504 research outputs found

    Atomic Parity Nonconservation: Electroweak Parameters and Nuclear Structure

    Full text link
    There have been suggestions to measure atomic parity nonconservation (PNC) along an isotopic chain, by taking ratios of observables in order to cancel complicated atomic structure effects. Precise atomic PNC measurements could make a significant contribution to tests of the Standard Model at the level of one loop radiative corrections. However, the results also depend upon certain features of nuclear structure, such as the spatial distribution of neutrons in the nucleus. To examine the sensitivity to nuclear structure, we consider the case of Pb isotopes using various recent relativistic and non-relativistic nuclear model calculations. Contributions from nucleon internal weak structure are included, but found to be fairly negligible. The spread among present models in predicted sizes of nuclear structure effects may preclude using Pb isotope ratios to test the Standard Model at better than a one percent level, unless there are adequate independent tests of the nuclear models by various alternative strong and electroweak nuclear probes. On the other hand, sufficiently accurate atomic PNC experiments would provide a unique method to measure neutron distributions in heavy nuclei.Comment: 44 pages, INT Preprint DOE/ER/40561-050-INT92-00-1

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure

    Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    Get PDF
    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19756 disc galaxies at 0.01<z<0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L[O iii]L_{\rm {[O\,{\small {iii}}]}}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbation

    Galaxy Zoo: Are Bars Responsible for the Feeding of Active Galactic Nuclei at 0.2 < z < 1.0?

    Get PDF
    We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS, COSMOS, and GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 < z < 1.0. We use a novel method to robustly compare a sample of 120 AGN host galaxies, defined to have 10^42 erg/s < L_X < 10^44 erg/s, with inactive control galaxies matched in stellar mass, rest-frame colour, size, Sersic index, and redshift. Using the GZH bar classifications of each sample, we demonstrate that AGN hosts show no statistically significant enhancement in bar fraction or average bar likelihood compared to closely-matched inactive galaxies. In detail, we find that the AGN bar fraction cannot be enhanced above the control bar fraction by more than a factor of two, at 99.7% confidence. We similarly find no significant difference in the AGN fraction among barred and non-barred galaxies. Thus we find no compelling evidence that large-scale bars directly fuel AGN at 0.2<z<1.0. This result, coupled with previous results at z=0, implies that moderate-luminosity AGN have not been preferentially fed by large-scale bars since z=1. Furthermore, given the low bar fractions at z>1, our findings suggest that large-scale bars have likely never directly been a dominant fueling mechanism for supermassive black hole growth.Comment: 13 pages, 5 figures, 2 tables, accepted by MNRA

    Measurement of the Cosmic Ray Energy Spectrum and Composition from 10^{17} to 10^{18.3} eV Using a Hybrid Fluorescence Technique

    Get PDF
    We study the spectrum and average mass composition of cosmic rays with primary energies between 10^{17} eV and 10^{18} eV using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum as a function of energy. A complete Monte Carlo simulation of the detector response and comparisons with shower simulations leads to the conclusion that the cosmic ray intensity is changing f rom a heavier to a lighter composition in this energy range. The spectrum is consistent with earlier Fly's Eye measurements and supports the previously found steepening near 4 \times 10^{17} eV .Comment: 39 pages, 15 figures, in revtex4 epsf style, submited to AP

    Galaxy Zoo Supernovae

    Get PDF
    This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.Comment: 13 pages, 10 figures, accepted MNRA

    A Multi-Component Measurement of the Cosmic Ray Composition Between 10^{17} eV and 10^{18} eV

    Get PDF
    The average mass composition of cosmic rays with primary energies between 101710^{17}eV and 101810^{18}eV has been studied using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum, XmaxX_{max}, and in the change in the muon density at a fixed core location, ρΌ(600m)\rho_\mu(600m), as a function of energy. The composition has also been evaluated in terms of the combination of XmaxX_{max} and ρΌ(600m)\rho_\mu(600m). The results show that the composition is changing from a heavy to lighter mix as the energy increases.Comment: 14 pages including 3 figures in revtex epsf style, submited to PR

    Search for Ultra High Energy (UHE) Îł-ray counterparts of BATSE 3B catalog events

    Full text link
    We search for a Ultra High Energy (E>1014 eV)(E>1014eV) counterpart source to cosmic Îł-ray bursts detected with the BATSE detectors. Using the 3B catalog positions, we examine 115 candidate bursts with the CASA-MIA detector for UHE Îł-ray emission at or near the time of the observed Îł-ray burst. No statistically significant excess of Îł-rays is found from any of the candidate event regions. Based upon these results, we calculate the flux limits for UHE emission from these candidate event regions. Typical 95% confidence level flux limits are about 6×10−12 γ  cm−2 sec−16×10−12Îłcm−2sec−1 at a Îł-ray detection threshold of 160 TeV. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87368/2/598_1.pd
    • 

    corecore