30,274 research outputs found
Non-Empirically Tuned Range-Separated DFT Accurately Predicts Both Fundamental and Excitation Gaps in DNA and RNA Nucleobases
Using a non-empirically tuned range-separated DFT approach, we study both the
quasiparticle properties (HOMO-LUMO fundamental gaps) and excitation energies
of DNA and RNA nucleobases (adenine, thymine, cytosine, guanine, and uracil).
Our calculations demonstrate that a physically-motivated, first-principles
tuned DFT approach accurately reproduces results from both experimental
benchmarks and more computationally intensive techniques such as many-body GW
theory. Furthermore, in the same set of nucleobases, we show that the
non-empirical range-separated procedure also leads to significantly improved
results for excitation energies compared to conventional DFT methods. The
present results emphasize the importance of a non-empirically tuned
range-separation approach for accurately predicting both fundamental and
excitation gaps in DNA and RNA nucleobases.Comment: Accepted by the Journal of Chemical Theory and Computatio
Residual Action of Slow Release Systemic Insecticides on \u3ci\u3eRhopalosiphum Padi\u3c/i\u3e (Homoptera: Aphididae) on Wheat
Slow release formulations of acephate and carbofuran encapsulated in pearl corn starch or corn flour granules were applied to the soil at seeding time of potted \u27Caldwell\u27 wheat in the laboratory. Dosages of these insecticides were adjusted to a standard of IO kg/ha of a 10 10 granular formulation of carbofuran. The residual action of these insecticide treatments against Rhopalosiphum padi were compared with those obtained with that of carbofuran 150 at corresponding dosages and foliar sprays of solutions of acephate (25 10 EC) at 0.2 10 and carbofuran (4F) at 1.25 10, applied 12 d after seedling emergence. The residual action of carbofuran 150, which controlled R. padi since seedling emergence, lasted 28.5 d. The slow release granular formulations of carbofuran began to provide control (\u3e 50 10 aphid mortality) on days 13.3 and 17.9 after seeding. They controlled the insect until days 31.6 and 35.5 after seeding. The two corresponding granular formulations of acephate began to provide control on days 15.0 and 17.0 after seeding and con trolled the aphids until days 31.5 and 32.8 after seeding. The foliar sprays of acephate and carbofuran provided control for 18.3 and 36.2 d from application, respectively. The slow release granular formulations provided control of R. padi, an important vector of barley yellow dwarf virus, during early. stages of wheat development
Two systems developed for purifying inert atmospheres
Two systems, one for helium and one for argon, are used for purifying inert atmospheres. The helium system uses an activated charcoal bed at liquid nitrogen temperature to remove oxygen and nitrogen. The argon system uses heated titanium sponge to remove nitrogen and copper wool beds to remove oxygen. Both use molecular sieves to remove water vapor
A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells
Drift-diffusion models that account for the motion of both electronic and
ionic charges are important tools for explaining the hysteretic behaviour and
guiding the development of metal halide perovskite solar cells. Furnishing
numerical solutions to such models for realistic operating conditions is
challenging owing to the extreme values of some of the parameters. In
particular, those characterising (i) the short Debye lengths (giving rise to
rapid changes in the solutions across narrow layers), (ii) the relatively large
potential differences across devices and (iii) the disparity in timescales
between the motion of the electronic and ionic species give rise to significant
stiffness. We present a finite difference scheme with an adaptive time step
that is posed on a non-uniform staggered grid that provides second order
accuracy in the mesh spacing. The method is able to cope with the stiffness of
the system for realistic parameters values whilst providing high accuracy and
maintaining modest computational costs. For example, a transient sweep of a
current-voltage curve can be computed in only a few minutes on a standard
desktop computer.Comment: 22 pages, 8 figure
Recommended from our members
Congenital imperforate hymen with hydrocolpos and hydronephrosis associated with severe hydramnios and increase of maternal ovarian steroidogenic enzymes
This is a clinical research paperStudy Objective: To study clinical features of patient presented with severe hydramnios, associated with hydronephrosis, that was antenatally diagnosed and has
been successfully treated immediately after birth. At a molecular level, we investigated the gene expression of key steroidogenic enzymes from the maternal ovary.
Design: Ultrasound scan,MRI, semi-quantitativeRT-PCR
Setting: The patient was admitted to the University Hospital,
University of Crete, Medical School, Greece, where
all clinical data has been obtained. Gene expression studies
took place at Biosciences, Brunel University, UK.
Results: Semi-quantitative RT-PCR analyses revealed
that there is upregulation of key steroidogenic genes in
the maternal ovary, including steroidogenic acute regulatory
protein, and the cytochrome P450 heme-containing
proteins CYP11A, CYP17 and CYP19. From a clinical perspective,
the prenatal ultrasound scan and MRI findings
showed a multicystic pelvic mass, bilateral hydronephrosis
and prior to delivery severe polyhydramnios.
