			E	0.0235		.0235		0.023		0.083		0.083		0.033		0.033		0.0		0.05		0.05		0.0		9	_	609	
11 12 13 14 18 19 19 19 19 19 20 21 11				0.0235		.0235		0.023		.083		0.083		0.033		0.033		0.0		0.05		0.05		0.0		9	_	609	
11 13 14 16 16 19 19 19 20 21 23 28				0.0235		0.0235		0.023		0.083		0.083		0.033		0.033		0.0		0.05		0.05		0.0		9	_	609	
10 11 12 13 14 15 16 17 18 18 20 21 23 23				0.0235		0.0235		0.023		0.083		0.083		0.033		0.033		0.0		0.05		0.05		0		360.	_	609	
9 10 11 13 13 14 12 18 14 15 18 15 18 15 30 31 33 33				0.0235		0.0235		0.023		0.083		0.083		0.033		0.033		0.0		0.05		0.05		0		360.	_	609	
		•		4 0.0235		1 0.0235		0.023		0.083		0.083		0.033		0.033		0.0		0.05		20.05		0		360.	_	360.	
T		ė		04 0.0235		41 0.0235		0.023		0.083		0.083		0.033		0.033		0.0		0.05		0.05		0		360.		609	
		76.		.04 0.0335		.4.1 0.0235		. 0 0. 023		.0.083	<i>H</i>	0.083	~	. 0		.0 0.033		0.0		0.05		0.05		0.0		. 0 360.	×	.0	
		176.		04 0.0235		41 0.0235		0.023		0.083		0.0	۶ × ۱	0.033	6 N	0.0		0.0		0.05		0.05		0	M M	360.		360.	
•		176.		.04 0.0335		.4.1 0.0235		0.023	D C V	0.083	D C H	0.0	~	0.033	D C N	0.0		0.0		0.05		0.0		0.0	N A M	. 0 360.	×	.0	
	II	176.		3.04		2.41 0.0335		0.0	x b c V	0.083	x D C H	0.0	× 0 6 ×	0.033	x D G H	0.0		0.0	~	0.0		0.0	<i>x</i>	0	N H H d	0.0	P W A H	0.0	<i>KEF</i>
	II	176.		3.04		2.41 0.0335		0.0	x b c V	0.083	x D C H	0.0	× 0 6 ×	0.033	x D G H	0.0		0.0	~	0.0		0.0	<i>x</i>	0	N H H d	0.0	P W A H	0.0	<i>KEF</i>

TABLE IV-1. EXAMPLE DATA SHEETS (CONT'D)

2 2 0 1 7 M 0 8 0 0 8 0 0 0 0 0 . 1. 24 24 42 44 46 44 47 44 49 70 71 72 73 74 T 0 7 1 - 0 Z m a w m <u>x x x x x</u> • 1 • 1 • 1 00000 22 18 08 00000 0 919 3 010.0:01-3 I Imimit 3 N ----m0000 • 1 48 48 50 51 53 54 55 0 t 1 m n v 101-10.00 T O SO T 00000 • 1 0 0 5 1 9 5 70907 \$ \$ \$ m m m m· · · · · 7 12 04 1 ŧ 2 5 > m m m m • 1 • 0000 4 6 4 8 4 6 M 9 0 C 92 92 0 0 0 0 0 0 i ii -00000 <u>20</u> 272 20 2 3 ä A 2 m m m 7 m mi m m m -9 46 : 3 N 1 9 mi m m N Ē m m 0 0 0 0 m m m m 0 ò 10 1 11 01 5 . 0 0 m 0 i • . 1 0 0 0 10 0 0 0 0 101 0 1-10:00 4 M 4 -- 0 4 % 50 0 0000 20 6 *.*ν. 5 . Ö 5 Ь м 0 8 0 > hi 0 . 0 5 0 0 ¥3. 0 _ 2 . . m 5 • [0 1.1 8 1 . - 1 . 00 5 <u>b</u> 20 2 • Ø • O ٠ g 1 27 . 2 ٠ 8 C 8 F 8 F 8 F 8 F 8 F 8 F . . - 1

-48-

TABLE IV-1. EXAMPLE DATA SHEETS (CONT'D)

.

8	_		_	_	_	_	_						_			_	_	_			_					
)	1	L	T	1	i								1	1	1	i	
2					i				;				T	:									1-	ī		
2		T					1		Ť	1		T	Ĩ	1								1.	1	1		—
1	1 1					-				-+		+	1	1								<u> </u>	<u> </u>			
2	+-+			-+-+								<u> </u>	+		i—i	_					<u>-</u>	<u>}</u>	}	+		├
	+-+								÷		-+-		÷	÷		-		_	_			<u> </u>	<u>.</u>			
	┼╌┤			-+-+						-+		<u> </u>	 	<u> </u>					_			<u> </u>	<u> </u>			┝
	┿╍┥					0			_					L							<u> </u>		<u> </u>			
2	1_1					5	i		1	1	. I.	1	1	!	1							-	i			
7	1.1				1	~			1			1	Г													
		1	-		1	0			1	-1			1	; ;									î			
8	+-+				اف	_				<u></u>			;	;	—	-	_				—		÷	<u></u>		
	╋╌╉									-+	-+		<u> </u>	┝	\vdash			L					<u> </u>			
	+-+				0	~							<u> </u>	<u> </u>		-		_			_		_			L
3					<u> </u>	0							<u> </u>													
5	1_1			_ _	0	11			1		1											1	1	Г		
8	TT				11	×	7	1	1	1		1											i	1		_
3					L	9	3		ī	-			i	:			_			_			<u> </u>			
3	+ +		-+		-	H	T ,				i -	<u> </u>	<u>+</u>	;			-					-	<u>+</u>			
	┽╍╌┼		-+			-1	- 21			-+			┼──	÷						_		<u> </u>	<u> </u>			
3	╉╼╌╉		-10		P.	-	0				<u>_</u>								_			-	ļ			_
3	+ - +				W		0		3				<u> </u>													
5			0		n I					(1	! _										ł		i	
8		ī	0				0	1	11		ī	!	1										i	1		Г
3		ī				-	11	1	Q		1	-1	T	;												
3	1-1		0	-+i	-i		٩		Ø			1	1		-i							· · · ·	<u> </u>	ti	<u> </u>	-
2	┼─┼	-+-				1-				فيسعب			<u>+</u>	;	<u> </u>							ļ	<u>+</u>	+		├
	+ +	-+-	0			5			<u></u>	+		- <u>+</u>	<u> </u>			<u> </u>					i	Ļ	 	 		
8	┿╌┿		-			100		<u> </u>	i	_			;				_	_				<u> </u>	<u> </u>	┢──┥		┝
3	+		0			3			i		<u> </u>	<u> </u>	<u> </u>	<u> </u>							 	L	i			_
3			0		0	•						1											1			
3					0	2			-		_ T		1	L		_ 1							Ĺ			L
3			0		0	5			;	Ť	1	1	Ī										T			
	1-1		0		0				1				1									<u> </u>	;	-		
3	+	<u></u>		<u> </u>	_	_	_	<u>├</u>				<u> </u>	<u></u>					_					<u> </u>			
	++				\geq			i	- K) 		⊢ →	$ \rightarrow $							÷		<u> </u>	
	1		0		<u>_u</u>		5		<u>.</u> щ.		<u>.</u>			:	шi							Į	ļ			
3	1.1		0		<u></u>				<u>_</u> Q_		-	-	1	·									<u> </u>	1		
					Э	L:	0		8				i										i	1		
3			0		6	۵	0		Ø		:	1	1				-						i –	1		
3			101		9			_	_ 1.4			:		. —									,			-
3	11		1.		0		0						<u>.</u>	;	<u> </u>	\neg				-		1	;			
	╀━┦	-+-								+	-+-				<u> </u>							-	!			
\$	╉╍╍╉		0				1				-+-		÷		<u> </u>						—	—		<u> </u>		
7	4-4		0				Р		_					•									÷			
Ŧ	1 1	1	1. • •	_			e de		0			:	:		;											
\$		1	0	1			Ā		•		1		-										1			
8			1 0	1	- 1	0	E L		Q.	i			1										!			
2	1-1	-	•		0				11			_	÷							-	_			*****		_
5											- i		i (1			•	ı i		
									Ϋ́.			<u></u>		-		-								┟─┤		-
	┨╼┥	_	0		•	0		;	K																	
*			0		0	9	U		X			1														
*			0 0		00	560	2		K														! 			
2 2 3			0 0 0		000	= 5 6 0	2		K		0												! 			
* *			0 0		10001	F = 5 6 0	2		Y.														! 			
2 2 2			0 0 0		10001	= 5 6 0	5		Y.		0												! 			
7 7 7 7 7 7			00.00.		- 10001=	26=560	5		r Y		0.0												! 			
* * *			00.00.00		7=1000.	REF=560	2		2 × 7		N=0.0												! 			
* * *			00.00.00		uT=1000.	PREFES60			= 2 × 7		0.0=NN												! 			
***			00.00.		\$ 47=1000.	PREFES60			R= 2 XT		N=0.0												! 			
* * * *			00.00.00		X & U T = 1000.	PREFES60			A R = 2 XT		0.0=NN												! 			
			00.00.00		X & UT=1000.	PREFES60	0 C		TAR= 2 NT		0.0=NN												! 			
			00.000.00		6 XØUT=1000.	0 PREFES60	0.0		A R = 2 X T		0.0=NN												! 			
			00.00.00.00		26 XØUT=1000.	. 0 PREFES60	= 0. 0 C		TAR= 2 NT		0.0=NN												! 			
			00.000.00		26 XØUT=1000.	. 0 PREFES60	= 0. 0 C		TAR= 2 NT		0.0=NN												! 			
			00.00.00.00		26 XØUT=1000.	. 0 PREFES60	= 0. 0 C		STAR= 2 NT		0.0=NN												! 			
			-00.00.00.00.00.		26 XØUT=1000.	0 0 0 PREFES60	A N = 0. 0 C		STAR = 2		0.0=NN												! 			
			0-00.00.00	<i><i>k</i></i>	= 26 Xøu7=1000.	0000.0 PREFES60	R A V = 0.0		STAR= 2 NT		0.0=WN=0.0												! 			
			00.00.00.000000000000000000000000000000	<i>K</i> 2.	I = 26 XØUT=1000.	0000.0 PREFES60	TRAN=0.0		3 STAR= 2 WT		0.0=NN=0.0															
	0		00.00.00.00.00.00.00.00.00	<i>K C</i> · <i>C</i>	II = 26 XØUT=1000.	30000.0 PREFES60	PTRAN=0.0		= 3 STAR= 2 NT		0.0=XX=0.0															
	66		0.00.00.00.00.00.00	39.74	II = 26 XØUT=1000.	130000.0 PREF=560	PTRAN=0.0		$\mathcal{N} = 3 S \mathcal{T} \mathbf{A} \mathbf{R} = 2 \mathcal{N} \mathcal{T}$		9,0 - WN = 0,0															
	166		00.00.00.00.00.00.00.00.00	= 39.7%	II = 26 XOUT = 1000.	= 1 3 0 0 0 0 0 0 P R E F = 5 6 0	PTRAN=0.0		= 3 STAR= 2 NT		9,0 - WN = 0,0															
	166		0.00.00.00.00.00.00	= 39.7%	II = 26 XØUT=1000.	8=130000.0 PREFES60	PTRAN=0.0 C		I N = 3 $S T A R = 2$ $N T$		o = 0															
	0166		. 00. 00. 00. 00. 00. 00	u = 39, 29, 74	II = 26 XØUT=1000.	8=130000.0 PREFES60	PTRAN=0.0 C		A I N = 3 $S T A R = 2$ $W T$		o = 0															
	.0166		0.00.00.00.00.00.000	<i>AU</i> = 39. 7. <i>Y</i>	II = 26 XØUT=1000.	8=130000.0 PREFES60	8 PTRAN=0.0		RAIN= 3 $STAR= 2$ NT	δ 																
	0166		00.00.00.00.00.000	TAU = 39 . 7 4	II = 26 XØUT=1000.	WB=130000.0 PREFES60	38 PTRAV=0.0 C		A I N = 3 $S T A R = 2$ $W T$	δ 	o = 0															
	.0166			$T \neq U = 39, 24$	II = 26 XØUT=1000.	WB=130000.0 PREF=560	038 PTRAV=0.0		$\mathcal{C}[RAIN=3] [STAR=2] WT$	δ 	0 · 0 = 1 / 0 · 0 = 0 / 0															
	.0166			TAU = 39 . 74	II = 26 X = 200	WB=130000.01 PREF=560	0038 PTRAN=0.0 C		$G R A I N = 3 \qquad S T A R = 2 \qquad N T$		N N N N N N N N N N															
	.0166			$V = \frac{1}{79} \frac{1}{9} \frac{1}{23} \frac{1}{2$	II = 26 X = 200	WB=130000.01 PREF=560	038 PTRAV=0.0		6 RAIN= 3 STAR= 2 NT	S 1 1 0	0 · 0 = 1 / 0 · 0 = 0 / 0															
	.0166			=// T AU = 39. 7 4	04 II = II = 000.	WB=130000.0 PREFES60	0038 PTRAN=0.0 C		6 RAIN= 3 STAR= 2 NT	S 1 1 0	N N N N N N N N N N															
	0.0166			$\beta = $	04 $III = 126 X @ u T = 1000.$	W B=130000.0 PREF=560	.00038 PTRAV=0.0 C		2 6 6 8 + I N = 3 5 + 6 8 = 2 N + 7	S =	N N N N N N N N N N															
	0 0.0166			$\beta = $	04 $III = 126 X @ u T = 1000.$	W B=130000.0 PREF=560	.00038 PTRAV=0.0 C		2 6 6 8 + I N = 3 5 + 6 8 = 2 N + 7	S 1 1 0	N N N N N N N N N N															
	40 0.0166			$2 \cdot \beta = 1 T + 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$	$0 \cdot [0 + 1]$ $III = 126 X g u T = 1000.$	2 WB=130000.0 PREFES60	0.00038 PrRAN=0.0 C		= 2	S =	N N N N N N N N N N															
	0 0.0166			$ T = \beta = I I I I I I I I I $	= 0. 04 II = 26 X & UT = 1000	2 WB=130000.0 PREFES60	=0.00038 Pr RAN=0.0 C		r = 2 $G R R M = 3$ $ S T R = 2$ $ N T R = 2$	· / 2	WW=9'0															
	. 540 0.0166			$\frac{1}{2}P\phi = 1/1$ $\frac{1}{2}P\phi = 39 \cdot 24$	y = 0.04 $II = 126$ $X = 1000$	2, 2 WB=130000.0 PREFES60	7=0.00038 Pr RAN=0.0 C		wr = 2 6 R AI W = 3 5T A R = 2 Wr	o.12	0, 0 = /// / / / / / / / / / / / / / / / /															
	. 540 0.0166			$ [T] P \phi = [T P u = 3 9], P H $	$A Y = 0 \cdot 0 + 1 = 1 = 1 = 1 = 1 0 0 = 1 = 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 0 = 1 0 0 0 0 0 0 0 0 0 $	22, 2 WB=130000.0 PREFES60	x7=0.00038 Pr RAN=0.0 C	Q=60.0	wr = 2 6 R AI W = 3 5T A R = 2 Wr	= 0.12	$0, 0 = M_{M_{1}} + M_{1} + M_{2} + M_{2} + M_{3} + M_{4} + M$															
	3.540 0.0166			$ [T] P \phi = [T P u = 3 9], P H $	$A Y = 0 \cdot 0 + 1 = 1 = 1 = 1 = 1 0 0 = 1 = 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 0 = 1 0 0 0 0 0 0 0 0 0 $	22, 2 WB=130000.0 PREFES60	x7=0.00038 Pr RAN=0.0 C	Q=60.0	P(u,T) = 2 = 6 RAIN = 3 = 5TAR = 2 = WT	= 0.12	$0, 0 = M_{M_{1}} + M_{1} + M_{2} + M_{2} + M_{3} + M_{4} + M$															
	. 540 0.0166			$ [T] P \phi = [T P u = 3 9], P H $	$A Y = 0 \cdot 0 + 1 = 1 = 1 = 1 = 1 0 0 = 1 = 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 0 = 1 0 0 0 0 0 0 0 0 0 $	22, 2 WB=130000.0 PREFES60	x7=0.00038 Pr RAN=0.0 C	Q=60.0	N P U T = [2] [G R P I N = [3] [S T P R = [2] [W T]	Ø=0.12	V, 0															
X X X <td>63.540 0.0166</td> <td></td> <td></td> <td>$\phi = I I = \rho \phi = I I =$</td> <td>L T A Y = 0.0 0 0 0 0 0 0 0 0 0</td> <td>=122.2 #B=130000.0 PREF=560</td> <td>TANT=0.00038 PTRAN=0.0 C</td> <td>A X Q = 6.0. 0</td> <td>IMPUT = 2 G RAIM = 3 5TAR = 2 WT</td> <td>2 g = 0.12 S=1.0</td> <td>= /, 0</td> <td></td>	63.540 0.0166			$\phi = I I = \rho \phi = I I = $	L T A Y = 0.0 0 0 0 0 0 0 0 0 0	=122.2 #B=130000.0 PREF=560	TANT=0.00038 PTRAN=0.0 C	A X Q = 6.0. 0	IMPUT = 2 G RAIM = 3 5TAR = 2 WT	2 g = 0.12 S=1.0	= /, 0															
M M	63.540 0.0166			$\phi = I I = \rho \phi = I I = $	L T A Y = 0.0 0 0 0 0 0 0 0 0 0	=122.2 #B=130000.0 PREF=560	TANT=0.00038 PTRAN=0.0 C	AX 0 = 6.0.0	IMPUT = 2 G RAIM = 3 5TAR = 2 WT	Ø=0.12	S = 1, 0															
X X X <td>63.540 0.0166</td> <td></td> <td></td> <td>$\phi = I I = \rho \phi = I I =$</td> <td>L T A Y = 0.0 0 0 0 0 0 0 0 0 0</td> <td>=122.2 #B=130000.0 PREF=560</td> <td>TANT=0.00038 PTRAN=0.0 C</td> <td>AX 0 = 6.0.0</td> <td>IMPUT = 2 G RAIM = 3 5TAR = 2 WT</td> <td>2 g = 0, 1 2 </td> <td>= /, 0</td> <td></td>	63.540 0.0166			$\phi = I I = \rho \phi = I I = $	L T A Y = 0.0 0 0 0 0 0 0 0 0 0	=122.2 #B=130000.0 PREF=560	TANT=0.00038 PTRAN=0.0 C	AX 0 = 6.0.0	IMPUT = 2 G RAIM = 3 5TAR = 2 WT	2 g = 0, 1 2	= /, 0															
X X X <td>63.540 0.0166</td> <td></td> <td></td> <td>$\phi = I$</td> <td>L T A Y = 0.0 0 0 0 0 0 0 0 0 0</td> <td>=122.2 #B=130000.0 PREF=560</td> <td>TANT=0.00038 PTRAN=0.0 C</td> <td>AX 0 = 6.0.0</td> <td>IMPUT = 2 G RAIM = 3 5TAR = 2 WT</td> <td>2 g = 0, 1 2 </td> <td>S = 1, 0</td> <td></td>	63.540 0.0166			$\phi = I $	L T A Y = 0.0 0 0 0 0 0 0 0 0 0	=122.2 #B=130000.0 PREF=560	TANT=0.00038 PTRAN=0.0 C	AX 0 = 6.0.0	IMPUT = 2 G RAIM = 3 5TAR = 2 WT	2 g = 0, 1 2	S = 1, 0															

-49-

ł

-50-

TABLE IV-2

Ċ	*****
č	* MONTE CARLO PERFORMANCE ANALYSIS OF SRM PAIRS *
č	* PREPARED AT AUBURN UNIVERSITY *
č	 UNDER MUD. NO. 12 TO COOPERATIVE AGREEMENT WITH
c	* NASA MARSHALL SPACE FLIGHT CENTER *
C	* NASA MARSHALL SPACE FLIGHT CENTER *
C	* BY *
č	* R. H. SFORZINI, W. A. FOSTER, JR. AND J. S. JOHNSON, JR. *
C	* AEROSPACE ENGINEERING DEPARTMENT *
C	* NOVEMBER 1974 *
C C	**************************************
L	INTEGER GRAIN
	REAL IDIFF
	REAL MGEN, MDIS, MNDZ, MN1, JROCK, N, L, ME1, ME, ISP, ITOT, MU, MASS, ISPVAC
	REAL N1,N2,NSEG,K1,K2,KEH,KEN,NS,LCC,LTAP
	REAL M2, MDBAR, ISP2, ITVAC, KA, KB, LAMBDA
	COMMON/CONSTI/ZW, AE, AT, THEFA, ALFAN
	COMMON/CONST2/CAPGAM, ME, BOF, ZETAF, TB, HB, GAM
	COMMON/CONST3/S,NS,GRAIN
	COMMON/CONST4/DELDI, DO, DI, ZC, XT, ZO
	COMMON/CONSTS/KPLT
	COMMON/VARIA1/T, DELY, DELTAT, PCNOZ, PHEAD, RNOZ, RHEAD, SUMAB, PHMAX
	COMMON/VARIAZ/ABPORT, ABSLOT, ABNOZ, APHEAD, APNOZ, DADY, ABP2, ABN2, ABS2
	COMMON/VARIA3/ITOT,ITVAC,JROCK,ISP,ISPVAC,MDIS,MNOZ,SG,SUMMT
•	COMMON/VARIA4/RNT,RHT,SUM2,R1,R2,R3,RHAVE,RNAVE,RBAR,Y8,KOUNT
	COMMON/VARIA5/ABMAIN, ABTO, SUMDY, VCI, VC
	COMMON/VARIA6/YDI.TE
	COMMON/VARIA7/Y, THRUST
	COMMEN/PLOTT/IPO, NOUM, IPT, IOP
	COMMON/PLOT2/NUMPLT
	COMMON/OVALA/CHIH, CHIN, SEN, SEH, CHINH, AZ, BZ
	COMMCN/OVALB/CHINN, CHINAV, SENN
	COMMON/OVALC/RUNDON, RONDCH, RUNDGN, RONDGH, EXN, EYN, EXH, EYH,
	2ALPHAN, ALPHAH
	COMMON/OVALM/Z,ZQ
	COMMON/OVALM2/KKI,II
	COMMON/SEED/IX
	COMMEN/PAIRI/TW1,TW2,DTW,FW1,FW2,DFW1,DFW2,DFW,TMAXQ,DFMQ,
	2FDIFF, TDIFF, NX
	COMMEN/PAIR2/FMAX1, FFMX1, FMIN1, FFMN1,
	2 FMAX2, TFMX2, FMLN2, FFMN2
	COMMON/PAIR3/AFMAX, TEMAX, AFMAXT, TEMAXT
	COMMON/OUT1/FDIFIG, TDIFIG, DIF, ADIT
	COMMEN/OUT2/DF100K, T100K
	COMMON/DATA2/I
	COMMON/TOFF/DFT01,DFT02,TDFT01,TDFT02
	DIMENSION FDIFF(400), TDIFF(400)
	DIMENSIDA NUMPLT(5)

