1,344 research outputs found

    Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    Full text link
    The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M_E, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure

    A grid of upper atmosphere models for 1--40 MEARTH planets: application to CoRoT-7 b and HD219134 b,c

    Full text link
    There is growing observational and theoretical evidence suggesting that atmospheric escape is a key driver of planetary evolution. Commonly, planetary evolution models employ simple analytic formulae (e.g., energy limited escape) that are often inaccurate, and more detailed physical models of atmospheric loss usually only give snapshots of an atmosphere's structure and are difficult to use for evolutionary studies. To overcome this problem, we upgrade and employ an already existing upper atmosphere hydrodynamic code to produce a large grid of about 7000 models covering planets with masses 1 - 39 Earth mass with hydrogen-dominated atmospheres and orbiting late-type stars. The modeled planets have equilibrium temperatures ranging between 300 and 2000 K. For each considered stellar mass, we account for three different values of the high-energy stellar flux (i.e., low, moderate, and high activity). For each computed model, we derive the atmospheric temperature, number density, bulk velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the considered species as a function of distance from the planetary center. From these quantities, we estimate the positions of the maximum dissociation and ionisation, the mass-loss rate, and the effective radius of the XUV absorption. We show that our results are in good agreement with previously published studies employing similar codes. We further present an interpolation routine capable to extract the modelling output parameters for any planet lying within the grid boundaries. We use the grid to identify the connection between the system parameters and the resulting atmospheric properties. We finally apply the grid and the interpolation routine to estimate atmospheric evolutionary tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c...Comment: 21 pages, 4 Tables, 15 Figure

    Investigation of the solid/liquid phase transitions in the U–Pu–O system

    Get PDF
    Mixed oxides of uranium and plutonium U1-yPuyO2-x are currently studied as reference fuel for Sodium-cooled Fast Reactors (SFRs). To predict the margin to fuel melting, an accurate description of both solidus and liquidus temperatures of these materials is crucial. In this work, after a critical review of the literature data, the parameters of the liquid phase of the CALPHAD models of the Pu–O and U–Pu–O systems are reassessed based on the model of Gu´eneau et al.. A good agreement between the calculated and selected experimental data is obtained. Using this model, the melting behaviour of U1-yPuyO2±x oxides is then studied as a function of plutonium content and oxygen stoichiometry. The congruent melting for the mixed oxides is found to be shifted towards low O/M ratios compared to the end-members (UO1.97 and PuO1.95). The temperature of this congruent melting is nearly constant (3130–3140 K) along a ternary phase boundary from UO1.98 to U0.55Pu0.45O1.82 and then decreases with Pu content to a maximum of approximately 3040 K for PuO1.95. This observation is explained by the stabilisation of the hypo-stoichiometric mixed oxides due to the increase of the configurational entropy at high temperatures by the formation of oxygen vacancies and related cation mixing. The influence of the atmosphere used in the laser heating melting experiments on the oxygen stoichiometry of the sample and its solidus and liquidus temperatures is investigated. The determination of this O/M ratio after laser melting tests using XANES is also reported. The simultaneous presence of U6+, U5+, U4+, Pu3+ and Pu4+ is observed, highlighting the occurrence of charge compensation mechanisms. The samples are highly oxidised in air whereas close to stoichiometry (O/M = 2.00) in argon. These results are in agreement with the computed solidification paths. This work illustrates the complex melting behaviour of the U1-yPuyO2±x fuels and highlights the need for the CALPHAD method to accurately describe and predict the high-temperature transitions of the U–Pu–O system

    Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    Get PDF
    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non- or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet (EUV) radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photo-ionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ~0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20% that of Jupiter.Comment: 8 pages, 6 figures, 2 tables, accepted to MNRA

    Spectral Evolution of PKS 2155-304 observed with BeppoSAX during an Active Gamma-ray Phase

    Get PDF
    We present the results of BeppoSAX observations of PKS 2155-304 during an intense gamma-ray flare. The source was in a high X-ray state. A temporal analysis of the data reveals a tendency of the amplitude of variations to increase with energy, and the presence of a soft lag with a timescale of the order 10^3 s. A curved continuum spectrum, with no evidence of spectral features, extends up to ~50 keV, while there is indication of a flatter component emerging at higher energies, consistent with the interpretation of the broad band spectral energy distribution (SED) as due to synchrotron self-Compton (SSC) emission from a single region. Notably, the fitting of the SED with such a model is consistent with an interpretation of the detected soft lag as due to radiative cooling, supporting the idea that radiation losses play an important role in variability. The observed shifts of the SED peaks between the lowest and highest flux levels can be accounted for by an increase of the break energy in the relativistic particle spectrum. The model predicts emission at TeV energies in good agreement with the recently reported detection.Comment: 36 pages (8 figures), Latex with AAS macros, etc), accepted for publication on Astrophysical Journa
    corecore