We investigate the interaction between the magnetized stellar wind plasma and
the partially ionized hydrodynamic hydrogen outflow from the escaping upper
atmosphere of non- or weakly magnetized hot Jupiters. We use the well-studied
hot Jupiter HD 209458b as an example for similar exoplanets, assuming a
negligible intrinsic magnetic moment. For this planet, the stellar wind plasma
interaction forms an obstacle in the planet's upper atmosphere, in which the
position of the magnetopause is determined by the condition of pressure balance
between the stellar wind and the expanded atmosphere, heated by the stellar
extreme ultraviolet (EUV) radiation. We show that the neutral atmospheric atoms
penetrate into the region dominated by the stellar wind, where they are ionized
by photo-ionization and charge exchange, and then mixed with the stellar wind
flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced
magnetic field forms in front of the planetary obstacle, which appears to be
much stronger compared to those produced by the solar wind interaction with
Venus and Mars. Depending on the stellar wind parameters, because of the
induced magnetic field, the planetary obstacle can move up to ~0.5-1 planetary
radii closer to the planet. Finally, we discuss how estimations of the
intrinsic magnetic moment of hot Jupiters can be inferred by coupling
hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models
together with UV observations. In particular, we find that HD 209458b should
likely have an intrinsic magnetic moment of 10-20% that of Jupiter.Comment: 8 pages, 6 figures, 2 tables, accepted to MNRA