-51-

TABLE IV-2 (CONT'D)

```
DATA P1,G/3.14159,32.1725/
     READ(5,500) NRUNS
  *****
С
С
        READ IN THE NUMBER OF CONFIGURATIONS TO BE TESTED
  ******
С
 500 FORMAT(42X,12)
     NPAIRS=NRUNS/2
     IOP=0
     NPLOT=0
     KPLOT=0
     TWI = 0.0
     FW1=0.0
     WRITE(6,11112)
11112 FORMAT(20X, DATA FOR STATISTICAL ANALYSIS PROGRAM*)
     CALL SETUP
     DO 901 I=1, NRUNS
     REWIND 2
     I X I = I X
     CALL INPUT
     WRITE(6,602) I
 602 FORMAT(1H1,42X, CONFIGURATION NUMBER ', I2)
     IF(I-1) 5000,5000,5001
 5000 READ(5,409) SUMDY,ANS,ZW,Y,T,DELTAT,RNUZ,RHEAD,SUMAB,PHMAX,SUM2,IT
    10T,RHT,RNT,R1,R2,R3,RHAVE,RNAVE,RBAR,ITVAC,SUMMT
     WRITE(2,499) SUMDY, ANS, ZW, Y, T, DELTAT, RNOZ, RHEAD, SUMAB, PHMAX, SUM2, I
    1TOT, RHT, RNT, R1, R2, R3, RHAVE, RNAVE, RBAR, ITVAC, SUMMT
     GO TO 5002
 500L READ(2.499) SUMDY, ANS, ZW, Y, T, DELTAT, RNOZ, RHEAD, SUMAB, PHMAX, SUM2, IT
    10T.RHT.R.IT.R1.R2.R3.RHAVE.RNAVE.RBAR.ITVAC.SUMMT
5002 CONTINUE
  ****
С
        SET INITIAL VALUES OF SELECTED VARIABLES EQUAL TO ZERO
С
  圡
С
        ***NOTE*** THESE VALUES MUST BE ZEROED AT THE BEGINNING OF
С
        EACH CONFIGURATION RUN
  *******
С
 499 FORMAT(22F3.1)
     IF(I-1) 5003,5003,5004
 5003 READ(5,491) IEC, IPC, (NUMPLT(JP), JP=1,5)
     WRITE(2,491) IE0, IP0, (NUMPLT(JP), JP=1,5)
     GO TU 5005
5004 READ(2,491) IEC,IPU,(NUMPLT(JP),JP=1,5)
 5005 CONTINUE.
 491 FORMAT(5X, 11, 5X, 11, 9X, 511)
С
  ******
С
        READ IN THE USER'S OPTIONS
  血
С
С
  $
        VALUES FOR IEU ARE
С
  *
             O FOR NO OVALITY
```

С I FOR OVALITY ANALYSIS С VALUES FOR IPO ARE # С O FOR NO PLOTS AND NO STATISTICAL ANALYSIS * С * 1 FOR PLOTS AND TABULAR OUTPUT 2 FOR TABULAR OUTPUT ONLY С # 3 FOR PLOTS ONLY С # CONTINUE С VALUES FOR NUMPLT(J) ARE (NOT REQUIRED FOR IPO=0.3) 효 O IF SPECIFIC PLOT IS DESIRED С # 1 IF SPECIFIC PLOT IS NOT DESIRED С # * С ORDER OF SPECIFICATION OF NUMPLT(J) IS С * **1** THRUST VS TIME (ENTIRE TRACE) С 2 THRUST VS TIME (TAILOFF PORTION ONLY) ☆ С **3 THRUST IMBALANCE VS TIME** \$ **4 TOTAL IMPULSE IMBALANCE VS TIME** C # С 5 ABSOLUTE TOTAL IMPULSE IMBALANCE VS TIME С ***** WRITE(6,492) IEU, IPO, (NUMPLT(JP), JP=1,5) 492 FORMAT(//,20X,'OPTIONS',/,13X,'IEO= ',11,/,13X,'IPO= ',11, 2/.13X. NUMPLT(J) = 1.51211111 FORMAT(E16.9) READ(4,11111) RHO,AL,N1,A2,N2,ALPHA,BETA,ROAL С C. * READ IN BASIC PROPELLANT CHARACTERISTICS С ********* С C * THE FOLLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL С ANALYSIS PROGRAM С ****** С * С * RHO IS THE DENSITY OF THE PROPELLANT IN LBM/IN**3 С * A1 IS THE BURNING RATE COEFFICIENT BELOW THE TRANSITION С PRESSURE ± С * N1 IS THE BURNING RATE EXPONENT BELOW THE TRANSITION PRESSURE A2 IS THE BURNING RATE COEFFICIENT ABOVE THE TRANSITION С * С 盘 PRESSURE С N2 IS THE BURNING RATE EXPENENT ABOVE THE TRANSITION PRESSURE ± * С ALPHA AND BETA ARE THE CONSTANTS IN THE EROSIVE BURNING С RELATION OF ROBILLARD AND LENIOR ź С ROAL IS THE OXIDIZER TO ALUMINUM RATIO * С ** ***** С *********** С С DEFINE CSTARN AND GAMN * ± \$ С ± CSTARN IS THE NOMINAL THERMOCHEMICAL CHARACTERISTIC EXHAUST С * С VELOCITY IN FT/SEC AT 1000 PSI AND 60 DEG F * С GAMN IS THE NOMINAL RATIO OF SPECIFIC HEATS FOR THE \$

```
С
            PROPELLANT GASES
C
  *******************
С
     CSTARN=-17.8475*ROAL+5239.7
     GAMN=ROAL*5.67357E-3+1.11707
С
  **********
С
     WRITE(6,603) RHD,A1,N1,A2,N2,ALPHA,BETA,ROAL,CSTARN,GAMN
 603 FORMAT( //,20X, PROPELLANT CHARACTERISTICS',/,13X, RHD= ',F8.6,/,1
    23X, A1= ', F7.5, /, 13X, N1= ', F5.3, /, 13X, A2= ', F7.5, /, 13X, N2= ',
    3F5.3,/,13X, ALPHA= ',F4.1,/,13X, BETA= ',F5.1,/,13X, RUAL= ',F7.4
    4,/,13X, CSTARN= ',1PE11.4,/,13X, GAMN= ',1PE11.4)
     IF(IPO)4002,4002,3999
- 3999 IF(I.EQ.1) CALL GSIZE(1200.0,11.0,1121)
     IF((-1) \neq \neq I) = 4000, 4000, 4001
 4000 REWIND 1
     KPLT≈1
     GO TU 4002
 4001 KPLT=2
 4002 CONTINUE
     RHO=RHO/G
     IF(I-1) 5006,5006,5007
 5006 READ(5,502) L, TAU
     WRITE(2,502) L.TAU
     GO TO 5008
 5007 READ(2,502) L.TAU
 5008 CONTINUE
     IF(IE0) 6000,6000,6001
 6000 READ(4,11111) CE, DTI, THETA, ALFAN, LTAP, XT, ZO, ZC
     GO TU 6002
 6001 READ(4,11111) DE,DTI,THETA,ALFAN,LTAP,XT,ZO,ZC,
    2RONDCN, RUNDCH, RONDGN, RONDGH, EXN, EYN, EXH, EYH, ALPHAN, ALPHAH
 6002 CONTINUE
  *****
С
        READ IN BASIC MOTOR DIMENSIONS
С
  *
С
  4
C
        L IS THE TOTAL LENGTH OF THE GRAIN IN INCHES
  ź
С
        TAU IS THE ESTIMATED AVERAGE WEB THICKNESS OF THE CONTROLLING
  *
С
            GRAIN LENGTH IN INCHES
С
С
  *********************
С
        THE FOLLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL
  #
                                                                *
С
            ANALYSIS PROGRAM
  *
  ***********
С
С
                                                                눞
С
        DE IS THE DIAMETER OF THE NOZZLE EXIT IN INCHES
                                                                *
С
        DTI IS THE INITIAL DIAMETER OF THE NOZZLE THROAT IN INCHES
        THETA IS THE CANT ANGLE OF THE NOZZLE WITH RESPECT TO THE
С
                                                                ź
  *
```

· · ·

С	*		•		MOT	OR	AX	IS	1!	V D	EG	RE	ES															*
C	*		AL	FAN	IS	i Tł	ΗE	ЕX	IT	НА	LF	Α	NG	LE	OF	TI	HE	NC) Z Z	LE	- EN	I D	EGI	RE	ΞS			*
С	*		LT	AP	IS	THE	ΞL	EN(GTI	H 0)F	TH	E I	GR#	IN	Α	T 1	F HE	E N	07.	ZLE	E	ND	H	٩V	I NG		*
С	*				ADD	IT I	I C N	AL	T	APE	R	NO	T	REF	PRE	SE	NTE	EC	ΒY	Z	01	N	IN	СНІ	ΞS			*
С	*		XT	IS	TH	ie (DIF	FEF	RE	VCE	I	N I	WE	81	ΠH	CK!	NE S	SS	AS	SO(CIA	TE	D 1	WI	ГН	LT	AP	*
С	*		Z0	1 S	TH	IE I	INI	TI/	٩L	DI	FF	ER	E N	СE	8E	TWI	EEf	V V	₩E B	T	HIC	ΚN	E S S	SE S	S.	EN -		*
С	*				INC	HES	S D	UE	T) G	RΛ	IN	B	ORE	ΞŤ	٨PI	ER	A 1	r t	HE	HE	AD	Αί	ID.	AI	FT	ENDS	*
С	*				0 F	THE	EC	ON.	TR(DLL	$\mathbf{I}N$	G	GR	AIN	ι L	EN(GTH	1										*
С	*		ZC	I S	TH	IE I	I N I	TI	۹L	DI	FF	ER.	EN	СE	BE	TWI	EE	1.1	ίEΒ	, TI	ніс	KN	E S S	SES	S I	EN -		*
С	*				INC	HES	S D	UE	T) G	RA	IN	E	XTE	RI	OR	T /	\Pf	R	۸T	TH	E	HE	AD	Ai	U	AFT	*
С	*				END) S ()F	THE	Ξ (CON	TR	OL	LI	NG	GR	4 I I	N L	LE1	VGT	H								*
		CO	ITI	NUE																								
С	*		RU	NDC	N A	ND	RC	ND	ЪН	AR	E	CH	ΕI	HAL	F	TH	e r) I F	FE	RE	VCE	I	N	INC	CHE	ES		*
С	*				BET	NEE	ΞN	THE	E 1	MAX	I٢	UM	4	ND	۲N	NT	VUN	. 0	ΔΙΔ	ME	TER	0	F	THE	Ξ (GRA	IN	*
C	*	•			EXT	ERI	EOR	A 1	F 1	ГНЕ	N	UZ.	ZLI	E A	ND	H	EAC) E	END	R	EFE	RE	NC	ΕF	PL/	INE	S	*
С	*				RES	PEC	TI	VEL	L Y																			*
С	*		RO	NDG	N A	ND	RO	ND(GH	ΔR	E	ON	ΕI	HAL	F	THE	εc		FE	RE;	VC E	I	N I	INC	CHE	E S		*
С	*				BET	WEE	ΞN	THE	Ξ Λ	4AX	IM	UM	A	ND	MI	NI	MUN	<u>ر</u> ا	AIC	ME	TER	0	F	THE	Ξ (GRA	IN	*
С	*				INT	EKI	I OR	4	r 1	ГНЕ	N	OZ 3	ZLI	ΕA	ND	H	EAC) (END	R	EFE	RE	NCE	ĒŔ	۲L	NE	S	*
С	*				RES	PEC	TI	νει	Y																			*
С	#		EX	N. E	YN,	EXH	łΑ	ND	E	Y H	AR	E	тн	ΕE	20	EN1	TRI	[0]	TI	ES	IN	1	NCH	HES	5 ()F	тне	*
С	*				CEN	ITER	X O	F 1	141	EG	RA	IN	I	NTE	RI	0R	WI	l Th	I R	ESI	PEC	T	τu	Tł	ŧΕ	GR	AIN	*
С	*				EXT	ER I	I UR	Δ1	r • 1	гне	N	OZ I	7.61	E A	ND	H	ΕΑΓ) 8	END	RI	EFE	RE	NC8	E F	۲,٦٧	NE	S	*
С	*				RES	PEC	TI	VEt	_ Y																			*
С	*		ALI	РΗΔ	N A	ND	AL	PH/	١Н	٩R	Ε	THI	ΕJ	ANG	UL	AR	08	318	ENT.	AT :	L ON	S	IN	DE	E G F	REE	S	*
С	*				ÛF	THE	E 0	VAL	_ []	ΓΥ	0F	TI	ΗE	GR	AI	4 1	E N I	ER	10	R I	A I T	H I	RES	SPE	EC 1	T	C	*
С	*				THE	GH	(AI	N E	EXI	FE R	IG	R ;	A T	TH	E	NOZ	ZL	.E	AN	D H	HΕΛ	D	ENC) F	REF	ER	ENCE	*
С	*				PLA	NES	5 R	E SF	250	TI	VE	LΥ																*
С	* *	***	***	* * *	* * *	* * *	* * *	* * *	***	×	* *	¢ \$	* * *	\$	* *	* * *	¢ * \$	* * *	* * *	‡	***	* *	* * *	* * 4	* * 4	* # #	* * * * *	* *
	502	FOF	RMA	r (3	X,F	10.	2,	5X1	, F 1	10.	3)																	
		IF	IEC))	600	3,6	5C0	3,6	500)4																		
6	003	WR	ITE	(6,	604	0)	L,	TAL	J, (DE,	0T	[,]	тні	έτα	, Α	LF/	AN,	LI	AP	, X I	ſ,Z	0.	ZC					
		GO	TO	60	05																							
6	004	WR]	I TE (6,	604) L	. , T	AU,	DE	∃∎D	ΤI	, T I	HEI	ΓΛ,	AL	FAN	N. L	ŢA	ΥP.	XT,	, Z O	, Z(С.,					
		2R0'	NDC?	¥, R	OND	CH,	RO	NDO	SN 1	RU	ND	GH -	•E>	XN,	EY	¥.	EX⊦	1,5	YH	, A I	.PH	ΑN	, Al	.PF	IAF	ł		
6	005	00	ITI	NUE																								
	604	FOF	RMA	Γ(/	1,2	ОΧ,	• B	ASI	IC.	мО	TO	R I	DI	٩EN	SI	ONS	5',	1,	13	χ,	'L=	•	, F 8	3.2	/	,1	3X,	
		1.14	+U=	۰,	F6.	3,1	, 1	3X 1	, • ť)E=	4	,																
		2198		4,	/,1	3X,	•D	T I =	• • •	10	El	1.4	4,,	/.1	3X	, • 1	гне	ETA	=	• • 1	ιρε	11	. 4,	,/;	13	ίΧ,	ALFA	1√ =
		3 1	198	E 1 1	.4,	1,1	.3X	, "1	. 14	\P=	ŧ	,11	PE	11.	4,	/,1	13×	(, 1	XT	= ' (,1	PE	11.	.4,	1,	13	x, • z o	Ξ
		4.,	LPE I	11.	4.1	,13	sx,	• Z C)=	۰,																•		
		51PE	E11.	4,	1,1	3X,	.∎R	040)C \	1=	۰,	191	E 1	1.4	,/	,13	3X,	. IR	ION	DCH	1=	۰,	1 9 6	11	4	/	,13X,	
					-										-	-	-										PEIL.	
																											PE11.	
		8/,1				•				-	•		-			-						-	-					•
6	040	FOR						-															, F.8	3.2	/	• 1	3X.	
-		1.1			-	-							÷ .	_ `		•••				•	-							
				-		-							4.		3 X.	. • 1	ГНЕ	TΔ	=	• _ 1	PF	11.	. 4 .		13	X.	ALFA	N=
			•				5							•••					-									-

3 *,1PE11.4,/,13X,*LTAP= *,1PE11.4,/,13X,*XT= *,1PE11.4,/,13X,*ZO= 4', LPE11.4, /, 13X, 'ZC= ', 1PE11.4) THETA=THETA/57.29578 ALFAN=ALFAN/57.29578 ALPHAN=ALPHAN/57.29578 ALPHAH=ALPHAH/57.29578 IF(I-1) 5009,5009,5010 5009 READ(5,503) DELTAY, IL, XOUT, DPOUT, ZETAF, TB, HB, PREF, DTREF, PIPK, 2CSTART, PTRAN, CSTARP, GAMP, TMAXQ WRITE(2,503) DELTAY, II, XOUT, DPOUT, ZETAF, TB, HB, PREF, DTREF, PIPK. 2CSTART, PTRAN, CSTARP, GAMP, TMAXQ GO TO 5011 5010 READ(2,503) DELTAY, II, XOUT, DPOUT, ZETAF, TB, HB, PREF, DTREF, PIPK, 2CSTART.PTRAN.CSTARP.GAMP.TMAXQ 5011 CONTINUE READ(4,11111) ERREF, TGR, TIGR С **** READ IN BASIC PERFORMANCE CONSTANTS С * С # С DELTAY IS THE DESIRED BURN INCREMENT DURING TAILOFF IN INCHES # С II IS THE NUMBER OF INTEGRATION STEPS USED IN OVAL # С * XOUT IS THE DISTANCE BURNED IN INCHES AT WHICH THE PROPELLANT С BREAKS UP * С DPOUT IS THE DEPRESSURIZATION RATE IN LB/IN**3 AT WHICH THE * С PROPELLANT IS EXTINGUISHED Ż С ZETAF IS THE THRUST LOSS COEFFICIENT * С TMAXQ IS THE ESTIMATED TIME AT WHICH THE MAXIMUM DYNAMIC * С PRESSURE OCCURS ON THE VEHICLE * TB IS THE ESTIMATED BURN TIME IN SECONDS С * С HB IS THE ESTIMATED BURNOUT ALTITUDE IN FEET * С PREF IS THE REFERENCE NOZZLE STAGNATION PRESSURE * С 圡 DTREF IS THE REFERENCE THROAT DIAMETER С * PIPK IS THE TEMPERATURE SENSITIVITY COEFFICIENT OF PRESSURE С PER DEGREE F AT CONSTANT K * С CSTART IS THE TEMPERATURE SENSITIVITY PER DEGREE F OF CSTAR * * С AT CONSTANT PRESSURE * С CSTARP IS THE PRESSURE SENSITIVITY OF CSTAR \$ * PTRAN IS THE PRESSURE IN PSIA ABOVE WHICH THE BURNING RATE С * * С * EXPONENT CHANGES ╈ С GAMP IS THE PRESSURE SENSITIVITY OF GAM ****** С CONTINUE С ****** THE FOLLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL С С ANALYSIS PROGRAM С С С ± ERREF IS THE REFERENCE THROAT ERUSION RATE IN IN/SEC

```
С
         TGR IS THE BULK TEMPERATURE OF THE GRAIN IN DEGREES F
С
         TIGR IS THE IGNITION DELAY IN SECONDS AT 60 DEGREES F
   ************
С
  503 FORMAT(8X,F10.3,4X,I4,6X,F10.2,7X,F10.2,7X,F10.4,/,4X,F10.1,4X,
     2F10.1,6X,F10.2,7X,F10.3,6X,F10.5,/,8X,F10.7,7X,F10.2,8X,F10.7,
     36X, F10.7, /, 7X, F10.3)
      WRITE(6,606) DELTAY, II, XOUT, DPOUT, ZETAF, TB, HB, ERREF, PREF, DTREF
     2, TGR. PIPK, CSTART, PTRAN, CSTARP, TIGR, GAMP, TMAXQ
  606 FORMAT(//,20X, BASIC PERFORMANCE CONSTANTS //, 13X, DELTAY= ', F5.3,
     1/, 13X, *II = *, 14,
     1/,13X, *XOUT= *,F7.2,/,13X, *DPOUT= *,F9.2,/,13X, *ZETAF= *,F6.4,/,13
     2X, TB= ', F5.1, /, 13X, 'HB= ', F7.0, /, 13X, 'ERREF= '
     3, F8.5, /, 13X, 'PREF= ', F8.2, /, 13X, 'DTREF= ', F7.3, /, 13X, 'TGR= ', F7.3,
     4/,13X, 'PIPK= ',F7.5,/,13X, 'CSTART= ',F10.7,/,13X, 'PTRAN= ',F8.2
     5,/,13X, CSTARP= ',F10.7,/,13X, TIG= ',F7.4,/,13X, GAMP= ',F10.7,
     6/,13X, 'TMAXG= ', F7.3)
      TIG=TIGR*EXP(PIPK*(60.0-TGR))
      T = T I G
      A=A1
      N=N1
      CSTARR=CSTARN*EXP(CSTART*(TGR-60.))
      GAM = GAMN
      Q=A \neq EXP(PIPK \neq (1, -N) \neq (TGR - 60, ))
      KKI=0
      CHIH=1.0
      CHIN=1.0
      CHIN:1=1.0
      CHINAV=1.0
      SEN=0.0
      SENN=0.0
      SEH=0.0
     CHINH=1.0
     NDUM=0
      IPT=0
     MN1=.85
     ME1=7.0
      Z = Z U + Z C
      ZQ = ZO
      S=0.0
     NS = 0.0
     KOUNT=0
     KEWAT=0
     ABMAIN=0.0
      ABT0=0.0
     TW2=0.0
     DTW=0.0
     FW2=0.0
     DFW=0.0
```

```
DELY=DELTAY
    TOP=GAM+1.
    BOT=GAM-1.
    ZAP = TOP/(2.*BOT)
    CAPGAM=SORT(GAM) *(2./TOP) **ZAP
    AE=PI*DE*CE/4.
  1 \text{ IF(XT.LE.0.0) TE=0.0}
    TCALL=(TAU-XT+ABS(Z/2.))/1.05
    IF(IEO.EQ.1.AND.Y.GT.TCALL) CALL OVAL
    IF(XT.LE.0.0) GO TO 40
    TL = (Y - TAU + XT + Z/2) \neq LTAP/XT
    IF(TL.LE.0.0) TL=0.0
    IF(TL.GE.LTAP) TL=LTAP
    TE=LTAP-LTAP*CHINAV
    IF(IEO.EQ.O) TE=TL
 40 IF(T-TIG) 41,41,42
 41 DT=DTI
    CSTAR=CSTARR
    GO TO 43
42 RADER=ERREF*((PONOZ/PREF)**0.8)*((DTREF/DT)**0.2)
    DT=DT+(2.0*RADER*DELTAT)
 43 AT=P1*DT*DT/4.
    CALL AREAS
    IF(Y.LE.0.0) VC=VCI
    IF(ABS(ZW).GT.0.0) GO TO 20
    IF(SUMAB.LE.O.O) GO TO 31
    X=(ABPORT+ABSLOT)/SUMAB
 90 MNUZ=AT*X/APNOZ*(2.*(1.+BOT/2.*MN1*MN1)/TOP)**ZAP
    IF(ABS(MNOZ-MNI).LE.0.002) GO TO 2
    MN1=MNOZ
    GO TO 90
  2 VNOZ=GAM*CSTAR*MNOZ*SQRT(((2./TOP)**(TOP/BOT))/(1.+BOT/2.*MNOZ*MNO
   1Z))
    PRAT = (1 + BOT/2 + MNOZ + MNOZ) + (-GAM/BOT)
    JROCK=AT/APNOZ
832 SUMYA=DELY*(ABP2+ABN2+ABS2)
    IF(Y.EQ.0.0) SUMYA=0.0
    VC=VC+SUMYA
    IF(Y.GT.0.0) GO TO 11
    PONOZ=(Q*RHO*CSTAR*SUMAB/AT)**(1./(1.-N))*(1.+(CAPGAM*JROCK)**2/2.
   1) * * (N/(1.-N))
    PON=PONOZ
    CSTAR=CSTARK*(PONOZ/1000.)**CSTARP
    MDIS=AT*PCNOZ/CSTAR
    P2 = PONOZ
    PONGZ2=PUNGZ
    PNOZ=PRAT*PCNUZ
    P4=2.*MDIS#VNOZ/(APHEAD+APNOZ)+PNOZ
```

