2,701 research outputs found
YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability
<p>Abstract</p> <p>Background</p> <p>Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function.</p> <p>Results</p> <p>Here, we demonstrate by the creation of a conditional lethal mutant that <it>ysxC </it>is apparently essential for growth in <it>S. aureus</it>. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the <sup>β</sup>' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in <it>S. aureus</it>.</p> <p>Conclusions</p> <p>In this study we demonstrate that YsxC of <it>S. aureus </it>localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of <it>S. aureus</it>.</p
The Steinmann Cluster Bootstrap for N=4 Super Yang-Mills Amplitudes
We review the bootstrap method for constructing six- and seven-particle
amplitudes in planar super Yang-Mills theory, by exploiting
their analytic structure. We focus on two recently discovered properties which
greatly simplify this construction at symbol and function level, respectively:
the extended Steinmann relations, or equivalently cluster adjacency, and the
coaction principle. We then demonstrate their power in determining the
six-particle amplitude through six and seven loops in the NMHV and MHV sectors
respectively, as well as the symbol of the NMHV seven-particle amplitude to
four loops.Comment: 36 pages, 4 figures, 5 tables, 1 ancillary file. Contribution to the
proceedings of the Corfu Summer Institute 2019 "School and Workshops on
Elementary Particle Physics and Gravity" (CORFU2019), 31 August - 25
September 2019, Corfu, Greec
What helps Christians grow? An exploratory study distinguishing among four distinctive pathways
This study draws on a detailed survey completed by 1,123 churchgoers attending churches within the West Midlands region of England in order to identify indicators of Christian growth and distinctive pathways to growth. Factor and reliability analyses distinguished between two indicators of Christian growth (depth of discipleship and strength of vocation) and four distinctive pathways to growth (growth through group activity, growth through Christian experience, growth through church worship, and growth through public engagement). Regression analyses, taking into account individual differences in sex, age, education, church support and challenges to faith, identified growth through Christian experience as the most important factor in helping Christians to grow, while public engagement added weight to depth of discipleship and group activities added weight to strength of vocation. The implications of these findings are discussed for future research and for Discipleship Learning programmes within the Church
Supramolecular structure in the membrane of Staphylococcus aureus
The fundamental processes of life are organized and based on common basic principles. Molecular organizers, often interacting with the membrane, capitalize on cellular polarity to precisely orientate essential processes. The study of organisms lacking apparent polarity or known cellular organizers (e.g., the bacterium Staphylococcus aureus) may enable the elucidation of the primal organizational drive in biology. How does a cell choose from infinite locations in its membrane? We have discovered a structure in the S. aureus membrane that organizes processes indispensable for life and can arise spontaneously from the geometric constraints of protein complexes on membranes. Building on this finding, the most basic cellular positioning system to optimize biological processes, known molecular coordinators could introduce further levels of complexity.
All life demands the temporal and spatial control of essential biological functions. In bacteria, the recent discovery of coordinating elements provides a framework to begin to explain cell growth and division. Here we present the discovery of a supramolecular structure in the membrane of the coccal bacterium Staphylococcus aureus, which leads to the formation of a large-scale pattern across the entire cell body; this has been unveiled by studying the distribution of essential proteins involved in lipid metabolism (PlsY and CdsA). The organization is found to require MreD, which determines morphology in rod-shaped cells. The distribution of protein complexes can be explained as a spontaneous pattern formation arising from the competition between the energy cost of bending that they impose on the membrane, their entropy of mixing, and the geometric constraints in the system. Our results provide evidence for the existence of a self-organized and nonpercolating molecular scaffold involving MreD as an organizer for optimal cell function and growth based on the intrinsic self-assembling properties of biological molecules
AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning
AcmA, the major autolysin of Lactococcus lactis MG1363 is a modular protein consisting of an N-terminal active site domain and a C-terminal peptidoglycan-binding domain. The active site domain is homologous to that of muramidase-2 of Enterococcus hirae, however, RP-HPLC analysis of muropeptides released from Bacillus subtilis peptidoglycan, after digestion with AcmA, shows that AcmA is an N-acetylglucosaminidase. In the C-terminus of AcmA three highly similar repeated regions of 45 amino acid residues are present, which are separated by short nonhomologous sequences. The repeats of AcmA, which belong to the lysine motif (LysM) domain family, were consecutively deleted, removed, or, alternatively, one additional repeat was added, without destroying the cell wall-hydrolyzing activity of the enzyme in vitro, although AcmA activity was reduced in all cases. In vivo, proteins containing no or only one repeat did not give rise to autolysis of lactococcal cells, whereas separation of the producer cells from the chains was incomplete. Exogenously added AcmA deletion derivatives carrying two repeats or four repeats bound to lactococcal cells, whereas the derivative with no or one repeat did not. In conclusion, these results show that AcmA needs three LysM domains for optimal peptidoglycan binding and biological functioning
Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a
Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function
- …