1,389 research outputs found
Relativistic structure formation models and gravitoelectromagnetism
In the framework of Lagrangian perturbation theory in general relativity we
discuss the possibility to split the Einstein equations, written in terms of
spatial Cartan coframes within a 3+1 foliation of spacetime, into
gravitoelectric and gravitomagnetic parts. While the former reproduces the full
hierarchy of the Newtonian perturbation solutions, the latter contains
non-Newtonian aspects like gravitational waves. This split can be understood
and made unique through the Hodge decomposition of Cartan coframe fields.Comment: 6 pages; contribution to the proceedings of MG14, Parallel Session
DE
DEMON: a Local-First Discovery Method for Overlapping Communities
Community discovery in complex networks is an interesting problem with a
number of applications, especially in the knowledge extraction task in social
and information networks. However, many large networks often lack a particular
community organization at a global level. In these cases, traditional graph
partitioning algorithms fail to let the latent knowledge embedded in modular
structure emerge, because they impose a top-down global view of a network. We
propose here a simple local-first approach to community discovery, able to
unveil the modular organization of real complex networks. This is achieved by
democratically letting each node vote for the communities it sees surrounding
it in its limited view of the global system, i.e. its ego neighborhood, using a
label propagation algorithm; finally, the local communities are merged into a
global collection. We tested this intuition against the state-of-the-art
overlapping and non-overlapping community discovery methods, and found that our
new method clearly outperforms the others in the quality of the obtained
communities, evaluated by using the extracted communities to predict the
metadata about the nodes of several real world networks. We also show how our
method is deterministic, fully incremental, and has a limited time complexity,
so that it can be used on web-scale real networks.Comment: 9 pages; Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Beijing, China, August 12-16, 201
Lagrangian theory of structure formation in relativistic cosmology III: gravitoelectric perturbation and solution schemes at any order
The relativistic generalization of the Newtonian Lagrangian perturbation
theory is investigated. In previous works, the first-order trace solutions that
are generated by the spatially projected gravitoelectric part of the Weyl
tensor were given together with extensions and applications for accessing the
nonperturbative regime. We furnish here construction rules to obtain from
Newtonian solutions the gravitoelectric class of relativistic solutions, for
which we give the complete perturbation and solution schemes at any order of
the perturbations. By construction, these schemes generalize the complete
hierarchy of solutions of the Newtonian Lagrangian perturbation theory.Comment: 17 pages, a few minor extensions to match the published version in
PR
PlayeRank: data-driven performance evaluation and player ranking in soccer via a machine learning approach
The problem of evaluating the performance of soccer players is attracting the
interest of many companies and the scientific community, thanks to the
availability of massive data capturing all the events generated during a match
(e.g., tackles, passes, shots, etc.). Unfortunately, there is no consolidated
and widely accepted metric for measuring performance quality in all of its
facets. In this paper, we design and implement PlayeRank, a data-driven
framework that offers a principled multi-dimensional and role-aware evaluation
of the performance of soccer players. We build our framework by deploying a
massive dataset of soccer-logs and consisting of millions of match events
pertaining to four seasons of 18 prominent soccer competitions. By comparing
PlayeRank to known algorithms for performance evaluation in soccer, and by
exploiting a dataset of players' evaluations made by professional soccer
scouts, we show that PlayeRank significantly outperforms the competitors. We
also explore the ratings produced by {\sf PlayeRank} and discover interesting
patterns about the nature of excellent performances and what distinguishes the
top players from the others. At the end, we explore some applications of
PlayeRank -- i.e. searching players and player versatility --- showing its
flexibility and efficiency, which makes it worth to be used in the design of a
scalable platform for soccer analytics
Local Rule-Based Explanations of Black Box Decision Systems
The recent years have witnessed the rise of accurate but obscure decision
systems which hide the logic of their internal decision processes to the users.
The lack of explanations for the decisions of black box systems is a key
ethical issue, and a limitation to the adoption of machine learning components
in socially sensitive and safety-critical contexts. %Therefore, we need
explanations that reveals the reasons why a predictor takes a certain decision.
In this paper we focus on the problem of black box outcome explanation, i.e.,
explaining the reasons of the decision taken on a specific instance. We propose
LORE, an agnostic method able to provide interpretable and faithful
explanations. LORE first leans a local interpretable predictor on a synthetic
neighborhood generated by a genetic algorithm. Then it derives from the logic
of the local interpretable predictor a meaningful explanation consisting of: a
decision rule, which explains the reasons of the decision; and a set of
counterfactual rules, suggesting the changes in the instance's features that
lead to a different outcome. Wide experiments show that LORE outperforms
existing methods and baselines both in the quality of explanations and in the
accuracy in mimicking the black box
A technique for recursive invariance detection and selective program specialization
This paper presents a technique for achieving a class of optimizations related to the reduction of checks within cycles. The technique uses both Program Transformation and Abstract Interpretation. After a ñrst pass of an abstract interpreter which detects simple invariants, program
transformation is used to build a hypothetical situation that simpliñes some predicates that should be executed within the cycle. This transformation implements the heuristic hypothesis that once conditional tests hold they may continué doing so recursively. Specialized versions of predicates are generated to detect and exploit those cases in which the invariance may hold. Abstract interpretation
is then used again to verify the truth of such hypotheses and conñrm the proposed simpliñcation. This allows optimizations that go beyond those possible with only one pass of the abstract interpreter over the original program, as is normally the case. It also allows selective program
specialization using a standard abstract interpreter not speciñcally designed for this purpose, thus simplifying the design of this already complex module of the compiler. In the paper, a class of programs amenable to such optimization is presented, along with some examples and an evaluation of the proposed techniques in some application áreas such as floundering detection and reducing run-time tests in automatic logic program parallelization. The analysis of the examples presented has been performed automatically by an implementation of the technique using existing abstract interpretation and program transformation tools
An analytical framework to nowcast well-being using mobile phone data
An intriguing open question is whether measurements made on Big Data
recording human activities can yield us high-fidelity proxies of socio-economic
development and well-being. Can we monitor and predict the socio-economic
development of a territory just by observing the behavior of its inhabitants
through the lens of Big Data? In this paper, we design a data-driven analytical
framework that uses mobility measures and social measures extracted from mobile
phone data to estimate indicators for socio-economic development and
well-being. We discover that the diversity of mobility, defined in terms of
entropy of the individual users' trajectories, exhibits (i) significant
correlation with two different socio-economic indicators and (ii) the highest
importance in predictive models built to predict the socio-economic indicators.
Our analytical framework opens an interesting perspective to study human
behavior through the lens of Big Data by means of new statistical indicators
that quantify and possibly "nowcast" the well-being and the socio-economic
development of a territory
- …