ł.

```
IF(GRAIN.EQ.3) P4=MDIS*VNOZ/APNOZ+PNOZ
5 PNOZ=PRAT*PCNOZ
   PHEAD=2.*MDIS*VNOZ/(APHEAD+APNOZ)+PNOZ
   IF(GRAIN.EQ.3) PHEAD=MDIS#VNOZ/APNOZ+PNOZ
   IF (PHEAD.LT.PTRAN) N=N1
   IF (PHEAD.LT.PTRAN) A=AL
   IF (PHEAD.GE.PTRAN) N=N2
   IF (PHEAD.GE.PTRAM) A=A2
   RHEAD=Q*PHEAD**N
   ZIT=MDIS*X/APNOZ
   RN1=RHEAD
   PHEAD2=PHEAD
   IF(PUNDZ.LT.PTRAN)N=N1
   IF(PONDZ.LT.PTRAN)A=A1
   IF (PONDZ.GE.PTRAN) N=N2
   1E(POND7, GE, PTRAM)A=A2
3 RNOZ=RN1+((RN1+Q*PNOZ**N-ALPHA*ZIT**.8/(L**.2*EXP(BETA*RN1*RHO/ZIT
  1)))/(1.+ALPHA#Z1T##.8#BETA#RHD/Z1T/(L##.2#EXP(BETA#RN1#RHD/Z1T)))
   IF(ABSTRNI-RNOZ).LE.0.002) GO TO 4
   RN1=RNOZ
   GO TU 3
4 AVEL=(RHEAD+RNOZ)/2.
   IF(Y.GT.0.0) GG TO 7
  RN2 = RNOZ
   RH2 = RHEAD
   PONJ=PONOZ
   DPCDY=0.0
   AVE2=AVE1
7 RNAVE=(RNOZ+RN2)/2.
   RHAVE=(RHEAD+RH2)/2.
   MGEN=RH0/2.*((RNOZ+RHEAD)*(ABPORT+ABSLOT)+2.*Q*PONOZ**N*ABNOZ)
   DRDY=(AVE1-AVE2)/DELY
   RBAR=(AVE1+4VE2)/2.
   GMAX=1.0002*MDIS
   GMIN=0.9998≠MDIS
   IF(Y.GT.O.C) GO TO 12
   GMAX=1.001*MDIS
   GMIN=0.999*MD1S
   IF(MGEN.GE.GMIN.AND.MGEN.LE.GMAX) GO TO 6
   MDIS=MGEN
   PONOZ=MDIS*CSTAR/AT
   GO TO 5
6 PONJ=PONOZ
17 GAM=GAMN \neq (PONDZ/1000.) \neq \neq GAMP
   TOP=GAM+1.
   BOT=GAM-1.
   ZAP = IOP / (2 \cdot *BOT)
   CAPGAM=SORT(GAM)+(2./TOP)++ZAP
```

```
ME=SQRT(2./BOT*(TOP/2.*(AE*ME1/AT)**(1./ZAP)~1.))
   IF(ABS(ME-ME1).LE.0.002) GO TO 9
   ME1=ME
   GO TO 17
 9 IF(Y.LE.0.0) CALL DUTPUT
   IF(Y.LE.U.0) GO TO 10
   DELTAT=2. *DELY/(RHAVE+RNAVE)
   Z=Z+DELTAT*(RNAVE-RHAVE)
   ZQ=ZQ+DELTAT*(RNAVE-RHAVE)
   T=T+DELTAT
   CALL OUTPUT
10 IF(Y.LE..05*TAU) GO TO 16
   SINK1=VC/(CAPGAM*CSTAR)**2*RBAR*DPCDY/12.
   MASS=.01*MDIS
   ANS4=Y+10.0*DELTAY
   IF(KOUNT.GT.O) GO TO 16
   IF(ABS(SINK1).LE.MASS.AND.ANS4.LE.ANS-XT) GO TO 18
   GO TU 16
18 DELY=10.*DELTAY
   GO TO 55
16 DELY=DELTAY
55 YLED=Y
   Y=Y+DELY
   IF(Y.GE.(TAU-XT-Z/2.).AND.KEWAT.EQ.0) DELY=TAU-XT-Z/2.-YLED
   IF(Y.GE.(TAU-XT-Z/2.).AND.KEWAT.EQ.0) Y=TAU-XT-Z/2.
   IF(Y.GE.(TAU-XT-Z/2.).AND.KEWAT.EQ.D) KEWAT=1
   ANS=TAU-ABS(Z/2)
   IF(Y.GE.ANS.AND.KOUNT.EQ.O) DELY=ANS-YLED
   IF(Y.GE.ANS.AND.KOUNT.EQ.O) Y=ANS
   DELTAT=2. *DELY/(RHAVE+RNAVE)
   SUM2=SUMAB
   RN2=RNOZ
  RH2=RHEAD
   AVE2=AVE1
   GO TO 1
11 CSTAR=CSTARR*(PONOZ/1000.)**CSTARP
   MDIS=AT*PONOZ/CSTAR
   GO TO 5
12 DPCDY=(1./(1.-N))*((PHEAD2+PDNOZ2)/((ABP2+ABN2+ABS2)*2.)*DADY)
   IF(ABS(DPCDY).GE.DPOUT.OK.Y.GE.XOUT) GO TO 25
   SINK1=VC/(CAPGAM*CSTAR)**2*RBAR*DPCDY/12.+(PHEAD2+PONDZ2)/2.*(RNAV
 1E+RHAVE)/2.*(ABP2+ABN2+ABS2)/(12.*(CSTAR*CAPGAM)**2)
   STUFF=MGEN-SINK1
   MDIS=STUFF
   PONDZ=MDIS*CSTAR/AT
   IF(2.*Y+DI+DELDI.GE.DO) PONOZ=PONJ+DPCDY*DELY
   IF(STUFF.GE.GMIN.AND.STUFF.LE.GMAX) GO TO 14
  GO TO 5
```

14 P1 = PONOZPONJ=PONOZ PONOZ2=(P1+P2)/2. P2=P0:N0ZP3=PHEAD PHEAD2=(P3+P4)/2. P4=PHEAD MDIS=AT≠PONUZ/CSTAR IF(KEWAT.EQ.1) GO TO 2221 GO TO 2222 2221 WRITE(6,2223) 237X, ***** INIFIAL FAIL OFF BEGINS *****, /, 37X, KEWAT=KEWAT+1 2222 CONTINUE IF(Y.LT.ANS) GO TO 17 ZW = ZYW = YSUMBA=SUMAB P1 = PONOZRH2=RHEAD RN2=RNUZ RAVE=AVE1 ABMAIN=SUMAB ABT0=0.0 WRITE(6,51) $IF((-1) \neq \neq 1.LT.C)$ TWl=T IF((-1)**I.LT.O) Fril=THRUST IF((-1)##1.GT.0) TW2=T IF((-1) ##I.GT.O) FW2=THRUST IF(TW2.NE.O.) DTW=ABS(TW2-TW1) IF(TW2.NE.O.) CFW=ABS(FW2-FW1) 20 ANS2=TAU+ABS(Zn/2.) KOUNT=KOUNT+1 IF(KOUNT.EC.1) GO TO 17 DELYW=DELTAY DY2=DELYW IF(ZW) 32,32,33 32 IF(Y.LT.ANS2.AND.ABS(ZW).GT.DY2) GO TO 211 SUMAB=ABMAIN GO TO 31 211 SUMDY=SUMDY+DELYW SUMAB=(1.+SUMDY/ZW-DELYW/(2.*ZW))*ABTO-(SUMDY/ZW-DELYW/(2.*ZW))*AB 1MAIN GO TO 31

-61-

33 IF(Y.LT.ANS2.AND.ZW.GT.DY2) GO TO 21 SUMAB=ABTO GO TO 31 21 SUMDY=SUMDY+DELYW SUMAB=(1.-SUMDY/ZW+DELYW/(2.*ZW))*ABMAIN+(SUMDY/ZW-DELYW/(2.*ZW))* 1ABTO 31 IF(SUMAB.LE.O.O) PCNOZ=PONUZ/2. IF(SUMAB.LE.O.O) GO TO 25 CSTAR=CSTARR*(PONOZ/1000.)**CSTARP MDIS=AT*PCNOZ/CSIAR ABAVE=(SUMAB+SUMBA)/2. SUMYA=DELY*ABAVE VC=VC+SUMYA DADY=(SUMAB-SUMBA)/DELY PBAR = (P1 + PONOZ)/2. SUMBA=SUMAB 22 DPCDY=PBAR/(1.-N)*1./ABAVE*DADY IF(PONUZ.LE.5.0) GD TO 25 RNDZ=Q*PGNOZ**N RHEAD=RNOZ RBAR=(RHEAD+RAVE)/2. MGEN=RHO#(RNOZ+RHEAD)/2.#SUMAB GMAX=1.0002*MDIS GMIN=0.9398*MCIS SINK1=VC/(CAPGAM*CSTAR)**2*RBAR*DPCDY/12.+PBAR*ABAVE/112.*(CAPGAM **CSTAR)**2)*RBAR STUFF=MGEN-SINK1 IF(STUFF.GE.GMIN.AND.STUFF.LE.GMAX) GO TO 23 MDIS=STUFF PONOZ=PONJ+DPCDY+DELY [F(PONOZ.LE.O.O) PONOZ=0.0 PBAR = (P1 + PCNOZ)/2. GO TO 22 23 RHAVE=(RH2+RHEAD)/2. RNAVE=(RN2+RNOZ)/2. RH2 = RHEADRN2 = RNUZPHEAD=P0/10Z RAVE=RHEAD P1 = PONOZPONJ=PONOZ MDIS=AT*PONOZ/CSTAR IF(ABS(DPCDY).GE.DPOUT) GO TO 25 IF(Y.GE.XOUT) GO TO 25 GO TU 17 25 SUMAB=0.0 RHEAD=0.0 RNOZ=RHEAD

PHEAD=PONOZ MDIS=AT*PGNOZ/CSTAR WRITE(6,318) 1 •) DELTAT=2.0*DELY/(RHAVE+RNAVE) T=T+DELTAT CALL OUTPUT IF(PONOZ.LE.O.O) GO TO 100 TIME=T DEL TAT=.5 TIM=TIME+5. PHT=PHEAD PONT=PUNOZ SG=0.0 29 T=T+DELTAT CSTAR=CSTARR*(PONDZ/1000.)**CSTARP PHEAD=PHT/EXP(CAPGAM**2*AT*CSTAR/VC*(T-TIME)*12.) PONOZ=PHEAD MDIS=PONOZ*AT/CSTAR Y=Y+.5*RHEAD CALL OUTPUT 28 IF(T.LT.TIM.ANC.PHEAD.GE.5.0) GO TO 29 100 WP1=G*SUMMT $WP2=RHO \neq (VC-VCI) \neq G$ WP = (WP1 + WP2)/2. ISP=ITOT/WP ISPVAC=ITVAC/WP WRITE(6,1022) 1022 FORMAT(//,20X, 'INDIVIDUAL MOTOR DATA') WRITE(6,102) WP1,WP2,WP,PHMAX,IX1,IX 102 FORMAT(13X, "WP1= ", 1PE11.4, /, 13X, "WP2= ", 1PE11.4, /, 13X, "WP= ",0000 11PE11.4,/,13X, PHMAX= ', IPE11.4,/,13X, 'IX1= ', I10,/,13X, 'IX= ', 2110) NDUM=1IF(IPO.NE.O) CALL OUTPUT IF(IPO.EQ.0) GO TO 901 IF((-1)**I.LT.0) GO TO 901 CALL PAIR CALL SIGBAR (AFMAX, SI, S2, SAFMAX, BAFMAX, I, NPAIRS, SG1, SG2) CALL SIGBAR(TFMAX,SA,SB,STFMAX,BTFMAX,I,NPAIRS,SG3,SG4) CALL SIGBAR(AFMAXT, S3, S4, SAFMXT, BAFMXT, I, NPAIRS, SG5, SG6) CALL SIGBAR(TFMAXT,SC,SD,STFMXT,BTFMXT,I,NPAIRS,SG7,SG8) CALL SIGBAR(DFT01,ST,SU,SDFT01,BDFT01,I,NPAIRS,SG19,SG20) CALL SIGBAR(TDFT01, SHA, SIA, STCFT1, BTDFT1, I, NPAIRS, SG9, SG10) CALL SIGBAR(DFT02,SV,SW,SDFT02,BDFT02,I,NPAIRS,SG21,SG22) CALL SIGBAR(TDFT02,SJ,SK,STDFT2,BTDFT2,I,NPAIRS,SG11,SG12)

CALL SIGBAR(DTW, SP, SQ, SDTW, BDTW, I, NPAIRS, SG13, SG14) CALL SIGBAR(FW1, SLA, SMA, SFW1, HFW1, I, NPAIRS, SG15, SG16) CALL SIGBAR(FW2, SN, SO, SFW2, BFW2, I, NPAIRS, SG17, SG18) CALL SIGBAR (DFW, Z1, Z2, SDFW, BDFW, I, NPAIRS, SG37, SG38) CALL SIGBAR(DFMQ, SX, SY, SDFMQ, BDFMQ, I, NPAIRS, SG23, SG24) CALL SIGBAR(FDIFIG, SE, SF, SFDFIG, BFDFIG, I, NPAIRS, SG25, SG26) CALL SIGBAR(TDIFIG, SEA, SAF, STDFIG, BTDFIG, I, NPAIRS, SG27, SG28) CALL SIGBAR(DIT, S5, S6, SDIF, BDIT, I, NPAIRS, SG29, SG30) CALL SIGBAR(ADIT, S7, S8, SADIT, BADIT, I, NPAIRS, SG31, SG32) CALL SIGBAR(DF100K, D1, D2, SF100K, EF100K, I, NPAIRS, SG33, SG34) CALL SIGBAR(T100K,D3,D4,ST100K,BT100K,I,NPA1RS,SG35,SG36) 901 CONTINUE IF(IPO.EU.G) STOP WRITE(6,887) 887 FORMAT(//,20X, STANCARD DEVIATIONS AND MEANS FOR MOTOR PAIR DATA', 2/,14X, 'VAR.', 6X, 'STD. DEV. ',5X, ' MEAN •) WRITE(6,888) SAFMAX,BAFMAX,STFMAX,BTFMAX,SAFMXT,BAFMXT, 2STEMXI,BTEMXI, 2SDFT01,80FT01,STDFT1,BTDFT1,SCFT02,BDFT02,STDFT2,BTDFT2, 2SDTW,BDTW,SFW1,BFW1,SFW2,BFW2,SDFW,BDFW,SDFMQ,BDFMQ, 2SFDFIG.8FDFIG.STDFIG.BTDFIG.SDIT.BDIT.SADIT.BADIT.SF100K.BF100K. 2STIOOK, BTICOK 888 FORMAT(13X, 'AFMAX ', 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, "TFMAX ", 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, "AFMAXT", 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, "TFMAXT", 5X, 1PE11.4, 5X, 1PE11.4,/, 213X, 'DFT01 ', 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, "TDF101", 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, DFT02 , 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, 'TDFT02', 5X, 1PE11.4, 5X, 1PE11.4, /, **',**5X,1PE11.4,5X,1PE11.4,/, 213X, DTW *****,5X,1PE11.4,5X,1PE11.4,/, 213X, FWL 213X, FW2 *,5X,1PE11.4,5X,1PE11.4,/, 213X, DFW ***,**5X,1PE11.4,5X,1PE11.4,/, ',5X,1PE11.4,5X,1PE11.4,/, 213X • DFMQ 213X, *FDIFIG*, 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, TDIFIG, 5X, 1PE11.4, 5X, 1PE11.4,/, ',5X,1PE11.4,5X,1PE11.4,/, 213X, DIT 213X, 'ADIT ',5X,1PE11.4,5X,1PE11.4,/, 213X, DF100K*, 5X, 1PE11.4, 5X, 1PE11.4, /, 213X, T100K ', 5X, 1PE11.4, 5X, 1PE11.4) WRITE(6,889) SG1,SG2,SG5,SG6 889 FORMAT(//,20X, 'ALTERNATE DISPERSION VALUES FOR THRUST IMBALANCE DA 2TA',/.14X,'VAR.',6X,' SIGMA 1 ',5X,' SIGMA 2 ',/. 313X, 'AFMAX ', 5X, 1PE11.4, 5X, 1PE11.4, /, 13X, 'AFMAXT', 5X, 1PE11.4, 45X, 1PE11.4) IF(IOP.NE.O) CALL PLOT(0.0,0.0,999) STOP END

SUBROUTINE AREAS С С SUBROUTINE AREAS CALCULATES BURNING AREAS AND PORT AREAS FOR С ¥ CIRCULAR PERFORATED (C.P.) GRAINS AND STAR GRAINS OR FOR A С COMBINATION OF C.P. AND STAR GRAINS # С ****** INTEGER STAR, GRAIN, ORDER, COP REAL MGEN, MDIS, MNOZ, MN1, JROCK, N, L, ME1, ME, ISP, ITOT, MU, MASS, ISPVAC REAL LGCI, LGNI, NS, NN, NP, LGSI, NT, LTP, LGC, LS, LF REAL M2, MDBAR, ISP2, ITVAC, L1, L2, LFW, LFWSQD COMMON/CONST1/ZW, AE, AT, THETA, ALFAN COMMON/CONST3/S, NS, GRAIN COMMON/CONST4/DELDI,D0,DI,ZC,XT,ZO COMMON/VARIA1/T, UELY, DELTAT, PONOZ, PHEAD, RNOZ, RHEAD, SUMAB, PHMAX COMMON/VARIA2/ABPORT, ABSLOT, ABNOZ, APHEAD, APNOZ, DADY, ABP2, ABN2, ABS2 COMMON/VARIA3/ITUT, ITVAC, JROCK, ISP, ISPVAC, MDIS, MNOZ, SG, SUMMT COMMON/VARIA4/RNT, RHT, SUM2, R1, R2, R3, RHAVE, RNAVE, RBAR, YB, KOUNT COMMON/VARIA5/ABMAIN, ABTO, SUMDY, VCI, VC COMMON/VARIA6/YDI,TE COMMON/VARIA7/Y, THRUST COMMON/OVALA/CHIH, CHIN, SEN, SEH, CHINH, AZ, BZ COMMON/DATA2/IDATA DATA PI/3.14159/ 21111 FORMAT(E16.9) ABPC=0.0ABNC=0.0 ABSC=0.0ABPS=0.0ABNS=0.0 ABSS=0.0DABT=0.0SG=0.0VCIT=0.0 ANUM=PI/4. PID2=P1/2. RNT=RNT+RNOZ*DELTAT RHT=RHT+RHEAD*DELTAT IF(Y.LE.0.0) AGS=0.0 K=0IF(ABS(ZW).GT.0.0) K=1 YB = YIF(K.EQ.1) Y=YB-SUMDY/2. 2 IF(K.EQ.2) Y=YB+ABS(ZW)/2.-SUMDY/2. IF(IDATA-1) 5000,5000,5001 5000 IF(Y.LE.O.O) READ(5,500) INPUT, GRAIN, STAR, NT, ORDER, COP IF(Y.LE.0.0) WRITE(2,500) INPUT, GRAIN, STAR, NT, ORDER, COP **GO TO 5002** 5001 IF(Y.LE.O.O) READ(2,500) INPUT, GRAIN, STAR, NT, ORDER, COP

