928 research outputs found

    Identification and characterization of a novel non-structural protein of bluetongue virus

    Get PDF
    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell

    Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion

    Get PDF
    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−

    Nitric Oxide Antagonizes the Acid Tolerance Response that Protects Salmonella against Innate Gastric Defenses

    Get PDF
    Reactive nitrogen species (RNS) derived from dietary and salivary inorganic nitrogen oxides foment innate host defenses associated with the acidity of the stomach. The mechanisms by which these reactive species exert antimicrobial activity in the gastric lumen are, however, poorly understood.The genetically tractable acid tolerance response (ATR) that enables enteropathogens to survive harsh acidity was screened for signaling pathways responsive to RNS. The nitric oxide (NO) donor spermine NONOate derepressed the Fur regulon that controls secondary lines of resistance against organic acids. Despite inducing a Fur-mediated adaptive response, acidified RNS largely repressed oral virulence as demonstrated by the fact that Salmonella bacteria exposed to NO donors during mildly acidic conditions were shed in low amounts in feces and exhibited ameliorated oral virulence. NO prevented Salmonella from mounting a de novo ATR, but was unable to suppress an already functional protective response, suggesting that RNS target regulatory cascades but not their effectors. Transcriptional and translational analyses revealed that the PhoPQ signaling cascade is a critical ATR target of NO in rapidly growing Salmonella. Inhibition of PhoPQ signaling appears to contribute to most of the NO-mediated abrogation of the ATR in log phase bacteria, because the augmented acid sensitivity of phoQ-deficient Salmonella was not further enhanced after RNS treatment.Since PhoPQ-regulated acid resistance is widespread in enteric pathogens, the RNS-mediated inhibition of the Salmonella ATR described herein may represent a common component of innate host defenses

    Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing

    Get PDF
    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness

    A Spoonful of Math Helps the Medicine Go Down: An Illustration of How Healthcare can Benefit from Mathematical Modeling and Analysis

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>A recent joint report from the Institute of Medicine and the National Academy of Engineering, highlights the benefits of--indeed, the need for--mathematical analysis of healthcare delivery. Tools for such analysis have been developed over decades by researchers in Operations Research (OR). An OR perspective typically frames a complex problem in terms of its essential mathematical structure. This article illustrates the use and value of the tools of operations research in healthcare. It reviews one OR tool, queueing theory, and provides an illustration involving a hypothetical drug treatment facility.</p> <p>Method</p> <p>Queueing Theory (QT) is the study of waiting lines. The theory is useful in that it provides solutions to problems of waiting and its relationship to key characteristics of healthcare systems. More generally, it illustrates the strengths of modeling in healthcare and service delivery.</p> <p>Queueing theory offers insights that initially may be hidden. For example, a queueing model allows one to incorporate randomness, which is inherent in the actual system, into the mathematical analysis. As a result of this randomness, these systems often perform much worse than one might have guessed based on deterministic conditions. Poor performance is reflected in longer lines, longer waits, and lower levels of server utilization.</p> <p>As an illustration, we specify a queueing model of a representative drug treatment facility. The analysis of this model provides mathematical expressions for some of the key performance measures, such as average waiting time for admission.</p> <p>Results</p> <p>We calculate average occupancy in the facility and its relationship to system characteristics. For example, when the facility has 28 beds, the average wait for admission is 4 days. We also explore the relationship between arrival rate at the facility, the capacity of the facility, and waiting times.</p> <p>Conclusions</p> <p>One key aspect of the healthcare system is its complexity, and policy makers want to design and reform the system in a way that affects competing goals. OR methodologies, particularly queueing theory, can be very useful in gaining deeper understanding of this complexity and exploring the potential effects of proposed changes on the system without making any actual changes.</p

    Assessment of post-competition peak blood lactate in male and female master swimmers aged 40–79 years and its relationship with swimming performance

    Get PDF
    The main purpose of this study was to measure the postcompetition blood lactate concentration ([La]b) in master swimmers of both sexes aged between 40 and 79 years in order to relate it to age and swimming performance. One hundred and eight swimmers participating in the World Master Championships were assessed for [La]b and the average rate of lactate accumulation (La’;mmol l-1 s-1) was calculated. In addition, 77 of them were also tested for anthropometric measures. When the subjects were divided into 10-year age groups, males exhibited higher [La]b than women (factorial ANOVA, P < 0.01) and a steeper decline with ageing than female subjects. Overall, mean values (SD) of [La]b were 10.8 (2.8), 10.3 (2.0), 10.3 (1.9), 8.9 (3.2) mmol l-1 in women, and 14.2 (2.5), 12.4 (2.5), 11.0 (1.6), 8.2 (2.0) mmol l-1 in men for, respectively, 40–49, 50–59, 60–69, 70–79 years’ age groups. When, however, [La]b values were normalised for a ‘‘speed index’’, which takes into account swimming speed as a percentage of world record, these sex-related differences, although still present, were considerably attenuated. Furthermore, the differences in La’ between males and females were larger in the 40–49 age group (0.34 vs 0.20 mmol l-1 s-1 for 50-m distance) than in the 70–79 age group (0.12 vs 0.14 mmol l-1 s-1 for 50-m distance). Different physiological factors, supported by the considered anthropometric measurements, are suggested to explain the results

    Search for the standard model Higgs boson at LEP

    Get PDF

    Extinct in the wild: The precarious state of Earth's most threatened group of species

    Get PDF
    Extinct in the Wild (EW) species are placed at the highest risk of extinction under the International Union for Conservation of Nature Red List, but the extent and variation in this risk have never been evaluated. Harnessing global databases of ex situ animal and plant holdings, we report on the perilous state of EW species. Most EW animal species-already compromised by their small number of founders-are maintained at population sizes far below the thresholds necessary to ensure demographic security. Most EW plant species depend on live propagation by a small number of botanic gardens, with a minority secured at seed bank institutions. Both extinctions and recoveries are possible fates for EW species. We urgently call for international effort to enable the latter
    corecore