Conclusion: This clinical case is the only one that we
have found in the current literature where congenital imperforate
hymen accompanied with hematocolpos is associated
with renal obstruction in combination with polyhydramnios
and increase in maternal steroidogenic enzymes
Recommended from our members
Expression of membrane and nuclear progesterone receptors in two human placental choriocarcinoma cell lines (JEG-3 and BeWo): Effects of syncytialization
This article has been made available through the Brunel Open Access Publishing Fund and is available from the specified link -
Copyright @ 2011 Spandidos Publications Ltd.A vital function of the human placenta is to produce steroid hormones such as progesterone, which are essential for the maintenance of pregnancy and the onset of parturition. Although choriocarcinoma cell lines are valuable placental models for investigations of steroid hormone actions, little is known about the expression of progesterone receptors (PRs) in these cell lines. Therefore, in this study, the expression of membrane and nuclear PRs was investigated in cultures of fusigenic (BeWo) and non-fusigenic (JEG-3) human choriocarcinoma cell lines. In addition, the effects of an inducer of syncytialization (forskolin) on the PR expression in BeWo cells were assessed. Quantitative RT-PCR revealed that in fully syncytialized BeWo cells (treated with 50 mu M forskolin for 72 h) there was a significant down-regulation of mPR alpha and up-regulation of mPR beta and of the progesterone membrane component-1 (PGRMC1) when compared with non-syncytialized BeWo cells. Expression of all the mPR and PGRMC1 mRNAs was significantly lower in JEG-3 cells compared to non-syncytialized BeWo cells. Interestingly, expression of PR-B was unaltered between the two BeWo states but was significantly higher in JEG-3 cells. Immunofluorescence analysis revealed that mPR proteins are differentially expressed in these choriocarcinoma cell lines as well as in the human placenta. The data demonstrate that human choriocarcinoma cell lines have a complex system of progesterone signalling involving multiple classes of PRs. The finding that syncytialization is accompanied by changes in the expression of these receptors may suggest that this process influences progesterone signalling
Clustering Phase Transitions and Hysteresis: Pitfalls in Constructing Network Ensembles
Ensembles of networks are used as null models in many applications. However,
simple null models often show much less clustering than their real-world
counterparts. In this paper, we study a model where clustering is enhanced by
means of a fugacity term as in the Strauss (or "triangle") model, but where the
degree sequence is strictly preserved -- thus maintaining the quenched
heterogeneity of nodes found in the original degree sequence. Similar models
had been proposed previously in [R. Milo et al., Science 298, 824 (2002)]. We
find that our model exhibits phase transitions as the fugacity is changed. For
regular graphs (identical degrees for all nodes) with degree k > 2 we find a
single first order transition. For all non-regular networks that we studied
(including Erdos - Renyi and scale-free networks) we find multiple jumps
resembling first order transitions, together with strong hysteresis. The latter
transitions are driven by the sudden emergence of "cluster cores": groups of
highly interconnected nodes with higher than average degrees. To study these
cluster cores visually, we introduce q-clique adjacency plots. We find that
these cluster cores constitute distinct communities which emerge spontaneously
from the triangle generating process. Finally, we point out that cluster cores
produce pitfalls when using the present (and similar) models as null models for
strongly clustered networks, due to the very strong hysteresis which
effectively leads to broken ergodicity on realistic time scales.Comment: 13 pages, 11 figure
Systematic derivation of a surface polarization model for planar perovskite solar cells
Increasing evidence suggests that the presence of mobile ions in perovskite
solar cells can cause a current-voltage curve hysteresis. Steady state and
transient current-voltage characteristics of a planar metal halide
CHNHPbI perovskite solar cell are analysed with a drift-diffusion
model that accounts for both charge transport and ion vacancy motion. The high
ion vacancy density within the perovskite layer gives rise to narrow Debye
layers (typical width 2nm), adjacent to the interfaces with the transport
layers, over which large drops in the electric potential occur and in which
significant charge is stored. Large disparities between (I) the width of the
Debye layers and that of the perovskite layer (600nm) and (II) the ion
vacancy density and the charge carrier densities motivate an asymptotic
approach to solving the model, while the stiffness of the equations renders
standard solution methods unreliable. We derive a simplified surface
polarisation model in which the slow ion dynamic are replaced by interfacial
(nonlinear) capacitances at the perovskite interfaces. Favourable comparison is
made between the results of the asymptotic approach and numerical solutions for
a realistic cell over a wide range of operating conditions of practical
interest.Comment: 32 pages, 7 figure
M-grid: Using Ubiquitous Web Technologies to create a Computational Grid
There are many potential users and uses for grid computing. However, the concept of sharing computing resources excites security concerns and, whilst being powerful and flexible, at least for novices, existing systems are complex to install and use. Together these represent a significant barrier to potential users who are interested to see what grid computing can do. This paper describes m-grid, a system for building a computational grid which can accept tasks from any user with access to a web browser and distribute them to almost any machine with access to the internet and manages to do this without the installation of additional software or interfering with existing security arrangements
- …