-65-

5002 CONTINUE С ************************ READ THE TYPE OF INPUT FOR THE PROGRAM AND THE BASIC GRAIN С * CONFIGURATION AND ARRANGEMENT С 血 ± С * VALUES FOR INPUT ARE С * 1 FOR ONLY TABULAR INPUT 2 FOR ONLY EQUATION INPUTS (EQUATIONS ARE BUILT С * С INTO THE SUBROUTINE) * С * 3 FOR A COMBINATION OF 1 AND 2 С * VALUES FOR GRAIN ARE С 盘 1 FOR STRAIGHT C.P. GRAIN 2 FOR STRAIGHT STAR GRAIN С * 3 FOR COMBINATION OF C.P. AND STAR GRAINS С * С * VALUES FOR STAR ARE (WAGON WHEEL IS CONSIDERED A TYPE OF STAR GRAIN IN THIS PROGRAM) С * С O FOR STRAIGHT C.P. GRAIN * С * 1 FOR STANDARD STAR С * 2 FOR TRUNCATED STAR С * **3 FOR WAGON WHEEL** С * VALUES FOR NT ARE O IF THERE ARE NO TERMINATION PORTS С * С * X WHERE X IS THE NUMBER OF TERMINATION PORTS VALUES OF ORDER ESTABLISH HOW A COMBINATION C.P. AND STAR С * ≄ С ź GRAIN IS ARKANGED * 1 IF DESIGN IS STAR AT HEAD END AND C.P. AT NOZZLE С * * 2 IF DESIGN IS C.P. AT HEAD END AND C.P. AT NOZZLE С # * 3 IF DESIGN IS C.P. AT HEAD END AND STAR AT NOZZLE * С * 4 IF DESIGN IS STAR AT HEAD END AND STAR AT NOZZLE С * * ***N()TE*** IF GRAIN=1, VALUE OF URDER MUST BE 2 ±τ С * IF GRAIN=2, VALUE OF ORDER MUST BE 4 С * ***\OTE*** CONTINUE VALUES FOR COP ARE (APPLICABLE TO C.P. GRAINS ONLY) С * O IF BOTH ENDS ARE CONICAL OR FLAT С * I IF HEAD END IS CONICAL OR FLAT AND AFT END IS С * HEMISPHERICAL С * 2 IF BOTH ENDS ARE HEMISPHERICAL С * С 3 IF HEAD END IS HEMISPHERICAL AND AFT END IS * CONICAL OR FLAT С ****** С 500 FORMAT(9X,12,9X,12,8X,12,6X,F4.0,9X,12,7X,12) **IF(Y.LE.O.0)** WRITE(6,607) 607 FORMAT(//,20X,'GRAIN CONFIGURATION') IF(Y.LE.O.O) WRITE(6,600) INPUT, GRAIN, STAR, NT, ORDER, COP 600 FORMAT(13X, 'INPUT= ', I2,/,13X, 'GRAIN= ', I2,/,13X, 'STAR= ', I2,/,13X 1, NT= ', F4.0, /, 13X, 'ORDER= ', I2, /, 13X, 'COP= ', I2, //) IF(INPUT.EQ.2) GO TO 12 IF(Y.LE.0.0) GU TO 6 IF(YT.LE.Y.AND.K.LT.2) GO TO 8

```
9 DENOM=YT-YT2
      SLOPE1=(ABPK-ABPK2)/DENOM
      SLOPE2=(ABSK-ABSK2)/DENOM
      SLOPE3=(ABNK-ABNK2)/DENOM
      SLOPE4=(APHK-APHK2)/DENOM
      SLOPE5=(APNK-APNK2)/DENOM
      B1=ABPK-SLOPE1*YT
      B2=ABSK-SLOPE2*YT
      B3=ABNK-SLOPE3#YT
     B4=APHK-SLOPE4*YT
     B5=APNK-SLOPE5*YT
      ABPT=SLOPE1+Y+81
      ABST=SLOPE2*Y+B2
      ABNT=SLOPE3+Y+B3
      APHT=SLOPE4*Y+84
     APNT=SLOPE5+Y+B5
      IF(INPUT.EQ.3) GO TO 3
     GO TO 52
   6 IF(IDATA-1) 5003,5003,5004
 5003 READ(5,507) YT,ABPK,ABSK,ABNK,APHK,APNK,VCIT
     WRITE(2,507) YT, ABPK, ABSK, ABNK, APHK, APNK, VCIT
     GO TO 5005
 5004 READ(2,507) YT,ABPK,ABSK,ABNK,APHK,APNK,VCIT
 5005 CONTINUE
   С
        READ IN TABULAR VALUES FOR Y=0.0 (NOT REQUIRED IF INPUT=2)
С
С
C
        ABPK IS THE BURNING AREA IN THE PORT IN IN**2
С
        ABSK IS THE BURNING AREA IN THE SLOTS IN 19**2
С
        ABNK IS THE BURNING AREA IN THE NOZZLE END IN IN**2
С
        APHK IS THE PORT AREA AT THE HEAD END IN IN**2
С
        APNK IS THE PORT AREA AT THE NOZZLE END IN IN**2
С
        VCIT IS THE INITIAL VOLUME OF CHAMBER GASES ASSOCIATED WITH
С
            TABULAR INPUT IN IN**3
C
  507 FORMAT(6X, F6.2, 10X, F11.2, 10X, F11.2, 8X, F11.2, /, 22X, F11.2, 9X, F11.2,
       8X,F11.2)
    1
     WRITE(6,610)
 610 FORMAT(13X, TABULAR VALUES FOR YT EQUAL ZERO READ IN')
     WRITE(6,583) ABPK,ABSK,ABNK,APHK,APNK
 583 FORMAT(13X, *ABPK=*, 1PE11.4, 5X, *ABSK=*, 1PE11.4, 5X, *ABNK=*, 1PE11.4,
       5X, 'APHK=', 1PE11.4, 5X, 'APNK=', 1PE11.4)
     WRITE(6,584) VCIT
 584 FORMAT(13X, VCIT=', 1PE11.4,//)
     ABPT=ABPK
     ABST=ABSK
     ABNT=ABNK
     APHT=APHK
```

APNT=APNK YT2=YT IF(INPUT.EQ.3) GO TO 3 VCI=VCIT GO TO 52 8 YT2=YTABPK2=ABPK ABNK2=ABNK ABSK2=ABSK APHK2=APHK APNK2=APNK IF(IDATA-1) 5006,5006,5007 5006 READ(5,505) YT,ABPK,ABSK,ABNK,APHK,APNK WRITE(2,005) YT, ABPK, ABSK, ABNK, APHK, APNK GO TU 5008 5007 READ(2,505) YT,ABPK,ABSK,ABNK,APHK,APNK 5008 CONTINUE ***** С READ IN TABULAR VALUES FOR Y=Y (NOT REQUIRED FOR INPUT=2) * С C ****** 505 FORMAT(6X,F6.2,10X,F11.2,10X,F11.2,8X,F11.2,/,22X,F11.2,9X,F11.2) WRITE(6,611) YT 611 FORMAT(///,13X, TABULAR VALUES FOR YT= ',F7.3.' READ IN!) WRITE(6,583) ABPK, ABSK, ABNK, APHK, APNK GO TO 9 12 ABPT=0.0 ABNT=0.0 ABST=0.03 IF(GRAIN.NE.2) GO TO 4 ABPC=0.0 ABNC=0.0 ABSC=0.0GO TU 7 4 IF(IDATA-1) 5009,5009,5010 5009 IF(Y.LE.0.0) READ(5,501) XTZO,S IF(Y.LE.O.O) WRITE(2,501) XTZO,S GO TO 5011 5010 IF(Y.LE.O.O) READ(2,501) XTZO,S 5011 CONTINUE IF(Y.LE.0.0) READ(4,21111) DO,DI,THETAG,LGCI,LGNI,THETCN,THETCH **** С С * READ IN BASIC GEOMETRY FOR C.P. GRAIN (NOT REQUIRED FOR * STRAIGHT STAR GRAIN) С * С XTZO IS THE DIFFERENCE BETWEEN THE INITIAL INTERNAL GRAIN 本 С DIAMETER AT THE NOZZLE END OF LGCI AND DI IN INCHES С LESS TWICE XT AND LESS ZO * S IS THE NUMBER OF FLAT BURNING SLOT SIDES (NOT INCLUDING С * С * THE NOZZLE END)

```
С
С
     C -
        THE FOLLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL
С
             ANALYSIS PROGRAM
С
   *********
С
С
        DO IS THE AVERAGE OUTSIDE INITIAL GRAIN DIAMETER IN INCHES
C
        DI 15 THE AVERAGE INITIAL INTERNAL GRAIN DIAMETER IN INCHES
С
        THETAG IS THE ANGLE THE NOZZLE END OF THE GRAIN MAKES WITH
С
             THE MOTOR AXIS IN DEGREES
С
        LGCI IS THE INITIAL TOTAL LENGTH OF THE CIRCULAR PERFORATION
С
             IN INCHES
С
        LGNI IS THE INITIAL SLANT LENGTH OF THE BURNING CONICAL
С
             GRAIN AT THE NUZZLE END IN INCHES
С
        THETCN IS THE CONTRACTION ANGLE OF THE BONDED GRAIN IN DEGREES*
С
        THETCH IS THE CONTRACTION ANGLE AT THE HEAD END IN DEGREES.
C
       *************
  ****
  501 FORMAT(6X,F10.3,3X,F10.0)
     IF(Y.LE.0.0) WRITE(6,601) DO,DI,XTZO,S,THETAG,LGCI,LGNI,THETCN,TH
    1ETCH
 601 FORMAT(20X, *C.P. GRAIN GEOMETRY*,/,13X, *DD= *,F7.3,/,13X, *DI= *,F7
    1.3,/,13X, *XTZO= *, F7.3,/,13X, *S= *, F4.0,/,13X, *THETAG= *, F8.5,/,13
    2X, LGCI= ', F7.2, /, 13X, LGNI= ', F6.2, /, 13X, 'THETCN= ', F8.5, /, 13X,
    3 THETCH= ', F8.5,//)
     IF(Y.LE.0.0) TAU=(D0-D1)/2.0
     IF(Y.LE.0.0) DELDI=2.0*XT+20+XT20
     IF(Y.LE.O.O) THETAG=THETAG/57.29578
     IF(Y.LE.0.0) THETCN= THETCN/57.29578
     IF(Y.LE.0.0)THETCH=THETCH/57.29578
     00$00=00*00
     DISQD=DI*DI
     BNUM=ANUM*DOSQD
     TLL=TE
     IF(ORDER.GE.3) TLL=0.0
     YDI=2.*Y+DI
     YDISQD=YDI*YDI
     ABSC=S*ANUM*(DOSQD-YDISQD)
     IF(ABSC.LE.O.O) ABSC=0.0
     IF(YDI.GE.DD)G0 T0 100
     IF(THETAG.GT.0.08727) GO TO 101
     IF(COP.EQ.0) GO TO 700
     IF(COP.EQ.1) GO TO 701
     IF(COP.EQ.2) GO TO 702
     CHCK1 = DOSOD - YDISOD
     IF(CHCK1.LT.0.0) CHCK1=0.0
     LGC=LGCI-(SURT(DOSQD-DISQD)-SORT(CHCK1))/2.-Y*CDTAN(THEICN)
     GO TO 710
 702 CHCKI=DOSQD-YDISQD
```

```
IF(CHCK1.LT.0.0) CHCK1=0.0
      LGC = LGCI - (SQRT(DUSOD - DISOD) - SQRT(CHCK1))
      GO TO 710
  701 CHCK2=DOSQD-(YDI+DELDI) ##2
      IF(CHCK2.LT.0.0) CHCK2=0.0
      LGC = LGCI - (SORT(DOSOD - (DI + DELDI) + *2) - SORT(CHCK2))/2.
     2-Y*COTAN(THETCH)
      GO TU 710
  700 LGC=LGCI-Y*(COTAN(THETCN)+COTAN(THETCH))
  710 ABPC=PI*YDI*(LGC-TLL-S*Y)
      ABNC=0.0
      GO TO 732
  101 CONTINUE
      IF(COP.EQ.0.0R.COP.EQ.1) GO TO 720
      CHCK1=DOSQD-YDISQD
      IF(CHCK1.LT.0.0) CHCK1=0.0
      LGC=LGCI-(SQRT(DUSQD-DISQD)-SQRT(CHCK1))/2.-TLL
     2-(S+TAN(THETAG/2.))*Y
      ABPC=PI*YDI*LGC
      GO TO 730
  720 LGC=LGCI-Y*COTAN(THETCH)-TLL-(S+TAN(THETAG/2.))*Y
      ABPC=PI*YDI*LGC
  730 IF(COP.EQ.1.OR.COP.EQ.2) GO TO 731
      ABNC=PI*(LGNI-Y*COTAN(THETAG+THETCN)-Y*TAN(THETAG/2.))*(DI+
     1 DELDI+Y+LGNI*SIN(THETAG)+Y*SIN(THETCN)/SIN(THETAG+THETCN))
      GO TO 732
  731 IF(Y.LE.0.0) GO TO 7311
      GO TO 7312
 7311 R7=((DI+DELDI)/2.+LGNI*SIN(THETAG))*COS(THETAG)+SIN(THETAG)*
     1 SQRT((D0/2.)**2-((DI+0ELDI)/2.+LGNI*SIN(THETAG))**2)
7312 IF(R7+Y.LT.(D0/2.)*COS(THETAG)) GO TO 11111
      ABNC=PI*(LGNI+(1./SIN(THETAG))*((DD/2.)-LGNI*SIN(THETAG)-(DI
     2-DELDI)/2.)-Y*COTAN(THETAG)-Y*COTAN(THETAG/2.))*((DI-DELDI)/2.
     3+Y+00/2.
      GO TO 22222
11111 RPR=SQRT(((DD/2.)**2)-R7**2)-SQRT(((DD/2.)**2)-(R7+Y)**2)
      ABNC=PI*(LGNI-RPR-Y*TAN(THETAG/2.))*((DI+DELDI)/2.+SQRT((DO/
     1 = 2, )**2-(R7+Y)**2)*SIN(THETAG)+Y+(R7+Y)*COS(THETAG))
22222 CONTINUE
  732 IF(ABPC.LE.0.0) ABPC=0.0
      IF(ABNC.LE.O.O) ABNC=0.0
      GO TO 5
  100 ABNC=0.0
      ABPC=0.0
    5 APHT=ANUM*(DI+2.*RHT)**2
      IF(APHT.GE.BNUM) APHT=BNUM
      IF(K.LT.2) APHT1=APHT
      APNT=ANUM*(DI+DELDI+2.*RNT)**2
```

```
IF(APNT.GE.BNUM) APNT=BNUM
     IFIGRAIN.NE.1) GO TO 7
     ABPS=0.0
     ABSS=0.0
     ABNS=0.0
     GO TO 50
   7 IF(IDATA-1) 5012,5012,5013
 5012 IF(Y.LE.O.O) READ(5,502) NS,NP,NN
     IF(Y.LE.0.0) WRITE(2,502) NS, NP, NN
     GO TO 5014
5013 IF(Y.LE.O.O) READ(2,502) NS, NP, NN
 5014 CONTINUE
     IF(Y.LE.O.O) READ(4,21111) LGSI, RC, FILL
  ****
С
С
        READ IN BASIC GEOMETRY FOR STAR GRAIN
                                         INOT REQUIRED FOR
            STRAIGHT C.P. GRAIN)
С
С
        NS IS THE NUMBER OF FLAT BURNING SLOT SIDES (NOT INCLUDING
С
            THE NOZZLE END)
С
        NP IS THE NUMBER OF STAR POINTS
С
        NN IS THE NUMBER OF STAR NOZZLE END BURNING SURFACES
С
  *****
С
С
        THE FOLLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL
С
            ANALYSIS PROGRAM
  ±
С
  *********
С
С
        LGSI IS THE INITIAL TOTAL LENGTH OF THE STAR SHAPED
  圡
С
            PERFORATED GRAIN IN INCHES
С
        RC IS THE AVERAGE STAR GRAIN OUTSIDE RADIUS IN INCHES
        FILL IS THE FILLET RADIUS IN INCHES
С
C
  *********
 502 FORMAT(4X,F10.0,4X,F10.0,4X,F10.0)
     IF(Y.LE.O.O) WRITE(6,602) NS,LGSI,NP,RC,FILL,NN
 602 FORMAT(20X, 'BASIC STAR GEOMETRY', /, 13X, 'NS= ', F4.0, /, 13X, 'LGSI= ',
    1F7.2,/,1/3X, 'NP= ',F4.0,/,13X, 'RC= ',F7.3,/,13X, 'FILL= ',F7.3,/,13X
    2, NN= , F4.0,//)
     IF(Y.LE.O.O.AND.GRAIN.EQ.2) DD=2.0*RC
     PIDNP=PI/NP
     RCSQD=RC*RC
     FY=FILL+Y
     FYSQD=FY*FY
     IF(STAR.EQ.1) GD TO 20
     IF(STAR.EQ.2) GO TO 201
     IF(Y.GT.0.0) GO TO 179
     READ(4.21111) RIWW,L1.L2.ALPHA1.ALPHA2.HW
        **************
С
С
        READ IN GEOMETRY FOR WAGON WHEEL (NOT REQUIRED FOR STANDARD
C
            OR TRUNCATED STAR GRAINS)
```

C	\$																											*
С	* *	****	* * * *	* * *	* * *	* # 4	* *	* * 4	* * *	* * *	* * *	¢ ¢ :	‡ ‡ ‡	**	* * *	**	**	* * 4	***	* *	* * *	***	* * *	**4	***	* * *	****	\$ *
С	*		THE	F	ា	LC.	WE	NG	V۸	RIA	8L1	ES	AR	(E)	08 1	AI	NE	DF	=RO	M	THE	ΞS	TA1	11	STI	CAL	•	*
С	*				Δ.\	IAL	YS	IS	PR	UGR	٨М																	*
C	* *	* * * *	* * * 4	* # 4	* * *	* * *	**	***	* * *	* * *	***	* * :	÷ * *	***	* * *	# #	**	**4	* * *	* ‡	* * *	***	* * 4	***	***	¢ * ¢	****	* *
C	*																											*
С	*		RIM	W	IS	5 T	ΗĒ	A١	ER.	AGE	R	AD.	IUS	0	ΓT	ΉE	I	NS I	I DE	0	F 1	ГНЕ	PR	OF	PELI	LAN	T	*
С	*				WE	В	IN	IN	IC H	ES																		*
С	*		L1	Ah	D	L2	A	RE	TH	ΕL	EN	GTI	HS	0F	TH	E	TW	0 F	PAR	AL	LEL	. s	IDE	S	OF	TH	E	*
С	+				Th	0	SE	TS	OF	ST	٨R	P	DIN	ITS	IN	I	NC	HES	5									*
	• 🗱		ALP	•н/	11	AN	D	ALF	PHA:	2 A	RE	T	HE	AN	GLE	S	BE	TWE	EEN	T	HE	SL	ANT	r s	SID	ES	OF	*
С	*				TH	IE	ST	AR	PO	IVT	5 (00	RRE	SP	DND	IN	G	TO	L1	A	ND	L2	, R	RES	SPE	CTI	VELY	, *
C	*				AN	iD	TH	E C	EN	TER	L	INI	ES	OF	TH	E	P0	INI	I S	IN	Dł	EGR	EES	5				*
C	\$		HW	-														-	-		-							*
C	* *	***	* * * *	* ** *	* ‡ ‡	* *	* *	* * *	***	\$ * *	**	¢ \$ '	¢ * *	**	* * *	* *	* * :	* * *	***	‡ ‡	* * *	* * *	* * *	***	***	***	****	¢ *
			TE (-							-			•														
		FOR													-	-		-				•		-	-	•		
		1 *			•		-	-		-			-		• • •		-		.PH	۸1	= (+F	7.5	i , /	,13	3X,		
		2 1					-				•		n =	••	F5.	2,	11	}										
			Y.L					-						_		_									•			
			Y.L		-							• 2) D	I = 1	D0-	2.	0*1	TAU	JMM									
			PHA1																						,			
			PHA2				27	57.	29	578																		
		-	2=A		на	2																						
		XL2					~																•	•				
		LFW	-		-			[[[•																			
		LFW							F T I																			
			TFW								/ []	- W .	,															
	170		W=L	. Г° И	173	I V	())			,																		
	119		0.0																									
					ca	n_	1 61	Jer	0-1	eve	00		17	±1.1		EV	•		1									
			HA2					גייכוח	0-1	13	40			- L I			,											
		L2=			IL F	٤																						
	190	YTA	-		ΔN	115	1 01	40.2	12	.)																		
	1,0		ALP							• •																		
			IALP																									
			YTA							ו ר	82																	
			FY.																									
			=NP									-F]		11	SIN	AL	P-1	(*0	:o t	AN	(AL	PH/	42)	+F	Y¥			
		1 (•			
	181	1F(-			UW	W)	GC) T	5 1	84																	
			I=NP									SLF	FW/	FY	})+	(P	I Dh	VP-	TH	ETI	FW)	*LI	FW)					
			TO												-	-												
	184	SGW	I=NP	+F	Y¥	(1	HEI	FFW	+4	R S I	N15	SLF	-w/	FY))-A	RC	os	(EN	IUM))								
		60	то	18	3																							
	182	YPO	=-S	LF	W																							

```
IF(ALPHA2.GE.PID2) GO TO 222
     Q=-FILL+L2*TAN(ALPHA2)-Y/COSALP
     XPI=(-Q*TAN(ALPHA2)-SQRT(-Q*Q+FYSQD/COSALP*COSALP))*COSALP*COSALP
     YPI = XPI = TAN(ALPHA2) + Q
     XPO=(YPO-Q) \neq COTAN(ALPHA2)
     GO TO 223
  222 XPI = Y - L2
     YPI=-SQRT(FYSQD-XPI #XPI)
     XPO = XPI
  223 FYLS=SQRT(SLFW*SLFW+XPI*XPI)
     XPIO2 = (XPI - XPO) \neq (XPI - XPO)
     YPIO2 = (YPI - YPO) \neq (YPI - YPO)
     IF(FY.GT.FYLS) GO TO 186
     IF(Y.GE.TAUWW) GO TO 185
     SGW=NP*(SQRT(XPIO2+YPIO2)+FY*(PID2+THETFW-ARSIN(XPI/FY))+(LFW+FY)*
      (PIDNP-THETEW))
     1
     GO TO 183
  185 SGW=NP*(SQRT(XPIO2+YPIO2)+FY*(PID2-ARSIN(XPI/FY)-ARCOS(ENUM)))
     GO TO 183
  186 IF(Y.GT.TAUWW) GO TO 187
     SGW=NP*(FY*(PIDNP+ARSIN(SLFW/FY))+(PIDNP-THETFW)*LFW)
     GO TO 183
  187 SGW=NP*FY*(THETFW+ARSIN(SLFW/FY)-ARCOS(ENUM))
  183 IF(SGW.LE.0.0) SGW=0.0
     IF(Y.GT.0.0) GO TO 188
     AGS2=.5*(PI*RCSQD-NP*LFW*SLFW*(COS(THETFW)-SIN(THETFW)*COTAN(ALPHA
    1 2)-2.*(L2+FILL*TAN(ALPHA2/2.))/LFW)-(PI-THETFW*NP)*LFWSQD-2.*NP*F
    2 ILL*(L2+SLFW/SINALP+LFW*(PIDNP-THETFW)+(PIDNP+PID2-1./SINALP)*
       FILL/2.))
   · 1
     AGS=AGS+AGS2
  188 CONTINUE
     SG=SG+SGW
     IF(KKK.EQ.1) GO TO 24
     L2=L1
     ALPHA2=ALPHA1
     KKK=1
    . GO TO 190
  201 IF(Y.LE.0.0) READ(4.21111) RP.RIS
  *********
С
C
        READ IN GEOMETRY FOR TRUNCATED STAR
                                          INOT REQUIRED FOR
С
             STANDARD STAR OR WAGON WHEEL)
  血
С
С
  **********
                                                                ***
        THE FULLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL
С
  圡
                                                                  *
С
             ANALYSIS PROGRAM
С
  ***********
С
  $
С
        RP IS THE INITIAL RADIUS OF THE TRUNCATION IN INCHES
```

