176 research outputs found

    Human germline gene editing: Recommendations of ESHG and ESHRE

    Get PDF
    Technological developments in gene editing raise high expectations for clinical applications, first of all for somatic gene editing but in theory also for germline gene editing (GLGE). GLGE is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if GLGE would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique can help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. After consulting its membership and experts, this final version of the Recommendations was endorsed by the Executive Committee and the Board of the respective Societies in May 2017. Taking account of ethical arguments, we argue that both basic and pre-clinical research regarding GLGE can be justified, with conditions. Furthermore, while clinical GLGE would be totally premature, it might become a responsible intervention in the future, but only after adequate pre-clinical research. Safety of the child and future generations is a major concern. Future discussions must also address priorities among reproductive and potential non-reproductive alternatives, such as PGD and somatic editing, if that would be safe and successful. The prohibition of human germline modification, however, needs renewed discussion among relevant stakeholders, including the general public and legislators

    Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE

    Get PDF
    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns

    Symplectic lattice gauge theories on Grid: approaching the conformal window

    Full text link
    Symplectic gauge theories coupled to matter fields lead to symmetry enhancement phenomena that have potential applications in such diverse contexts as composite Higgs, top partial compositeness, strongly interacting dark matter, and dilaton-Higgs models. These theories are also interesting on theoretical grounds, for example in reference to the approach to the large-N limit. A particularly compelling research aim is the determination of the extent of the conformal window in gauge theories with symplectic groups coupled to matter, for different groups and for field content consisting of fermions transforming in different representations. Such determination would have far-reaching implications, but requires overcoming huge technical challenges. Numerical studies based on lattice field theory can provide the quantitative information necessary to this endeavour. We developed new software to implement symplectic groups in the Monte Carlo algorithms within the Grid framework. In this paper, we focus most of our attention on the Sp(4) lattice gauge theory coupled to four (Wilson-Dirac) fermions transforming in the 2-index antisymmetric representation, as a case study. We discuss an extensive catalogue of technical tests of the algorithms and present preliminary measurements to set the stage for future large-scale numerical investigations. We also include the scan of parameter space of all asymptotically free Sp(4) lattice gauge theories coupled to varying number of fermions transforming in the antisymmetric representation.Comment: 41 pages, 16 figure

    Responsible implementation of expanded carrier screening.

    Get PDF
    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.European Journal of Human Genetics advance online publication, 16 March 2016; doi:10.1038/ejhg.2015.271

    FXS-Like Phenotype in Two Unrelated Patients Carrying a Methylated Premutation of the <i>FMR1</i> Gene.

    Get PDF
    Fragile X syndrome (FXS) is mostly caused by two distinct events that occur in the &lt;i&gt;FMR1&lt;/i&gt; gene (Xq27.3): an expansion above 200 repeats of a CGG triplet located in the 5'UTR of the gene, and methylation of the cytosines located in the CpG islands upstream of the CGG repeats. Here, we describe two unrelated families with one FXS child and another sibling presenting mild intellectual disability and behavioral features evocative of FXS. Genetic characterization of the undiagnosed sibling revealed mosaicism in both the CGG expansion size and the methylation levels in the different tissues analyzed. This report shows that in the same family, two siblings carrying different CGG repeats, one in the full-mutation range and the other in the premutation range, present methylation mosaicism and consequent decreased FMRP production leading to FXS and FXS-like features, respectively. Decreased FMRP levels, more than the number of repeats seem to correlate with the severity of FXS clinical phenotypes

    Developing a policy for paediatric biobanks: Principles for good practice

    Get PDF
    The participation of minors in biobank research can offer great benefits for science and health care. However, as minors are a vulnerable population they are also in need of adequate protective measures when they are enrolled in research. Research using biobanked biological samples from children poses additional ethical issues to those raised by research using adult biobanks. For example, small children have only limited capacity, if any, to understand the meaning and implications of the research and to give a documented agreement to it. Older minors are gradually acquiring this capacity. We describe principles for good practice related to the inclusion of minors in biobank research, focusing on issues related to benefits and subsidiarity, consent, proportionality and return of results. Some of these issues are currently heavily debated, and we conclude by providing principles for good practice for policy makers of biobanks, researchers and anyone involved in dealing with stored tissue samples from children. Actual implementation of the principles will vary according to different jurisdictions
    corecore