С RIS IS THE AVERAGE RADIUS OF THE INSIDE OF THE PROPELLANT С WEB IN INCHES * OF THE SLOTS IN INCHES С 盘 С IF(Y.LE.O.O) WRITE(6.603) RP.RIS 603 FORMAT(20X, TRUNCATED STAR GEOMETRY +/+13X, TRP= +F7.3+/+13X+TRIS= 1 •,F7.3,//) IF(Y.LE.O.O) TAUS=RC-RIS IF(Y.LE.O.O.AND.GRAIN.EQ.2) DI=DO-2.0+TAUS THE TAS=PIDNP RPY = RP + YLS=RC-TAUS-FILL-RP RPL=RP+LS THETS1=THETAS-ARSIN(FY/RPY) IF(THETS1.LE.0.0) GO TO 110 IF(Y.LE.TAUS) GD TO 103 THE TAC = ARSIN((RCSQD-RPL*RPL-FYSQD)/(2.*FY*RPL)) IF(THETAC.GE.0.0) GO TO 104 IF(Y.LT.RC-RP) GO TO 105 SG = 0.0GO TO 14 103 SG=2.*NP*(RPY*THETS1+LS-(RPY*COS(THETAS-THETS1)-RP)+PID2*FY) GO TO 14 104 SG=2.* GO TO 14 105 SG=2.*NP*(RPY*THETS1+SQRT(RCSQD-FYSQD)-SQRT(RPY*RPY-FYSQD)) 14 IF(Y.LE.0.0) AGS=PI*(RCSQD-RP*RP)-NP*(PI*FILL*FILL/2.+2.*LS*FILL) GO TO 31 110 THETAF=THETAS THETAP=2.*THETAS TAUWS=TAUS GO TO 111 20 IF(Y.LE.O.O) READ(4,21111) THETAF, THETAP, RIWS С С * READ IN GEOMETRY FOR STANDARD STAR (NOT REQUIRED FOR * С ± TRUNCATED STAR OR WAGON WHEEL) C ***** С THE FULLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL С * ANALYSIS PROGRAM С С 立立 С * С THETAF IS THE ANGLE LOCATION OF THE FILLET CENTER IN DEGREES * * С THETAP IS THE ANGLE OF THE STAR POINT IN DEGREES * **±** RIWS IS THE AVERAGE RADIUS OF THE INSIDE OF THE PROPELLANT С \$ ± С WEB IN INCHES С ******* IF(Y.LE.O.O) WRITE(6,604) THETAF, THETAP, RIWS

```
604 FORMAT(20X, STANDARD STAR GEOMETRY, /, 13X, THETAF= , F7.5, /, 13X, T
   1HETAP= ',F7.5,/,13X, 'RIWS= ',F6.3,//)
    IF(Y.LE.O.O) TAUWS=RC-RIWS
    IF(Y.LE.O.O.AND.GRAIN.EQ.2) DI=DO-2.0*TAUWS
    THETAF=THETAF/57.29578
    THETAP=THETAP/57.29578
    THE TAS=PI/NP
    THETSI=1.00
111 LF=RC-TAUWS-FILL
    CNUM=(Y+FILL)/LF
    DNUM=SIN(THETAF)/SIN(THETAP/2.)
    ENUM=(RCSQD-LF*LF-FYSQD)/(2.*LF*FY)
    FNUM=SIN(THETAF)/COS(THETAP/2.)
    IF(CNUM.LE.FNUM) GO TO 106
    IF(Y.LE.TAUWS)GD TO 107
    SG=2.*NP*FY*(THETAF+ARSIN(SIN(THETAF)/CNUM)-ARCOS(ENUM))
   GO TO 23
106 IF(Y.LE.TAUWS) SG=2.*NP*LF*(DNUM+CNUM*(PID2+THETAS-THETAP/2.
   1-COTAN(THETAP/2.))+THETAS-THETAF)
    IF(Y.LE.TAUWS) GO TO 23
    SG=2.*NP*(FY*ARSIN(ENUM-(THETAS-THETAP/2.))+LF*DNUM-FY*COTAN(THETA
   1P/2.))
   GO TO 23
107 SG=2.*NP*LF*(CNUM*(THETAS+ARSIN(SIN(THETAF)/CNUM))+THETAS-THETAF)
23 IF(THETS1.LE.0.0) GO TO 14
    IF(Y.LE.0.0) AGS=PI*RC*RC-NP*LF*LF*(SIN(THETAF)*(COS(THETAF)-
   ISIN(THETAF)*COTAN(THETAP/2.))+THETAS-THETAF+2.*FILL/LF*(SIN(THETAF
   2)/SIN(THETAP/2.)+THETAS-THETAF+FILL/(2.*LF)*(PID2+THETAS-THE
 · 3TAP/2.-COTAN(THETAP/2.)))
24 CONTINUE
31 IF(SG.LE.0.0) SG=0.0
    IF(K.EQ.O.OR.K.EQ.2) SGN=SG
    IF(K.LE.1) SGH=SG
   IF(Y.LE.0.0) SG2=SG
   IF(K.E0.2) GO TO 37
   RAVEDT=R1+(SG+SG2)/2.*RBAR*DELTAT
  RNDT=R2+(SG+SG2)/2.*RNAVE*DELTAT
   RHDT=R3+(SG+SG2)/2. #RHAVE#DELTAT
   R1=RAVEDT
   R2=RNDT
   R3=RHDT
   SG2 = SG
   GO TO 38
37 IF(KOUNT.NE.1) GO TO 39
   SG3=SG
   R4=R1
   R5=R2
   R6=R3
```

```
39 RAVEDT=R4+(SG+SG3)/2.#RBAR+DELTAT
   RNDT=R5+(SG+SG3)/2.*RNAVE*DELTAT
   RHDT=R6+(SG+SG3)/2.*RHAVE*DELTAT
   R4=RAVEDT
   R5=RNDT
   R6=RHDT
   SG3=SG
 38 ABSS=(AGS-RAVEDT)*NS
   IF(ABSS.LE.O.O.OR.SG.LE.O.O) ABSS=0.0
   ABNS=(AGS-RNDT)*NN
   IF(ABNS.LE.O.O.DR.SG.LE.O.O) ABNS=0.0
   IF(ORDER.LE.2) ABPS=(LGSI-Y*(NS+NN))*SG
   IF(ORDER.LE.2) GO TO 36
   ABPS=(LGSI-TE-Y*(NS+NN))*SG
 36 PIRCRC=PI*RCSQD
   APHS=PIRCRC-AGS+RHDT
   IF(APHS.GE.PIRCRC.OR.SG.LE.O.O) APHS=PIRCRC
   APNS=PIRCRC-AGS+RNDT
   IF(K.LT.2) APHS1=APHS
   IF(APNS.GE.PIRCRC) APNS=PIRCRC
 50 IF(NT.EQ.0.0) GO TO 371
   IF(Y.LE.O.O) READ(4,21111) LTP, DTP, THETTP, TAUEFF
 ******
      READ IN GEOMETRY ASSOCIATED WITH TERMINATION PORTS
 圡
                                                     (NOT
          REQUIRED IF NT=0)
 *
 $
 **************
 *
      THE FOLLOWING VARIABLES ARE OBTAINED FROM THE STATISTICAL
           ANALYSIS PROGRAM
 *
 ****************
 *
      LTP IS THE INITIAL LENGTH OF THE TERMINATION PASSAGES
 ±
           IN INCHES
      DTP IS THE INITIAL DIAMETER OF THE TERMINATION PASSAGE
 *
           IN INCHES
 血
      THETTP IS THE ACUTE ANGLE BETWEEN THE AXIS OF THE PASSAGE
           AND THE MOTOR AXIS IN DEGREES
      TAUEFF IS THE ESTIMATED EFFECTIVE WEB THICKNESS AT THE
           TERMINATION PORT IN INCHES
 ****
                                ********
   IF(Y.LE.O.O) WRITE(6,606) LTP,DTP,THETTP,TAUEFF
606 FORMAT(20X, TERMINATION PORT GEOMETRY, /, 13X, 'LTP= ', F6.2, /, 13X, 'D
   1TP= ',F5.2,/,13X,'THETTP= ',F7.5,/,13X,'TAUEFF= ',F6.3,//)
   THE TTP=THE TTP/57.29578
   DABT=NT*3.14159*((DTP+2.*Y)*(LTP-Y/SIN(THETTP))~(DTP+2.*Y)**2/4.+
  1(Y+DTP/2.)*(DTP/2.)*(1.-1./SIN(THETTP)))
   IF(Y.GE.TAUEFF) DABT=0.0
371 IF(Y.GT.0.0) GO TO 52
```

С

С

C٠

С

С С

С

С

С

С

С

С

С

С

C

C

С

C

```
IF(NT.NE.0.0) GO TO 45
      LTP=0.0
      DTP=0.0
   45 IF(GRAIN.NE.2) GD TO 49
      LGC1=0.0
      LGNI=0.0
      DISQD=0.0
      DOSOD=4. #RCSOD
   49 IF(GRAIN-EQ.1) LGSI=0.0
      VCI=1.1*(ANUM*DISQD*(LGCI+LGNI)+(ANUM*DOSQD-AGS)*LGSI+NT*LTP*ANUM*
     1
        DTP*DTP)+VCIT
   52 BBP=0.0
      BBS=0.0
      BBN=0.0
      IF(K.NE.0) GO TO 521
      IF(KKL.EQ.O.AND.KKM.EQ.O) GO TO 521
      IF(KKL.EQ.O) ABPC=ABPC*(BZ+AZ*CHIN)
      IF(KKM.EQ.O) ABPC=ABPC*(AZ*CHIH+BZ)
      IF(KKL.EQ.O.AND.GRAIN.EQ.2) ABPS=ABPS*(BZ+AZ*CHIN)
      IF(KKM.FQ.O.AND.GRAIN.EQ.2) ABPS=ABPS*(AZ*CHIH+BZ)
  521 ABPORT=ABPT+ABPC+ABPS+DABT+BBP
      ABSLOT=ABST+ABSC+ABSS+BBS
      ABNOZ=ABNT+ABNC+ABNS+BBN
      IF(K.GE.2) GO TO 55555
      SUMAB=ABPORT+ABSLOT+ABNOZ
55555 CONTINUE
      IF(K.EQ.0) GO TO 99
      IF(ZW) 322.323.323
  322 IF(K.EQ.1) ABPORT=ABPORT*CHIN
      IF(K.EQ.2.AND.GRAIN.NE.2) ABPORT=ABPORT+SEH#LGC
      IF(K.EQ.2.AND.GRAIN.EQ.2) ABPORT=ABPORT+SEH*(LGSI-Y*(NS+NN))
      GO TO 33333
  323 IF(K.EQ.1) ABPORT=ABPORT+CHIH
      IF(K.EQ.2.AND.GRAIN.NE.2) ABPORT=ABPORT+SEN#LGC
      IF(K.EQ.2.AND.GRAIN.EQ.2) ABPORT=ABPORT+SEN*(LGSI-Y*(NS+NN))
33333 IF(K.EQ.1) ABMAIN=ABPORT+ABSLOT+ABNOZ
      K = K + 1
      IF(K.GT.2) GD TD 69
      GO TU 2
   69 ABTO=ABPORT+ABSLOT+ABNOZ
   99 CONTINUE
      IF(Y.GT.0.0) GO TO 70
      ABP1=ABPORT
      ABN1 = ABNDZ
      ABS1=ABSLOT
   70 ABP2=(ABP1+ABPURT)/2.
      ABN2 = (ABN1 + ABNOZ)/2.
      ABS2=(ABS1+ABSLUT)/2.
```

• ;;

IF(INPUT.EQ.1) GO TO 76 GO TU (71,72,73,74), ORDER 71 APHEAD=APHS1 APNOZ=APNT SG=SGH GO TO 75 72 APHEAD=APHT1 APNOZ=APNT SG = 0.0IF(GRAIN.EQ.3) SG=(SGH+SGN)/2. GO TO 75 73 APHEAD=APHT1 APNOZ=APNS SG = SGNGO TO 75 74 APHEAD=APHS1 APNOZ=APNS SG = SGNGO TO 75 76 APHEAD=APHT APNOZ=APNT 75 Y=YB DIFF=SUMAB-SUM2 DADY=DIFF/DELY ABP1=ABPORT ABN1=ABNOZ ABS1=ABSLOT IF(ZW.GE.0.0) GO TO 77 ABM1=ABMAIN ABMAIN=ABTO ABTO=ABML 77 RETURN END

```
SUBROUTINE OUTPUT
     С
С
         SUBROUTINE OUTPUT CALCULATES BASIC PERFORMANCE PARAMETERS
С
        AND PRINTS THEM OUT
C
         (WEIGHT CALCULATIONS ARE PERFORMED IN THE MAIN PROGRAM)
С
         T IS THE TIME IN SECS
С
         Y IS THE DISTANCE BURNED IN INCHES
С
         SUMAB IS THE TOTAL BURNING AREA OF PROPELLANT IN IN**2
С
              (IF ANY)
C
        F IS THE THRUST IN LBS
C.
          REAL MDIS, ME, ITOT, M2, MDBAR, ITPLOT, ITPLT1, IDIFF, IADIFF
     COMMON/CONSTL/ZW, AE, AT, THETA, ALFAN
     COMMON/CONST2/CAPGAM.ME.BOT.ZETAF.TB.HB.GAM
     COMMON/CONST5/KPLT
     COMMON/VARIA1/T, DELY, DELTAT, PONOZ, PHEAD, RNOZ, RHEAD, SUMAB, PHMAX
     COMMON/VARIA3/ITOT, ITVAC, JROCK, ISP, ISPVAC, MDIS, MNOZ, SG, SUMMT
     COMMON/VARIA5/ABMAIN,ABTO,SUMDY,VCI,VC
     COMMON/VARIA7/Y,F
     COMMON/PAIR1/TW1,TW2,DTW,FW1,FW2,DFW1,DFW2,DFW,TMAXQ,DFMQ,
     2FDIFF, TDIFF, NX
     COMMON/PLOTT/IPO,NDUM,NP,IOP
     COMMON/PLOT2/NUMPLT
     COMMON/OUT1/FDIFIG, TDIFIG, DIT, ADIT
     COMMON/OUT2/DF100K, T100K
     COMMON/DATA2/ICOUNT
     DIMENSION TOFPLT(400), TOTPLT(400), TOFPL1(400), TOTPL1(400)
     DIMENSION FPLOT(400), FPLOT1(400), ITPLOT(400), ITPLT1(400),
    2TPLOT(400) \cdot IPLOT(400)
     DIMENSION FDIFF(400), IDIFF(400), TDIFF(400), IADIFF(400)
     DIMENSION NUMPLT(5)
     DATA G/32.1725/
     IF(Y.LE.0.0) NTO=0
     IF(NDUM.EQ.1) GO TO 2
     NP = NP + 1
     YSFT=0.0
     YB = Y
     IF(Y.LE.0.0) M2=MDIS
     MDBAR=(M2+MDIS)/2.
     SUMMT=SUMMT+MDBAR*DELTAT
     PRES=(1.+BOT/2.*ME*ME)**(-GAM/BOT)
     ALT=HB*(T/TB)**(7./3.)
     PATM=14.696/EXP(0.43103E-04*ALT)
     IF(MDIS.LE.O.O.OR.PONOZ.LE.O.O) GO TO 45
     CF=CAPGAM+SQRT(2.+GAM/BUT+(1.-PRES++(BOT/GAM)))+AE/AT+(PRES-PATM/P
    10N021
     F=ZETAF*COS(THETA)*PONOZ*AT*((1.+COS(ALFAN))/2.*CF+(1.-COS(ALFAN))
     1/2.*AE/AT*(PRES-PATM/PONUZ))
```

```
IF(F.LE.0.0) F=0.0
     IF(Y_{\bullet}LE_{\bullet}O_{\bullet}O) F_{2}=F
     FBAR=(F+F2)/2.
     ITOT=ITOT+FBAR*DELTAT
     M2 = MDIS
     F2=F
     IF(PHEAD.GT.PHMAX) PHMAX=PHEAD
     GO TO 47
  45 F=0.0
  47 WRITE(6,1) T, YB, PONOZ, PHEAD, SUMAB, F, ITOT
   1 FORMAT(//,13X, 'TIME= ',F7.3,12X, 'Y= ',F6.3,/,13X,
    2"PONOZ= ",1PE11.4," PHEAD= ",1PE11.4," SUMAB= ",1PE11.4,
        F= ',1PE11.4,' ITOT= ',1PE11.4)
    31
     IF(IPO.EQ.O) RETURN
     TPLOT(NP)=T
     FPLOT(NP) = F
     ITPLOT(NP)=ITOT
     IF(TPLOT(NP).LT.100.) GO TO 50
     NTO=NTO+1
     TOTPLT(NTO) = T
     TOFPLT(NTO)=F
  50 RETURN
   2 NP=NP+2
     NTO=NTO+2
     10P=1
     IF(KPLT-1) 4000,4000,4001
4000 NP2=NP-2
     NTO2 = NTO - 2
     WRITE(1,4002) NP2
4002 FORMAT(14)
     WRITE(1,4003) (FPLUT(I), ITPLUT(I), TPLUT(I), I=1, NP2)
4003 FORMAT(E12.5)
     WRITE(1,4002) NT02
     wRITE(1,4003) (TOFPLT(1),TOTPLT(1),I=1,NTO2)
     GO TO 1004
4001 REWIND L
     IF(IPO.NE.3) WRITE(6,9998)
9998 FORMAT(//,20X, 'TABULATED IMBALANCE DATA',/,
                      ', LOX, ' FDIFF ', LOX, ' IDIFF
    213X,
              TIME
  210X.
              IADIFF
                      • }
     READ(1,4002) NP21
     READ(1,4003) (FPLOT1(I), ITPLT1(I), TPLOT1(I), I=1, NP21)
     READ(1,4002) NTO1
     READ(1,4003) (TOFPL1(I),TOTPL1(I),I=1,NT01)
     NP1 = NP21 + 2
  IF(IPO.E0.2) GO TO 8888
  ► IF(ICOUNT.EQ.2) YSFT=1.5
```

[▶] IF(NUMPLT(1).NE.0) GO TO 7001

```
CALL PLOTIT(FPLOT1, TPLOT1, NP1, FPLOT, TPLOT, NP, "THRUST (LBS)", 12.
      2'TIME {SECS}',-11,0.0,400000.0,0.0,10.0,9.0,YSFT}
►7001 XSFT=18.0
       IF(NUMPLT(1).NE.O) XSFT=9.0
       NT1 = NT01 + 2
       IF(NUMPLT(2).NE.0) GD TD 7002
       IF(NUMPLT(1).EQ.0) YSFT=0.0
       CALL PLOFIT(TOFPL1,TOTPL1,HT1,TOFPLT,TOTPLT,NTO, 'THRUST (LBS)',12,
      2'TIME (SECS)',-11,0.0,400000.0,100.0,2.0,XSFT,YSFT)
►7002 XSFT=18.0
       IF(NUMPLT(1).NE.O.AND.NUMPLT(2).NE.O) XSFT=9.0
► 8888 CONTINUE
       IF(NP1-NP) 2000,2000,2001
  2000 NX = NP - 2
       NY=NP1-2
       CALL INTERP(TPLOT, FPLOT, NX, TPLOT1, FPLOT1, NY, FDIFF, 0)
       CALL INTERP(TPLOT, ITPLOT, NX, TPLOT1, ITPLT1, NY, IDIFF, 1)
       TDIFIG=TPLOT(1)
       FDIFIG=ABS(FDIFF(1))
       DO 3000 J=2.NX
       IF(TPLUT(J).GT..02*TB) GO TU 3001
       IF(ABS(FDIFF(J)).LT.ABS(FDIFF(J-1))) GO TO 3000
       FDIFIG=ABS(FDIFF(J))
       TDIFIG=TPLOT(J)
  3000 CONTINUE
  3001 CONTINUE
       DO 2004 I=1.NX
 2004 \text{ TDIFF(I)} = \text{TPLOT(I)}
       DUM1 = 0.0
       IADIFF(1) = ABS(FDIFF(1)/2) * TPLOT(1)
       DO 2003 I=2.NX
       FBARI=(FDIFF(I)+FDIFF(I-1))/2.
       DUM1 = ABS(FBARI) * (TPLOT(I) - TPLOT(I-1))
 2003 IADIFF(I)=IADIFF(I-1)+DUM1
       IF(IPO.NE.3) WRITE(6,9999) (TPLOT(I),FDIFF(I),IDIFF(I),IADIFF(I),
      21=1.NX
 9999 FORMAT(13X,1PE11.4,10X,1PE11.4,10X,1PE11.4,10X,1PE11.4)
       TI = AMIN1(TW1, TW2)
       CALL INTRP1(IDIFF, TPLOT, NX, TI, DIT1, 0)
       DIT=IDIFF(NX)-DIT1
       CALL INTRP1(IADIFF, TPLOT, NX, TI, ADIT1, 0)
       ADIT=IADIFF(NX)-ADIT1
       CALL INTRPI(FDIFF, TPLOT, NX, TMAXQ, DFMQ, 0)
       CALL INTRP1(FDIFF, TPLOT, NX, TW1, DFW1, 0)
       CALL INTRP1(FDIFF, TPLOT, NX, TW2, DFW2, 0)
       CALL INTRPI(TPLOT, FPLOT, NX, 100000., T100K2, 1)
       CALL INTRPL(TPLOT1, FPLOT1, NY, 100000., T100K1, 1)
       T100K = AMAX1(T100K1, T100K2)
```

```
CALL INTRP1(FDIFF, TPLOT, NX, T100K, DF100K, 0)
       IF(IPO.EQ.2) GO TO 8887
       CALL SCALE(IADIFF,8.0,NX.1)
       YSCAL1 = -ABS(8.0 \neq IADIFF(NX+2))
       YSCAL2=ABS(2.0*IADIFF(NX+2))
       NX = NX + 2
       IF(NUMPLT(3).NE.0) GO TO 7003
       IF(NUMPLT(1).EQ.O.OR.NUMPLT(2).EQ.O) YSFT=0.0
       CALL PLOTI(TPLOT, FDIFF, NX, 'THRUST IMBALANCE (LBS)', 22,
      2'TIME (SECS)',-11,-400000.,100000.,0.0,26.0,4.0,XSFT,YSFT)
►7003 XSFT=9.0
       IF(NUMPLT(3).NE.O) XSFT=18.0
►
       IF(NUMPLT(4).NE.0) GU TO 7004
       IF(NUMPLT(1).EQ.O.OR.NUMPLT(2).EQ.O.OR.NUMPLT(3).EQ.O) YSFT=0.0
       CALL PLOTI(TPLOT, IDIFF, NX, 'IMPULSE IMBALANCE (LB-SECS)', 27,
2'TIME (SECS)',-11, YSCAL1, YSCAL2, 0.0, 26.0, 4.0, XSFT, YSFT)
►7004 XSFT=9.0
       IF(NUMPLT(3).NE.O.AND.NUMPLT(4).NE.O) XSFT=18.0
       IF(NUMPLT(5).NE.0) GD TO 7005
       IF(NUMPLT(1).EQ.O.OR.NUMPLT(2).EQ.O.OR.NUMPLT(3).EQ.O.OR.NUMPLT(4)
      2.E0.0) YSFT=0.0
       CALL PLOTI(TPLOT, IADIFF, NX, 'ABS. IMPULSE IMBALANCE (LB-SECS)', 32,
      2'TIME (SECS)',-11, IADIFF(NX-1), IADIFF(NX), 0.0, 26.0, 0.0, XSFT, YSFT)
► 7005 CONTINUE
       NX = NX - 2
► 8887 CONTINUE
       GO TO 1004
 2001 NX=NP1-2
       NY=NP-2
       CALL INTERP(TPLOT1.FPLOT1.NX.TPLOT.FPLOT.NY.FDIFF.0)
       CALL INTERP(TPLOT1, ITPLT1, NX, TPLOT, ITPLOT, NY, IDIFF, 1)
       TDIFIG=TPLOT1(1)
       FDIFIG=ABS(FD1FF(1))
       DO 3002 J=2,NX
       IF(TPLUT(J).GT..02*TB) GO TO 3003
       IF(ABS(FDIFF(J)).LT.ABS(FDIFF(J-1))) GO TO 3002
       FDIFIG=ABS(FDIFF(J))
       FDIFIG=FDIFF(J)
       TDIFIG=TPLOF1(J)
 3002 CONTINUE
 3003 CONTINUE
       DO 2005 I=1,NX
 2005 TD[FF(I)=TPLOTI(I)
       DUM1 = 0.0
       IADIFF(1)=ABS(FDIFF(1)/2.)*TPLOT1(1)
       DO 2002 I=2,NX
       FBARI = (FDIFF(I) + FDIFF(I-1))/2.
       DUM1=ABS(FBARI)*(TPLOTI(I)-TPLOTI(I-1))
```

```
2002 IADIFF(I)=IADIFF(I-1)+DUMI
```

```
IF(IPO.NE.3) WRITE(6,9999) (TPLOTL(I),FDIFF(I),IDIFF(I),IADIFF(I),
      21=1,NX)
       TI = AMINI(TW1, TW2)
       CALL INTRPICIDIFF, TPLOT1, NX, TI, DIT1, 0)
       DIT=IDIFF(NX)-DIT1
       CALL INTRPICIADIFF, TPLOTI, NX, TI, ADITI, 0)
       ADIT=IADIFF(NX)-ADITI
       CALL INTRP1(FDIFF, TPLDT1, NX, TMAXQ, DFMQ, 0)
       CALL INTRP1(FDIFF, TPLOT1, NX, TW1, DFW1, 0)
       CALL INTRPI(FDIFF, TPLOTI, NX, TW2, DFW2, 0)
       CALL INTRPL(TPLOT, FPLOT, NX, 100000, T100K2, 1)
       CALL INTRPLITPLOT1, FPLOT1, NY, 100000, T100K1, 1)
       T100K=AMAX1(T100K1,T100K2)
       CALL INTRP1(FDIFF, TPLOT1, NX, T100K, DF100K, 0)
       IF(IPO.EQ.2) GU TO 1004
       CALL SCALE(IADIFF,8.0,NX.1)
       YSCAL1 = -ABS(8.0 \times IAD[FF(NX+2))
       YSCAL2=ABS(2.0*IADIFF(NX+2))
       NX = NX + 2
       IF(NUMPLT(3).NE.0) GO TO 7006
       IF(NUMPLT(1).EQ.O.OR.NUMPLT(2).EQ.O) YSFT=0.0
       CALL PLOTI(TPLOTI, FDIFF, NX, "THRUST IMBALANCE (LBS)", 22,
      2'TIME (SECS)',-11,-400000.,100000.,0.0,26.0,4.0,XSFT,YSFT)
►7006 XSFT=9.0
       IF(NUMPLT(3).NE.O) XSFT=18.0
-
       IF(NUMPLT(4).NE.0) GD TO 7007
     IF(NUMPLT(1).EQ.0.0R.NUMPLT(2).EQ.0.0R.NUMPLT(3).EQ.0) YSFT=0.0
       CALL PLOT1(TPLOT1, IDIFF, NX, 'IMPULSE IMBALANCE (LR-SECS)', 27,
     2'TIME (SECS)',-11,YSCAL1,YSCAL2,0.0,26.0,4.0,XSFT,YSFT)
►7007 XSFT=9.0
       IF(NUMPLT(3).NE.O.AND.NUMPLT(4).NE.O) XSFT=18.0
      IF(NUMPLT(5).NE.0) GO TO 7008
       IF(NUMPLT(1).EQ.O.OR.NUMPLT(2).EQ.O.OR.NUMPLT(3).EQ.O.OR.NUMPLT(4)
      2.EQ.0) YSFT=0.0
      CALL PLOTI(TPLOTI, IADIFF, NX, 'ABS. IMPULSE IMBALANCE (LB-SECS)', 32,
      2"TIME (SECS)",-11,IADIFF(NX-1),IADIFF(NX),0.0,26.0,0.0,XSFT,YSFT)
►7008 CONTINUE
       NX = NX - 2
 1004 CONTINUE
       RETURN
```

```
END
```

```
SUBROUTINE PLOTIT(YI,XI,NP1,Y2,X2,NP2,YHDR,NY,XHDR,NX,SY1,SY2,
► 2SX1, SX2, XSFT, YSFT)
   DIMENSIOU XHDR(8),YHDR(8),X1(NP1),Y1(NP1),X2(NP2),Y2(NP2)
-
   N1 = NP1 - 2
  NS1 = NP1 - 1
-
  N2 = NP2 - 2
   NS2=NP2-1
  X1(NS1)=SX1
X1(NP1)=SX2
>
\blacktriangleright X2(NS2)=SX1
\blacktriangleright X2(NP2)=SX2
\blacktriangleright Y1(NSI)=SY1
► Y1(NP1)=SY2
▶ Y2(NS2)=SY1
\blacktriangleright Y2(NP2)=SY2
► CALL PLOT(XSFT, YSFT, -3)
► CALL AXIS(0.0,0.0,YHDR,NY,8.0,90.0,SY1,SY2)
► CALL AXIS(0.0,0.0,XHDR,NX,14.0,0.0,SX1,SX2)
► CALL LINE(X1, Y1, N1, 1, 0, 1)
► CALL LINE(X2,Y2,N2,1,0,2)
   NPLOT=NPLOT+1
► RETURN
```

```
END
```

```
SUBROUTINE OVAL
  REAL MI.NI
  COMMON/CONST4/DELDI, DO, DI, ZC, XT, ZO
  COMMON/VARIA7/Y
  COMMON/OVALM/Z.ZQ
  COMMON/OVALM2/KKI,II
  COMMON/OVALA/CHIH, CHIN, SEN, SEH, CHINH, AZ, BZ
  COMMON/OVALB/CHINN, CHINAV, SENN
  COMMON/OVALC/RONDCN, KONDCH, RONDGN, RONDGH, EXN, EYN, EXH, EYH,
 ZALPHAN, ALPHAH
  DATA P1/3.14159/
  KKI=KKI+1
  IF(KKI.GT.1) GO TO 8
  AGN=(RUNDGN+SQRT(RONDGN**2+DI**2))/2.
  BGN=AGN-RONDGN
  AGH=(RUNDGH+SORT(RONDGH**2+DI**2))/2.
  BGH=AGH-RONDGH
  DTH=2•≠PI/II
  KKM=0
  KKL=0
  KKJ=0
  KKXT=0
  KKP = 0
  AX=0.
  AZ=0.
  BZ=0.
  ACN=(RONDCN+(RONDCN**2+(DD-ZC)**2)**.5)/2.
  BCN=ACN-RONDCN
  ACH=(RONDCH+(RONDCH**2+(D0+ZC)**2)**.5)/2.
  BCH=ACH-RONDCH
  A1N=(COS(ALPHAN))**2+(ACN/BCN)**2*(SIN(ALPHAN))**2
  A1H=(COS(ALPHAH))**2+(ACH/BCH)**2*(SIN(ALPHAH))**2
  B1N=((ACN/BCN) * * 2 - 1 \cdot) * SIN(2 \cdot * ALPHAN)
  B1H=((ACH/BCH) * * 2 - 1.) * SIN(2. * ALPHAH)
  C1N=2.*(EXN*COS(ALPHAN)-(ACN/BC4)**2*EYN*SIN(ALPHAN))
  C1H=2.*(EXH*COS(ALPHAH)-(ACH/BCH)**2*EYH*SIN(ALPHAH))
  D1N=2.*((ACN/BCN)**2*EYN*COS(ALPHAN)-EXN*SIN(ALPHAN))
  D1H=2.*((ACH/BCH)**2*EYH*COS(ALPHAH)-EXH*S[N(ALPHAH))
  EIN=(SIN(ALPHAM))**2+(ACN/BCN)**2*(COS(ALPHAN))**2
  E1H=(SIN(ALPHAH))**2+(ACH/BCH)**2*(COS(ALPHAH))**2
  F1N=ACN**2-EXN**2-((ACN/BCN)*EYN)**2
  F1H=ACH**2-EXH**2-((ACH/BCH)*EYH)**2
  SENNO=PI \neq (DO-ZC)
  SENO=SENNO
  SEHO=PI*(DO+ZC)
8 KK=0
  Y()=Y
3 IF(KK.EQ.1) Y=Y0+ZQ/2.
```

-85-

```
IF(KK.EQ.1) GD TO 5
 2 IF(KK \cdot EQ \cdot 2) Y = YO - ZQ/2.
   IF(KK.EQ.2) GO TO 6
   IF(KK.EQ.O.AND.XT.GT.O.) Y=YO+XT+ZQ/2.
   IF(KK.EQ.O.AND.XT.GT.O.) GO TO 7
   KK = 1
   GO TO 3
 5 THETA=0.0
   SUMD=0.
   DO 12 I=1, II
   THETA=THETA+DTH
   M1=A1N*(COS(THETA))**2+B1N*SIN(THETA)*COS(THETA)+
  2E1N#(SIN(THETA))##2
   N1=C1N*COS(THETA)+D1N*SIN(THETA)
   RC = (-N1 + SQRT(N1 + 2 + 4 + M1 + F1N))/(2 + M1)
   IF(RC.LT.0.) RC=(-N1-SQRT(N1**2+4.*M1*F1N))/(2.*M1)
   RG=SQRT(1./((COS(THETA)/(AGN+Y))**2+(SIN(THETA)/(BGN+Y))**2))
   IF(RG.GE.RC) KKM=1
   IF(RG.GE.RC) RG=0.
   SUMD=SUM0+RG*DTH
12 CONTINUE
   IF(KKM.E0.1) SEN=SUMD
   IF(SUMD.LE.O.) SEN=0.
   IF(KKM.EQ.0) GO TO 9
   CHIN=SEN/SENO
   CHINAV=(1.+CHINN)/2.
   IF(XT_LE_0_0) CHINAV=1.0
   IF(KKJ.EQ.1) CHINAV=(1.-AX)*CHIN+AX*CHINN
   CHINH=(1.+CHIN)/2.
 9 KK=2
   IF(Z.GE.0.0.AND.KKM.EQ.0) GD TD 62
   GO TO 2
 6 THE TA=0.0
   SUM0=0.0
   DO 13 1=1, II
   THETA=THETA+DTH
   M1=A1H*(COS(THETA))**2+B1H*SIN(THETA)*COS(THETA)+
  2E1H*(SIN(THETA))**2
   N1=C1H*CUS(THETA)+D1H*SIN(THETA)
   RC = (-N1 + SQRT(N1 + 2 + 4 + M1 + F1H))/(2 + M1)
   IF(RC.LT.0.) RC=(-N1-SQRT(N1**2+4.*M1*F1H))/(2.*M1)
   RG=SQRT(1./((COS(THETA)/(AGH+Y))*#2+(SIN(THETA)/(BGH+Y))##2))
   IF(RG.GE.RC) KKL=1
   IF(RG.GE.RC) RG=0.
   SUMO=SUM0+RG*DTH
13 CONTINUE
   IF(KKL.EQ.1) SEH=SUMO
   IF(SUMD.LE.O.) SEH=0.
```

```
CHIH=SEH/SEHO
   IF(KKL.EQ.0) CHIH=1.0
   CHINH=(1.+CHIH)/2.
   IF(KKM.EQ.1) CHINH=(SEN+SEH)/(SENO+SEHD)
   GO TO 62
 7 THETA=0.0
   SUMD=0.
   11,1=1,1I
   THETA=THETA+DTH
   M1=A1N*(COS(THETA))**2+B1N*SIN(THETA)*COS(THETA)+
  2E1N \neq (SIN(THETA)) \neq 2
   N1=C1N*COS(THETA)+D1N*SIN(THETA)
   RC = (-N1 + SQRT(N1 + 2 + 4 + M1 + F1N))/(2 + M1)
   IF(RC.LT.O.) RC=(-N1-SQRT(N1**2+4.*M1*F1N))/(2.*M1)
   RG=SQRT(1./((COS(THETA)/(AGN+Y))**2+(SIN(THETA)/(BGN+Y))**2))
   IF(RG.GE.RC) KKJ=1
   IF(RG.GE.RC) RG=0.
   SUMO=SUMO+RG*DTH
11 CONTINUE
   IF(KKJ.EQ.1) SENN=SUMO
   IF(SUMD.LE.O.) SENN=0.0
   IF(KKJ.EQ.0) GO TO 9
   CHINN=SENN/SENNO
   KKXT = KKXT + 1
   IF(KKXT.EQ.1) YXIP=Y
   AX = (Y - YXIP) / (XT + DO/2 - DI/2 - YXIP)
   IF(AX.LE.O.) AX=0.
   IF(AX.GE.1.0) AX=1.0
   CHINAV=1.-AX+AX*CHINN
   KK = 1
   IF(AX.LE.0.5.AND.XT.GE.0.02097*D0) GO TO 9
   GO TO 3
62 Y=Y0
   IF(KKL.EQ.O.AND.KKM.EQ.O) GO TO 63
   KKP = KKP + 1
   IF(KKP.EQ.1) YZIP=Y
   AZ = (Y - YZIP) / (ABS(Z) / 2 + D0 / 2 - DI / 2 - YZIP)
   IF(AZ.LE.0.) 42=0.
   BZ=1.-AZ
63 CONTINUE
   RETURN
   END
```

SUBROUTINE SETUP INTEGER TEMPCO.CODE REAL T(200) REAL ANS(60) REAL TEMPA(10), CONST(60) INTEGER ORDER(60), CNSTNM PEAL FXAREA(2,100) REAL XX(105), YY(105) REAL PSEUDO(105) REAL X(40,105), Y(105), FX(40,105) ****** C С IF THE DIMENSION OF X AND FX ARE CHANGED M AND N SHOULD * * С ALSO BE RESET C ****** REAL MODE, MEAN, M1, M2, K, INC. COMMON/SEED/IX INPTNM=0 CNSTNM=0 N=105 NI = 100**NSI=10** M = 40MM=0NII=NI+1NSI1=NST+1 READ(5,100)IX 30 CONTINUE READ(5,106) NAM1, NAM2 106 FORMAT(244) READ(5,102)CODE,X1,X2,X3,X4,X5,X6,X7 WRITE(6,107) NAM1,NAM2,COUE,X1,X2,X3,X4,X5,X6,X7 107 FORMAT(1X, 2A4, 5X, 12, 5X, 7(1PE11.4.3X)) IF(CODE.EQ.90) GU TO 399 INPTNM=INPTNM+1 1F(CODF.EQ.60)GC TO 356 MM = MM + 1ORDER (INPINM) = MM TEMPCD=CODE/10 GO TO (31,32,33,3+,35),TEMPCD 31 CONTINUE NOI = X4NO[1=NO[+1]X(MM, 1) = X200 311 I=2,NOI X(MM, I) = X(MM, I-1) + X3311 CONTINUE DO 312 I=1,NOI Y(I) = 0.

-88-

```
312 CONTINUE
    H = X3
    STARTR=X2-X3/2.
    SUM=0.
    NOV=X1
    NDC=(X1+9.)/10.
    00 313 JJ=1,NOC
    READ(5,104)(TEMPA(I),I=1,10)
    WRITE(6,109) (TEMPA([], [=1, 10])
    DD 314 J=1,10
    IF(JJ*10+J.GT.NOV)GO TO 317
    DO 315 I=1,NOI
    IF(TEMPA(J).LT.X(MM,I)+X3/2.)GO TO 316
315 CONTINUE
    GO TO 314
316 CONTINUE
    Y(I) = Y(I) + 1.
    SUM=SUM+1.
314 CONTINUE -
313 CONTINUE
317 CONTINUE
    IF(CODE.EQ.11)GD TO 99
    FX(MM, 1) = 0.
    DD 318 I=2,NOI1
    FX(MM,I)=FX(MM,I-1)+Y(I-1)/SUM
318 CONTINUE
    GO TO 30
 32 CONTINUE
    NOI = X1
    X(MM, 1) = X2
    DO 220 I=2,NOI
    X(MM, I) = X(MM, I-1) + X3
220 CONTINUE
    READ(5,104)(Y(I),I=1,NOI)
    WRITE(6,109) (Y(I),I=1,NCI)
    H = X3
    STARTR=X2-X3/2.
    IF(CODE.EQ.21)G0 TO 99
    SUM=0.
    DO 222 I=1,NOI
    SUM=SUM+Y(I)
222 CONTINUE
    NOI1=NOI+1
    FX(MM, 1) = 0.
    DO 221 I=2, NOI1
    FX(MM,I) = FX(MM,I-1) + Y(I) / SUM
221 CONTINUE
    GO TO 30
```

33 CONTINUE MEAN=X1 S2 = X1U2 = X2U3=X3 U4=X4 H = X5STARTR=X6 SUMX=X7 GO TO 331 34 CONTINUE NOT = XIX(MM, 1) = X2DD 341 [=2,ND] $X \{MM, T\} = X \{MM, T-1\} + X3$ 341 CONTINUE READ(5,104)(FX(MM,I),I=1,NOI) WRITE(6,109) (FX(MM,I),I=1,NDI) 109 FORMAT(5X, 1P10E11.4) Gn TO 30 35 CONTINUE CODE=CODE-50 GO TO(351, 352, 353, 354, 355), CODE 351 CONTINUE MEAN=X1 SIGMA=X2 IF(X6.FQ.0.)X6=MEAN-3.*SIGMA IF(X7.EQ.O.)X7=MEAN+3.*SIGMA X0 = X6XN = X71351 CONTINUE H=(XN-XO)/FLOAT(NI) D=H/FLOAT(NSI) X(MM, 1) = XOINC=(XN-XO)/FLOAT(NI) DD 201 I=2,NI1 X(MM,I) = X(MM,I-1) + H201 CONTINUE DD 202 J=2,NI1 T(1) = X(MM, J-1)DD 203 KK=2,NSI1 T(KK) = T(KK-1) + D203 CONTINUE DO 204 L=1,NSI1Y(L)=(1./(SQRT(6.2832)*SIGMA))*(EXP(-.5*((T(L)-MEAN)/SIGMA)**2)) 204 CONTINUE CALL CAREA(Y, FX, M, N, MM, NSI, J,D) 202 CONTINUE

	DD 205 I=2,NI1
	FX(MM,I)=FX(MM,I)/FX(MM,NII)
205	CONTINUE
	GO TO 30 👘
352	CONTINUE
	INC=(X2-X1)/FLOAT(NI)
	X(MM,1) = X1
	DO 3521 I=2,NI1
	X(MM, I) = X(MM, I-1) + INC
3521	CONTINUE
	INC=1./FLOAT(NI)
	FX(MM, 1) = 0.
	DO 3522 I=2,NI1
	FX(MM,I) = FX(MM,I-1) + INC
3522	CONTINUE
	GO TO 30
353	CONTINUE
	MEAN=X1
	SIGMA = X2
	XO=MEAN
	IF(X7.E0.0.)X7=MEAN+3.*SIGMA
	XN=X7
	GO TO 1351
	CONTINUE
355	CONTINUE
254	GO TO 30
350	CONTINUE
	CNSTNM=CNSTNM+1
	ORDER(INPTNM)=100+CNSTNM CONST(CNSTNM)=X1
	GD TD 30
00	MEAN=0.
77	SUMX=0.
	S1=0.
	\$2=0.
	\$3=0.
	S4=0.
	\$5=0.
	DO 200 L=1,NOI
	I=NOI-L+1
	SUMX=SUMX+Y(L)
	S1=S1+Y(I)
	\$2=\$2+\$1
	\$3=\$3+\$2
-	S4=S4+S3
	\$5=\$5+\$4
200	CONTINUE
	MEAN=S2/SUMX

```
S2=S2/SUMX
    S3=S3/SUMX
    S4=S4/SUMX
    $5=$5/$UMX
    U_2 = 2 \cdot * S_3 - S_2 \cdot (1 \cdot + S_2)
    U3=6.*54-3.*U2*(1.+S2)-S2*(1.+S2)*(2.+S2)
    U4=24.*S5-2.*U3*(2.*(1.+S2)+1.)-U2*(6.*(1.+S2)*(2.+S2)-1.)
   9
                                         -S2 \neq (1_{*}+S2) \neq (2_{*}+S2) \neq (3_{*}+S2)
331 CONTINUE
    B1=U3**2/U2**3
    B2=U4/U2**2
    K=(B1*(B2+3.)**2)/(4.*(2.*B2-3.*B1-6.)*(4.*B2-3.*B1))
     IF(K)1.98.94
  1 P = (6 * (B2 - B1 - 1 *)) / (6 * 3 * B1 - 2 * B2)
    COM=B1*(R+2.)**2+16.*(R+1.)
    A1A2=.5*SQRT(U2)*SQRT(COM)
    COM12=R*(R+2.) *SORT(B1/COM)
    IF(U3.LT.0.)COM12=-COM12
    M2 = .5 * (R - 2 . + COM12)
    M1 = .5 \times (R - 2 - COM12)
    YO=(SUMX/A1A2)*(W1**M1*M2**M2)/(M1+M2)**(M1+M2)*GAMMA(M1+M2+2.)/
   9(GAMMA(M1+1.)*GAMMA(M2+1.))
    A2 = A1A2/(M1/M2+1.)
    A1 = A1A2 - A2
    MODE=MEAN-.5*U3/U2*(R+2.)/(R-2.)
    MODE=MODE*H+STARTR
    INC=A1A2/FLOAT(N)
    X(MM \cdot 1) = MODE + (-\Lambda 1) \neq H
    X(MM,NII) = MODE + \Delta 2 \neq H
    H = (X(MM, NII) - X(MM, I))/FLOAT(NI)
    X(MM, 2) = STARTR
    DD 706 I=3.NI
    X(MM,T) = X(MM,T-1) + H
706 CONTINUE
    PSEUDO(1) = -A1
    PSEUDO(NI1/) = A2
    H=1142/NI
    00 701 I=2,NI
    PSEUDO(I)=PSEUDO(I-1)+H
701 CONTINUE
    D=H/FLOAT(NSI)
    DD 702 J=2.NI1
    T(1)=PSEUDD(J-1)
    00 703 KK=2,NS11
    T(KK) = T(KK - 1) + D
703 CONTINUE
    DD 704 L=1,NSI1
    Y(L)=Y0*(1.+T(L)/A1)**M1*(1.-T(L)/A2)**M2
```

```
704 CONTINUE
     CALL CAREA(Y, FX, M, N, MM, NSI, J, D)
702 CONTINUE
     00 705 I=2.NI1
     FX(MM,I) = FX(MM,I) / FX(MM,NII)
705 CONTINUE
     GO TO 30
 94 IF(K-1)4.96,6
  4 CONTINUE
     R = (6 \cdot * (B2 - B1 - 1 \cdot)) / (2 \cdot *B2 - 3 \cdot *B1 - 6 \cdot)
     M1 = .5 \times (R + 2.)
    COM = SQRT(16.*(R-1.)-B1*(R-2.)**2)
    V = (-R * (R - 2) * SQRT(B1))/COM
     IF(U3.GE.0.)GD TD 44
    V = \Delta BS(V)
 44 CONTINUE
     A1=SORT(U2/16.)*COM
   MDDE=MEAN-(U3*(R-2.))/((2.+U2)*(R+2.))
     THETA = \Delta T \Delta N (V/R)
     IF(R.LE.10.)G0 TO 48
    A1 = A1 * H
    Y0=SUMX/A1*SORT(R/6.2832)*(EXP(COS(THETA)**2/(3.*R)-1./
   9(12.*R)-THETA*V))/(COS(THETA))**(R+1)
 48 CONTINUE
    DR IGIN=MEAN+V*A1/R
    H=2.*DPIGIN/FLOAT(NI)
    D=H/FLNAT(NSI)
    X(MM,1) = -ORIGIN
    DO 711 I=2, NI1
    X(MM,I) = X(MM,I-I) + H
711 CONTINUE
    DO 712 J=2,NI1
    T(1) = X(MM, J-1)
    DO 713 KK=2,NSI1
    T(KK) = T(KK-1) + D
713 CONTINUE
    DO 714 L=1,NSI1
    Y(L)=Y0*(1.+T(L)**2/A1**2)**(-M1)*EXP(-V*ATAN(T(L)/A1))
714 CONTINUE
    CALL CAREA(Y, FX, M, N, MM, NSI, J, D)
712 CONTINUE
    DO 715 I=2.NI1
    FX(MM,I) = FX(MM,I)/FX(MM,NI1)
715 CONTINUE
    DO 716 I = 1.NI1
    X(MM,I) = X(MM,I) + ORIGIN
716 CONTINUE
    GO TO 30
```

-93-

6 CONTINUE IMEAN=MEAN MEAN=MEAN-IMEAN $R = (6 \cdot * (B2 - B1 - 1 \cdot)) / (6 \cdot + 3 \cdot * B1 - 2 \cdot * B2)$ COM=B1#(R+2.)**2+16.*(R+1.) $A1 = .5 \neq SORT(U2) \neq SORT(COM)$ $IF(U3 \cdot LT \cdot 0 \cdot) A1 = -(ABS(A1))$ COM12 = (R * (R + 2.))/2.*SORT(B1/COM)M1 = -((R - 2.)/2. - COM12)M2=(R-2.)/2.+COM12 YO=(41**(M1-M2-1.)/GAMMA(M1-M2-1.))*(GAMMA(M1)/GAMMA(M2+1.))*SUMX OR IGIN=MEAN-(A1*(M1-1.))/(M1-M2-2.) MODE=MEAN-.5*U3/U2*(R+2.)/(R-2.) XN = A1 + XN/HSAVEH=H H=(XN+A1)/FLOAT(NI) D = H/FLOAT(NSI)X(MM,1)=A1DO 721 1=2,NI1 X(MM,I) = X(MM,I-1) + H721 CONTINUE 00 722 J=2,NI1 T(1) = X(MM, J-1)DO 723 KK=2,NSI1 T(KK) = T(KK-1) + D723 CONTINUE DO 724 L=1,NSI1 $Y(L) = Y_0 * (T(L) - A_1) * * M_2 * T(L) * * (-M_1)$ 724 CONTINUE CALL CAREA(Y, FX, M, N, MM, NSI, J,D) 722 CONTINUE DD 725 I=1,NIL FX(MM,I)=FX(MM,I)/FX(MM,NII)725 CONTINUE DO 726 [=1,N]1 $X(MM,I) = (X(MM,I) - A1) \neq SAVEH$ 726 CONTINUE GO TO 30 98 WRITE(6,103) GO TO 399 96 CONTINUE WRITE(6,105) 399 CONTINUE RETURN ENTRY POINT ***** ENTRY INPUT REWIND 4 DO 500 J=1, INPTNM

```
IF (ORDER (J).GT.100)G0 TO 501
     RND=RANDU(IX)
     D7 502 I=1,NI1
     IF(RND.LT.FX(DRDER(J),I))GD TD 503
502 CONTINUE
503 CONTINUE
     ANS(J) = X(ORDER(J), I)
     GO TO 500
501 CONTINUE
     ANS(J)=CONST(ORDER(J)-100)
500 CONTINUE
     WRITE(4,101)(ANS(I),I=1,INPTNM)
     ENDFILE 4
     REWIND 4
100 FORMAT(110)
101 FORMAT(E16.9)
102 FORMAT([2,2X,7E10.0)
103 FORMAT( ', 'K=0')
104 FORMAT(10E8.0)
.105 FORMAT(* *, *K= 1. *)
     RETURN
     END
```

-96-

```
SUBROUTINE CAREA(Y, FX, M, N, MM, NSI, J, D)
    REAL FX(M,N),Y(N)
    NSI1=NSI+1
    NSIO=NSI-1
    FX(MM,1)=0.
    SUM=0.
    DO 201 I=3, NSI0, 2
    SUM=SUM+4.*Y([-1)+2.*Y(])
201 CONTINUE
    AREA=D/3.*(Y(1)+SUM+Y(NSI1))
    FX(MM,J) = FX(MM,J-1) + AREA
    RETURN
    END
    FUNCTION RANDU(IX)
    IX=IX*65541
    IF(IX)5,6,6
  5 IX=IX+2147483647+1
  6 RANDU=IX
    RANDU=RANDU*.4656613E-9
    RETURN
```

ł

END

```
SUBROUTINE INTERP(X1,Y1,N1,X2,Y2,N2,YDIFF,ICHK)
    DIMENSION X1(N1), Y1(N1), X2(N2), Y2(N2), YDIFF(N1)
    DO \ 100 \ I = 1.01
    N3 = N2 - 1
    CO 200 J=1,N3
    IF(I.GT.N2.AND.ICHK.EQ.O) YDIFF(I)=Y1(I)
    IF(I.GT.N2.AND.ICHK.EQ.1) YDIFF([)=Y1(I)-Y2(N2)
    IF(I.GT.N2) GO TO 100
    IF(ABS(X1(I)-X2(J)).GT.1.E-5) GO TO 1
    YDIFF(I) = Y1(I) - Y2(J)
    GO TO 100
  1 IF(X1(I).LT.X2(J).OR.X1(I).GE.X2(J+1)) GO TO 2
    YDIFF(I) = Y1(I) - ((Y2(J+1) - Y2(J))/(X2(J+1) - X2(J))) * (X1(I) - X2(J))
   2 - Y_2(J)
    GO TO 100
  2 IF(X1(I).GE.X2(J+1).AND.J+1.LT.N2) GO TO 200
    IF(J.EQ.1) GO TO 3
    YDIFF(I) = Y1(I) - ((Y2(J) - Y2(J-1))/(X2(J) - X2(J-1))) * (X1(I) - X2(J-1))
   2 - Y_2(J - 1)
    GO TO 100
  3 YDIFF(I) = Y1(I) - (Y2(J)/X2(J)) * X1(I) - Y2(J)
200 CONTINUE
100 IF(ABS(YDIFF(I)).LT.ABS(Y1(I)*1.E-5)) YDIFF(I)=0.0
    IF(N1,EQ,N2,AND,ABS(X1(N1)-X2(N2)),LT,1,E-5) YDIFF(N1)=Y1(N1)
   2-Y2(N2)
    IF(ABS(YDIFF(N1)).LT.ABS(Y1(N1)*1.E-5)) YDIFF(N1)=0.0
    RETURN
    END
  .. ....
 SUBROUTINE PLOTI(X,Y,N,YHDR,NY,XHDR,NX,SY1,SY2,SX1,SX2,XY,
 ► 2XSFT, YSFT)
 DIMENSION X(N),Y(N)
 ► DIMENSION XHDR(8), YHDR(8)
 \blacktriangleright X(N-1)=SX1
 \blacktriangleright X(N)=SX2
 \blacktriangleright Y(N-1)=SY1
 \blacktriangleright Y(N)=SY2
 ► CALL PLOT(XSFT, YSFT, -3)
 ► CALL AXIS(0.0,0.0, YHDR, NY, 8.0, 90.0, SY1, SY2)
 ► CALL AXIS(0.0,XY,XHDR,NX,5.0,0.0,SX1,SX2)
 ► N1=N-2
 ► CALE LINE(X,Y,N1,1,0,1)
 ► KPLOT=KPLOT+1
 ► RETURN
 ► END
```

SUBROUTINE PAIR REAL IDIFF, IMAX1, IMIN1, IMAX2, IMIN2, IMAX, IMIN COMMON/PAIR1/TW1,TW2,DTW,FW1,FW2,DFW1,DFW2,DFW,TMAXO,DFM0, 2FDIFF, TDIFF, N COMMON/PAIR2/FMAX1.TFMX1.FMIN1.TFMN1. FMAX2, TFMX2, FMIN2, TFMN2 2 COMMON/PAIR3/AFMAX, TEMAX, AFMAXT, TEMAXT COMMON/OUT1/FDIFIG, TDIFIG, DIT, ADIT DIMENSION FDIFF(400). TDIFF(400) COMMON/OUT2/DF100K, T100K COMMON/TOFF/DFT01.DFT02.TDFT01.TDFT02 FMAX=FDIFF(1) FMIN=FDIFF(1) FMAX1 = FDIFF(1)FMIN1=FDIFF(1) TFMX1=TDIFF(1) TEMN1=TDIFF(1) $T = \Delta M I N I (TW1, TW2)$ DD 6 I=2,NK = IIF(TDIFF(1)-T) 7.7.8 7 FMAX=AMAX1(FDIFF(I),FMAX)IF(FMAX.GT.FMAX1) TFMX1=TDIFF(I) FMAX1 = FMAXEMIN=AMIN1(EDIFE(I).EMIN) IF(FMIN.LT.FMIN1) TFMN1=TDIFF(I) FMINI=FMIN 6 CONTINUE 8 FMAX=FDIFF(K) FMIN=FDIFF(K) FM4X2 = FDIFF(K)FMIN2=FDIFF(K)TFMX2=TDIFF(K)TFMN2=TDIFF(K) DO 9 I=K.N FMAX=AMAX1(FDIFF(I),FMAX) IF (FMAX.GT.FMAX2) TFMX2=TDIFF(I) FMAX2 = FMAXFMIN=AMIN1(FDIFF(I), FMIN) IFIFMIN.LT.FMIN2) TFMN2=TDIFF(I) FMIN2=FMIN 9 CONTINUE AFMAX1=ABS(FMAX1)AFMIN1=ABS(FMIN1)IF (AFMAX1.GE.AFMIN1) TEMAX=TEMX1 IF(AFMINI.GT.AFMAX1) TFMAX=TFMN1 AFMAX=AMAX1(AFMAX1,AFMIN1) AFMAX2=ABS(FMAX2)

2

				- • •		с м т																				
			IN2																							
			AFM																							
•			AFM					_					FM	N2												
			AXT				FM	3 X Z	• 4 F	- M]	N2)														
		-	I=AB																					•		
		DFW	= A B	SU)FW	>														· ·						
		DEW	1 = 4	BS (I DF	W1)																				
		DFW	2 = A	851	1 DF	W2)						•														
		DFM	Q = A	850	DF	MQ)																				
		FDI	FIG	= A P	35(FDI	FIC	;)																		
		DEI	00K	= 4 8	35(DF 1	00	()																		
С	***	-							***	***	**	¢	* * * *	¢ * *	* *	* * :	* * *	***	* *	***	\$	***	* * *	**	*****	* *
č	*		• •										•		• •						•••					*
č	*		nut	דווס	гм	or o	0 1		o r	• • •																*
	*		001	901	1 /~	UIC	in i	- 4 1	r i	141	А															*
C	* *			V 1	E 14		.	- 14 V				-			-			vr								*
C			FMA											-												•
C	*				_	UES				-								i L	WΑ	IΛ	ND	IH		1 MI	5	*
C	*		•			MH I	-				-				• -											*
• •	*		FMA.				•				•								• -		-					*
С	*																	5 T	4 I	L-0	FF	AN	DI	ΉE	TIMES	*
С	*			4	AT .	WHI	СН	TH	ΕY	ÐC	CUP	r R	ESP	P E C	T I	VE	LY									*
C	*		TDF	TOI	L, T	DFT	02	ΛN	D C)TW	Δ [٦E	THE	ΞW	EB	T	IME	ĒS	FO	R T	HE	FI	RST	Δt	ND .	`≉
C	*			S	SEC	OND	MC	n	F S	10	81	EGI	N 1	ΓΔΙ	LO	FF	4	٩Ŋ	TH	ΕA	BS	OLU	TE	VAI	LUE	*
С	*			n)F	THE	D1	FF	ERE	NC	Ε	[N	WEF	3 T	IM	ES	P.F	SP	EC	τιν	EL	Y				¥
С	*		FW1																	-			IE F	IRS	ST	¥
Ĉ	*					SE																				*
č	*					UE																		• • •	•	*
č	*					PFC			_		• • •		01.		•				~ '			• • •	-			x.
Ċ	*		DFT		-					: т	нε	٨п	sm		E ·	12.6.1		- c	n E	ты	с ·	TUD	нс т			*
Ċ	*																								DTORS	*
C	~ \$					IN.										101	_ F	17	21	AN	U	320	UNU	-10	11043	*
-		e 0.11			000	16 F.M	141	L O	ГГ	r C	361	<u>cu</u> 1	1 V F	÷ц т												•
		C0N				.				• •••	~ .		<u> </u>					00	-		Ŧ		-			
C	*		DFM																					~ ~	0.11	*
C	*					ALA																				*
С	*																								TIVELY	
С	*		AFM											_											IRUST	*
C	*					ALA			-	N	EM1	A T	AND) T	HE	T	IME	A	T I	MHI	СН	IT	0C	CUF	RS	¥
C	*			R	ES	PEC	τīv	'EL'	Y																	*
C	*		AFM	AXT	΄ Δ	ND	TFM	14 X 1	Γ Δ	RE	TH	HE -	4 BS	SOL	UT	E١	VAL	UE	0	FΤ	HE	MΑ	XIM	UM		*
C	*			T	HR	UST	IN	BAL	LAN	CE	ÐU	JR I	NG	TA	IL.	-0f	FF	۸N	0 1	E HE	T	IME	۸T	WH	HICH	*
С	*			I	T	000	UPS	PI	E SP	FC	TIV	IEL	Y													*
С	*		FDT	FIG	ί. Δ	ND	TDI	FIC	G A	RE	TH	IE	ABS	SOL.	UT	E١	VAL	UE	0	F T	HE	MA	ХІм	UM		*
Ĉ	* .					UST																	•		ION	*
Ĉ	*					ТН																			-	*
č	*		DIT																				ND	тня	-	*
č	* *	1				nLU																				\$
с. С	* *					L-0		¥ - 1 4		U	• •		• •	ля	4	4 (°) (1.04	L.A.I	·U L	00			*
	-		0 - 1		-	-		201		с	T 117	-	n c -		Tr			E	٥r	T 11	r 1	ruo	1157			∓ ☆
C	*		DF1	UUK	A	raD -	110	UK	AR	r	1 HF	<u> </u>	020	JUU	I E	V I	ALU		U۲	1 H	E I	I HM	021			*

```
С
             IMBALANCE WHEN THE LAST MOTOR REACHES 100K AND THE
   ±
             TIME AT WHICH IT OCCURS RESPECTIVELY
С
С
   IF(TW1-TW2) 700,700,701
 700 DFT01=DFW1
     DFTO2=DFW2
     GO TO 702
  701 DFT01=DFW2
     DFTD2=DFW1
     FW1=FW2
     FW2=FW1
  702 CONTINUE
     TDFT01=AMIN1(TW1,TW2)
     TDFTD2=AMAX1(TW1,TW2)
     WRITE(6,1)
    1 FORMAT(//,20X, MOTOR PAIR DATA")
     WRITE(6,2) FMAX1, TFMX1, FMIN1, TFMN1,
    2FMAX2, TEMX2, EMIN2, TEMN2, DET01, DET02,
    3TDFT01, TDFT02, DTW, FW1, FW2, DFW, DFMQ, TMAXQ,
    3AFMAX, TFMAX, AFMAXT, TFMAXT, FDIFIG, TDIFIG, DIT, ADIT, DF100K, T100K
    2 F3RMAT(13X,*FMAX1= *,1PE11.4,13X,*TFMX1= *,1PE11.4,/,
                  !,1PE11.4,13X, 'TEMN1=
    213X, * FMIN1=
                                        •,1PE11.4,/,
    213X, *FMAX2= *, 1PE11.4, 13X, *TFMX2=
                                        •,1PE11.4,/,
    213X, * FMIN2=
                  *,1PE11.4,13X,*TFMN2=
                                        •, 1PE11.4,/,
    213X, !DFT01=
                  ', 1PE11.4,13X, 'DFT02=
                                        •,1PE11.4,/,
    *,1PE11.4,13X,*DFW= *,
    2/,13X, FW1=
                    ', 1PE11.4, 13X, 'FW2=
    21PE11.4,/,
                  •,1PE11.4,13X.•TMAXQ=
    213X, DEMQ=
                                        •.1PE11.4./.
                  *,1PE11.4,13X,*TEMAX=
    213X, "AFMAX=
                                         •.1PE11.4./,
    213X, "AFMAXT= ", 1PE11.4, 13X, "TFMAXT= ", 1PE11.4,/,
    213X, *FUIFIG= *, 1PE11.4, 13X, *TOIFIG= *, 1PE11.4,/,
    213X, 'DIT=
                  •,1PE11.4,13X,•ADIT=
                                        ••1PE11•4•/•
    213X, 'DF100K= ', 1PE11.4, 13X, 'T100K=
                                        • 1PE11.4)
     RETURN
     END
```

-100-

```
SUBROUTINE INTRPI(Y,T,N,TT,DY,ICHK)
  DIMENSION Y(N),T(N)
  N1 = N - 1
  DY=0.0
  IF(ICHK) 2,2,3
2 DO I I=1, NI
  IF(TT.GE.T(I).AND.TT.LT.T(I+1)) DY=((Y(I+1)-Y(I))/(T(I+1)-T(I)))
 2 \neq (TT - T(I)) + Y(I)
  IF(DY.NE.0.0) RETURN
I CONTINUE
3 DO 4 I=1, N1
  IF(TT.LE.T(I).AND.TT.GT.T(I+1)) DY=((Y(I+1)-Y(I))/(T(I+1)-T(I)))
 2*(TT-f(I))+Y(I)
  IF(DY.NE.O.O) RETURN
4 CONTINUE
  RETURN
  END
  SUBROUTINE SIGBAR(X,XI,XI2,SIGX,BX,ICOUNT,N,SIG1,SIG2)
  XN=FLOAT(N)
  IF(ICOUNT.GT.2) GO TO 1
  X12=0.0
  XI = 0.0
1 X12=X12+X**2
  X I = X I + X
  BX=XI/XN
  XIS=XI**2
  SIGX=SURT((XI2/XN)-(XIS/XN**2))
  SIG1=SQRT(XI2/XN)
  SIG2=SQRT(XI2/(2.*XN))
               $
  RETURN
  END
```

V. SAMPLE STUDY

In keeping with the present interest in very large SRMs the case selected for the sample study is a 146-inch diameter motor of the type being considered for use on the Space Shuttle. However, the study does not constitute a prediction of the imbalance characteristics of the Space Shuttle. No effort has been made to select the most recent design considered for the Shuttle or to minimize or maximize imbalance. Although the statistical characteristics of the input variables should be reasonable for the most part, in some cases their selection has been somewhat arbitrary since the purpose of this study is merely to demonstrate the setup procedures, format and computational capabilities of the computer program.

The SRM for the sample case has three center segments consisting of circular perforated grains, an aft segment with a circular perforated grain and a forward segment with a truncated (slotted tube) nine point star grain. The fixed values for the sample case are given in Table V-1. It will be noted that both the head end and aft end domes are represented by hemispherical closures which is seemingly inconsistent with the fact that the head end of the foremost circular perforated grain is flat. This is an attempt to artificially correct for the curvature of the star grain segment located at the extreme head end. Experience with the simplified computer program indicates that this is a satisfactory alternative procedure to specification of an effective length of star grain. Of course, the effects of the head end closure burning surface geometry could be represented more precisely by specifying tabular input values, but it should be kept in mind that only the burning surface defined by equations is subject to statistical variation. In the present case, because the entire head end segment is consumed far in advance of tailoff, only minor errors in the predicted behavior during the critical tailoff portion of the traces should be encountered as a result of the approximation used.

Table V-2 gives the input data for the statistical variables of the sample case. Included in Table V-2 are brief comments on the sources of the data and the method in which it is applied to the present study. It will be noted that in a number of cases the convention is adopted of taking the drawing tolerances as representing ± 3 standard deviations in a normally distributed population of a variable. Also, where more than one dimension controls a variable input dimension, the standard deviation of the variable is taken as the square root of the sum of the squares of the standard deviations of the controlled variables (assumed to be normally distributed and uncorrelated.) An example of this is the standard deviation of the average outside diameter of the circular perforated grain which is calculated based on the standard deviations of the outside diameter of the case, and the thicknesses of the case wall, liner and insulation.

Options	
IEO = 1	
IPO = 1	
NUMPLT(J) 0 0 0 0 0	

Propellant Characteristics

L = 1367.23

TAU = 39.740

Basic Performance Constants

DELTAY = 0.040 II = 26 XOUT = 1000.00 DPOUT = 10,000.00 ZETAF = 0.9600 TMAXQ = 60.0 TB = 122.2 HB = 130,000 PREF = 560.00 DTREE = 57.285 PIPK = 0.00150 CSTART = 0.0000380 CSTARP = 0.0057000 PTRAN = 0.0 GAMP = 0.00527000 STAR = 2NT = 0

ORDER = 1

Grain Configuration

INPUT = 2

GRAIN = 3

COP = 2

C. P. Grain Geometry

XTZO = 0.120

S = 1

Basic Star Geometry

NS = 1 NP = 9 NN = 0

TABLE V-2. INPUT DATA FOR STATISTICAL VARIABLES OF SAMPLE CASE

Variable	Code	<u>x1</u>	<u>x2</u>	Source or Comment
RHO	51	0.06350	0.0000105	Ref. 8, p. 4.5-26 (2/3 of total variation ascribed to propellant weight).
Al,A2	21	11	0.03655	X3 = 0.00001
	Ľ	ata cards for	Al and A2: 1,3,5,	,2,13,16,10,12,4,7,1
	F	leference Valu	a = 0.0366045	C _y = 0.060%
	S		8, pp. 4.5-24, 4.5- sis scaled.	-25, MINUTEMAN data pair
N1,N2	60	0.035		
ALFA	60	0.0		
BETA	60	0.0		
ROAL	51	4.350	0.04	Ref. 1, Weighting error distribu- tion, p. 44.
				From drawing tolerance:
DE	51	145.67	0.033333	3o = 0.100
DTI	51	54.430	0.0100	3 σ = 0.030
THETA	60	0.0		
ALFAN	60	11.250		
LTAP	60	176.5		
XT	51	3.0400	0.02357	$3\sigma = 0.05 \sqrt{2}$ controlling dimensions
Z 0	51	2.41	0.02357	$3\sigma = 0.05 \sqrt{2}$
ZC	51	0.0000	0.02357	$3\sigma = 0.05 \sqrt{2}$
RONDCN	53 -	0.0	0.083333	$3\sigma = 0.250$
RONDCH	53	0.0	0.083333	3 σ = 0. 250
RONDGN	53	0.0	0.033333	3σ = 0.100
RONDGH	53	0.0	0.033333	3 3 = 0.100
EXN	51	0.0	0.05	3σ = 0.150
EYN	51	0.0	0.05	3σ = 0.150

-104-

Variable	e (Code	<u>X1</u>		<u>X2</u>		Source	e or Comment	
EXH		51	0.0		0.05		$3\sigma = 0.15$	50	
EYH		51	0.0		0.05		3σ = 0.15	50	
ALPHA	N	52	0.0		360		Random on and case.	rientation of man	irel
ALPHA	H	52	0.0		360		Random or case.	rientation of mano	irel
ERREF		51	0.00763		0.00032			data per Ref. 8, 5, $C_V = 4.2\%$.	
TGR		51	60.0		0.2333		Ref. 8, p	ο. 4.5-26, 6σ = 1.	.4°F.
TIGR		11	40.0		0.3740		X3 = 0.00	140, X4 = 15	
	Data	card f	or TIGR:	0.3777,	0.3811,	0.4030,	0.3980,	0.3744, 0.3795,	
		0.4266	, 0.4300,	0.4334,	0.4300,	0.3980,	0.3997,	0.3862, 0.3845,	
		0.3895	, 0.3963,	0.4013,	0.3929,	0.4097,	0.4081,	0.3980, 0.4030,	
		0.3827	, 0.39 63 ,	0.3980,	0.3996,	0.3895,	0.3929,	0.4081, 0.4132,	
		0.4215	, 0.4148,	0.3946,	0.3744,	0.3845,	0.4136,	0.4148, 0.4030,	
		0.4013	•						
		Refere	nce values	s: T _{ior} :	≃ 0.40 , (C _v = 3.8	33%.		
				Ų				mber of motors.	
DO		51	143.08 0		0.01462		$3\sigma = \sqrt{0.0}$	$32^2 + 2 \times 0.02^2$	+ 0.01 ²
DI		51	63.590		0.03333	3	$3\sigma = 0.10$		
THETAC	3	60	10.1990						
LGCI		51	1135.58		0.577		$3\sigma = 1.0 \star$	3 segments	
LGNI		51	51.20		0.33333		$3\sigma = 1.0$		
THETCH	1	60	0.0						
THETCH	ł	60	90.0						
LGSI		51	189.15		0.3333		$3\sigma = 1.0$	· ·	
RC		51	71.540		0.00731		$3\sigma = \sqrt{0.0}$	$32^2 + 2x0.02^2 + 0$	$1.01^{2}/2$
FILL		51	2.010		0.01111	1.	3σ = (1√9	points x 0.1)	
RP		51	12.000		0.01667		$3\sigma = 0.05$; ·	
RIS		51	63.540		0.01667		$3\sigma = 0.05$	i	

Not only must the procedures used in manufacture and quality control of the motor production be recognized when specifying the input characteristics, but also the way a particular variable is used in the program. Thus, when a dimension (or other characteristic) of a variable is subject to random variation and the effect of the variation is averaged in the program, the standard deviation in the variable should be reduced. For example, the standard deviation in the fillet radii of the star points is reduced by the $\sqrt{9}$ because the nine star points each have equal effects on the burning surface. Similarly, the propellant average burning rate variation between pairs may be reduced substantially if propellant from the same mixer batch is divided between the pair of motors as was assumed in this sample case.

In treatment of characteristics such as burning rate, propellant density, and grain temperature, it is assumed that the primary concern is the variation between two motors of a pair and variation between pairs is not considered. Thus, for example, the standard deviation in these characteristics is only that within a pair and excludes any between pair variation as experienced from change of a lot of propellant between pairs or from different ambient temperature histories.

An actual printout of the statistical input data is shown in Table V-3 to demonstrate the computer program format. Table V-4 gives the complete set of variables (fixed and distributed) selected by the Monte Carlo program for the first motor of the first pair. Table V-5 illustrates the format for the printout of transient values for one SRM of the sample case and also shows the propellant weight and initial and final seed numbers for the configuration. The initial seed number may be used to repeat the calculations for the configuration. The tabular output of motor pair imbalance data shown at the bottom of Table V-5 may be omitted by proper specification of IPO.

Figure V-1 through V-5 illustrate the graphical data which may be obtained using the CalComp plotter. Any or all of the plots may be omitted by proper choice of the NUMPLT(J) input array (See also IPO). The figures are derived from the same initial seed number given in Table V-5.

Tables V-6 and V-7 illustrate the statistical analysis of the output data that may be obtained from the program by use of the appropriate value of IPO. Table V-6 is a facsimile of the computer output for 25 motor pairs of the sample study and Table V-7 is a compilation of selected statistical characteristics of 50 motor pairs. The latter was obtained by separate calculations from three groups of data.

A histogram (Fig. V-6) of maximum thrust imbalances during tailoff for the 50 motor pairs demonstrates that the program results are generally consistent with the type of behavior which would be expected. TABLE V-3. PRINTOUT OF STATISTICAL INPUT DATA FROM SAMPLE CASE

0.0 3.6655E-02 7.0000E 00 2 3.6655E-02 00 7.0000E-00 4.34006-01 4. 3000E-01 4.0810E-01 4.1320E-01 •••••••••••••••••• ••• 0.0 01 4.0000E 00 4-2660E-01 4-3000E-01 4-3340E-01 4-0130E-01 3-9290E-01 4-0970E-01 3-8950E-01 3-9290E-01 4-0810E-01 4-1360E-01 4-1480E-01 4-0300E-01 3.6555E-02 0.0 3.6555E-02 3.7400E-01 01 4.0000E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0000E 01 1.2000E 1.0000E 01 1.2000E .0000E 02 1.0000E 02 02 -0000E 4.1360E-01 0.0 0.0 •••••• 0.0 0.0 0.0 0.0 0.0 0-0 0.0 0.0 0.0 10 . -5 0 3.7950E-01 3.9630E-01 3.9960E-01 1.5000E 3.8450E-01 1.0000E-05 0.0 1.3000E 01 1.6000E w 0.0 0.0 000000 0.0 0.0 0.0 000 000 1.6000 0.0 1.0000E-05 1.3000E 01 3.7440E-01 3.8950E-01 3.9800E-01 3.7440E-01 4.C000E-03 PROGRAM 0.0 000 00000 0.0 0.0 0.0 0.0 0.0 0.0 0000000 0.0 0.0 0.0 0.0 0.0 C O O O O O 0.0 0.0 0.0 0.0 0.0 1.0500E-05 3.6550E-02 00 2.0000E 00 3.8110E-01 4.0300E-01 3.9800E-01 3.9970E-01 3.8620E-01 3.8450E-01 4.0300E-01 3.8270E-01 3.9630E-01 4.1480E-01 3.9460E-01 3.9460E-01 DATA FOR STATISTICAL ANALYSIS 6.3500E-02 1.0500E-05 1.1000E 01 3.6550E-02 00 0.0 3.6550E-02 00 2.0000E (2.3570E-02 2.3570E-02 8.3333E-02 8.3333E-02 4.0000E-02 3.3335E-02 1.0000E-02 3.3330E-01 7.3100E-03 1.1111E-02 1.6667E-02 1.6677E-02 1.4620E-C2 3.3333E-02 5.7700E-01 3.3333E-01 02 2.3570E-02 3.3333E-02 3.3333E-02 5.0000E-02 5.0000E-02 5.0000E-02 3.6000E 02 3.2000E-04 5.0000E-02 2.3330E-01 3.7400E-01 3.6000E 000 0.0 0.0 0.00 0.0 0 3.5000E-01 1.1000E 01 3.0000E 00 5.0000E 3.0000E 00 5.0000E 3.5000E-01 0.0 0.0 000 1000 1001 100 10 02 7.63U0E-03 0 20 10 6.0000E 4.3500E 1.4567E 5.4430E 7.1540E 2.0100E 1.2000E 6.3540E 0.0 1.1250E 1.7650E 1.1356E 5.1200E 9.0000E 1.8915E 3.0400E 1.0199E 2-4100E 1.43C8E 6.3590E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 ð . 8 80 8 60 60 60 60 50 50 52152 53 ŝ 53 3.9800E-01 3.9800E-01 51 51 011000111100 51 3.7770E-01 4.2150E-01 51 21 52 51 N ŝ ŝ ŝ 5 5 1.0000E 1.0000E 1.0000E THETAG LGGI LGGI THETCN THETCN THETCH LGSI FILL R DNDGH R DNDGN R DNDGN E XN E XN E XH E XH E XH ALPHAN RUNDCN ALPHAN 8674 8674 06 071 71677 Alfan Ltap ERREF. ALPHA 1 G R AI S NOR 30 N1 A2 0 4 6 C ž 2 10 ~

-107-

2

TABLE V-4. PRINTOUT OF INPUT VARIABLES FOR ONE SRM FROM SAMPLE CASE

CONFIGURATION NUMBER 1

UPTIONS IED= 1 IPO= 1 NUMPLT(J)= 0 0 0 0 0

PROPELLANT CHARACTERISTICS RHO= 0.063507 A1= 0.03665 N1= 0.350 A2= 0.03667 N2= 0.350 ALPHA= 0.0 BETA= 0.0 RUAL= 4.2852 CSTARN= 5.1632E 03 GAMN= 1.1414E 00

BASIC MOTOR DIMENSIONS L= 1367.23 TAU= 39.740 DE= 1.4575E 02 DTI= 5.4437E 01 THETA= 0.0 ALFAN= 1.1250E 01 LTAP= 1.7650E 02 XI= 3.0470E CO 20= 2.4142E 00 2C= 5.6571E-03 RUNDCN= 1.9500E-01 RONDCH= 2.5000E-02 RONDGN= 3.6000E-02 RONDGH= 2.0000E-02 EXN= 4.2001E-02 EYN= 2.1001E-02 EXH= 3.9001E-02 EYH= -2.0999E-02 ALPHAN= 2.5200E 02 ALPHAH= 3.3120E 02

BASIC PERFORMANCE CONSTANTS DELTAY= 0.040 II= 26 XUUT= 1000.00 DPUUT= 1000.00 ZETAF= 0.9600 TB= 122.2 HB= 130000. ERREF= 0.00782 PREF= 560.00 DTREF= 57.285 TGR= 59.916 PIPK= 0.00150 CSTART= 0.0000380 PTRAN= 0.0 CSTARP= 0.0057000 TIG= 0.3906 GAMP= 0.0052700 TMAXQ= 60.000

GRAIN CONFIGURATION INPUT= 2 GRAIN= 3 STAR= 2 NT= 0. ORDER= 1 COP= 2

C.P. GRAIN GEOMETRY DO= 143.067 DI= 63.574 XTID= 0.120 S= 1. THETAG= 10.19900 LGCI= 1135.91 LGNJ= 51.14 THETCN= 0.0 THETCH= 90.00000

BASIC STAR GEOMETRY NS= 1. LGSI= 189.21 NP= 9. RC= 71.527 FILL= 2.006 NN= 0.

TRUNCATED STAR GEOMETRY RP= 12.005 RIS= 63.544 PORTION OF PRINTOUT OF TRANSIENT VALUES FOR ONE SRM FROM SAMPLE CASE TABLE V-5.

08 2.7288E 1101= 3 6.2843E Ľ 3 3.9977E SUMAB= 01 1.5533E 40.493 ا PHEAD= 10 1.5533E TIME= 119.282 =20N04

2.7291E 08 1101= 4.3577E 04 ű. 3.1684E 04 SUMAB= 40.533 1.0838E 01 Υ= ΡΗΕΑΩ= 5 TIME= 119.726 PONO2= 1.0838E

2.7292E 08 1101= **5** 2.6849E H 2.3393E 04 SUMAB= 6.7622E 00 40.573 ۳ PHEAD= 8 6.7622E TIME= 120.240 =ZDNO4

**** BEGIN HALF SECOND TRACE **** ********************** *****************

2.7292E 08. 1101= 0.0 Ľ 0.0 SUMAB= Y= 40.613 D= 0.0 PHEAD= TIME= 120.753 PONDZ= 0.0

INDIVIDUAL MOTOR DATA 02 .0862E 06 .0886E 06 PHMAX= 7.9388E IXI= 1211119009 1.0874E 06 19232621 PHMAX= =ldM WP 2 = ⊫dM l X I

4 0 8 5 5 3 3 94 5 5 5 30 04 TABULATED IMBALANCE DATA 1.1408E 1.1269E FDIFF .1952E .2033E .2083E •2040E .2119E .2091E .1992E .2056E .2034E .2146E 3.9060E-01 4.9929E-01 000 88 8 00 6.0809E-01 7.1686E-01 8.2562E-01 9.3435E-01 1.0431E •2604E .4777E T I ME ..15186 .3691E .5863E

30 40 \$0 40 04 30 5 40 5 5 40 440

5 ð

.1316E ..3879E ..5178E ..6492E . 7780E 1.9023E 2.1736E 2.2926E 2.4277E 2-5634E 2.6897E 2.8320E 2.9748E 3.2321E

IOIFF .2617E

03 *0 2.2280E 03 03 6 03 ŝ 60 50 30 30 3 ð 30 30 2 IADIFF 3.4604E 7.3323E 4.7235E 6.0258E 9.9559E 1.1268E 1.3892E 2.4453E 8.6433E 1.5210E ..6526E 1.7842E 1.9162E ..1808E 2.3129E 2.5780E 1.25796 .0484E

04

2.029AE

50

<u>0</u> 40 4 30 5 440

.2157E .2171E .2205E •2175E •2192E .2203E

> 8 80

..8034E ..0205E

..9119E

00

•6949E

3.0826E 3.3567E 3.4972E

•2273E

000

.1299E

2.3458E

-109-

Figure V-3. Thrust imbalance versus time for one pair of SRMs of sample case (CalComp plot).

TABLE V-6. OUTPUT VALUES FOR FINAL MOTOR PAIR AND STATISTICAL CHARACTER-ISTICS OF TWENTY-FIVE MOTOR PAIRS FROM THE SAMPLE STUDY.

MOTOR PAIR DATA

3.5491E	04
-1.7347E	04
2.0555E	05
1.5032E	03
1.1066E	02
2.0811E	06
2.2095E	04
6.6945E	03
3.5419 E	04
2.0555E	05
1.6448 E	04
8.6436E	05
2.8583E	04
	-1.7347E 2.0555E 1.5032E 1.1066E 2.0811E 2.2095E 6.6945E 3.5419E 2.0555E 1.6448E 8.6436E

TFMX1=	1.0226E	02
TFMN1=	8.0128E	00
TFMX2=	1.1119 E	02
TFMN2 =	1.2134E	02
TDFT02=	1.1099E	02
FW2=	2.0809E	06
DFT02=	1.1096E	05
TMAXQ=	6.0000E	02
TFMAX=	1.0226E	02
TFMAXT=	1.1119E	02
TDIFIG=	2. 2855E	00
ADIT=	8.7547E	05
T100K=	1.1869E	02

DTW= 3.2643E-01 DFW= 1.7500 02

STANDARD DEVIATIONS AND MEANS FOR MOTOR PAIR DATA

	STD. DEV		MEAN	
AFMAX	0.1016E	05	0.1952E	05
TFMAX	0.3787E	02	0.8279E	02
AFMAXT	0.6072E	05	0.9811E	05
TFMAXT	0.5590E	00	0.1114E	03
DTW	0.1282E	00	0.1761E	00
FW1	0.4726E	04	0.2079E	06
FW2	0.5726E	04	0.2076E	06
DFW	0.2551E	04	0.6369E	04
DFT01	0.6512E	04	0.6369E	04
TDFTO1	0,1291E	00	0.1107E	03
DTFO2	0.2757E	05	0.2961E	05
TDFT02	0.1947E	00	0.1109E	03
DFMQ	0.2461E	04	0.3679E	04
FDIFIG	0.4574E	04	0.6234E	04
TDIFIG	0.1553E	00	0.2233E	01
DIT	0.4186E	06	0.5927E	05
ADIT	0.2386E	06	0.3585E	06
DF100K	0.8192E	04	0.1228E	05
T100K	0.1531E	00	0.1186E	03

ALTERNATE DISPERSION VALUES FOR THRUST IMBALANCE DATA

	SIGMA 1	SIGMA 2			
AFMAX	0.2200E 05	0.1556E 05			
AFMAXT	0.1154E 06	0.8159E 05			

PARAMETER	MEAN	STANDARD DEVIATION
Absolute value of maximum thrust imbalance during web action time (AFMAX) lbf.	19,620.40	9250.22
Time of AFMAX(TFMAX) sec.	83.89	36.59
Absolute value of maximum thrust imbalance during tailoff (AFMAXT) lbf.	110,346.00	61,130.86
Time of AFMAXT (TFMAXT) sec.	111.60	0.93
Absolute value of the difference in time at which the two motors of a pair begin tailoff (DTW) sec.	0.20	0.14
Absolute value of the thrust imbalance at input time of maximum dynamic pressure (DFMQ) 1bf.	2954.46	3965.88
Algebraic value of the impulse imbalance during tailoff (DIT) lbf-sec.	-51,059.09	461,769.56
Absolute value of the area between the thrust-time traces of the pair during tailoff (ADIT) 1bf-sec.	406,400.00	237,49794
Absolute value of thrust imbalance when last motor of pair reaches 100,000 lb. thrust during tailoff (DF100K) lbf-sec.	8554.64	13,469.31
Time of DF100K (T100K) sec.	118.66	0.29

TABLE V-7. SELECTED STATISTICAL CHARACTERISTICS OF FIFTY MOTOR PAIRS FROM THE SAMPLE STUDY

VI. CONCLUDING REMARKS

A technique has been established for statistically investigating the thrust imbalance of pairs of SRMs firing in parallel. The computer program based upon the analysis permits the imbalance characteristics of a large number of SRM pairs to be evaluated in a reasonably short time.

It remains to demonstrate the accuracy of the program by comparisons of theoretical imbalance results with those from real SRM populations. Preliminary investigations of this type were conducted during the program. The results, although encouraging, are too incomplete to warrant reporting. This is largely due to the difficulty encountered in obtaining specific data to define confidently the statistical distributions of input variables for past rocket motors. The necessary data is often incomplete or not readily accessible.

Additional areas for extended effort include investigation of methods for accounting for effects of radial, axial and circumferential temperature gradient differences between motors of a pair and incorporation of between pair variations of propellant characteristics into the analysis. Ability to treat the between pair variations would improve the accuracy of the program as a device for predicting the absolute performance characteristics of SRMs.

Finally, it is noted that a large number of improvements in the basic accuracy of the simplified computer program presented in References 3, 4 and 5 have been incorporated into the program presented in this report. Those using the earlier program may wish to adopt these improvements for the purpose of design and performance analysis of single rocket motors.

REFERENCES

- Reckmeyer, V. U., "Impulse Reproducibility," Huntsville Division, Thiokol Chemical Corporation, Huntsville, Alabama, Special Report No. 40-68, Control No. U-68-40A, October 1968,
- 2. Mize, J. H., and Cox, J. G., Essentials of Simulation, Prentice-Hall, Englewood Cliffs, New Jersey, 1968, pp. 73, 74, 87-92, 228.
- 3. Sforzini, R. H., "Design and Performance Analysis of Solid-Propellant Rocket Motors Using a Simplified Computer Program," Final Report, NASA Contractor Report NASA CR-129025, Auburn University, October 1972.
- 4. Sforzini, R. H., "Extension of a Simplified Computer Program for Analysis of Solid-Propellant Rocket Motors," Final Report, NASA Contractor Report NASA CR 129024, Auburn University, April 1973.
- Sforzini, R. H., "Analysis of Solid-Propellant Rocket Motor Using a Simplified Computer Program," Engineering Experiment Station Bulletin No. 59, Auburn University, December 1973.
- 6. "Solid Rocket Motor Performance Analysis and Prediction," NASA Space Vehicle Design Criteria (Chemical Propulsion) NASA SP-8039, National Aeronautics and Space Administration, May 1971, pp. 62-63.
- 7. Elderton, W. P., and Johnson, J. L., Systems of Frequency Curves, The University Press, London, 1969, pp. 35-70.
- "Proposal for Solid Rocket Motor Project for the Space Shuttle Program," Vol. III, Design, Development and Verification Proposal, TWP 077326, Submitted to NASA George C. Marshall Space Flight Center by Wasatch Division Thiokol Chemical Corporation, 27 August, 1973, pp. 4.5-25 through 27.

-119-

APPENDIX

.

PERFORMANCE SENSITIVITIES

....

.

AU.S. GOVERMENT PRINTING OFFICE 1975-640-453/259 REGION NO. 4