54 research outputs found

    Different cofactor activities in γ-secretase assembly: evidence for a nicastrin–Aph-1 subcomplex

    Get PDF
    The γ-secretase complex is required for intramembrane cleavage of several integral membrane proteins, including the Notch receptor, where it generates an active signaling fragment. Four putative γ-secretase components have been identified—presenilin (Psn), nicastrin (Nct), Aph-1, and Pen-2. Here, we use a stepwise coexpression approach to investigate the role of each new component in γ-secretase assembly and activation. Coexpression of all four proteins leads to high level accumulation of mature Psn and increased proteolysis of Notch. Aph-1 and Nct may form a subcomplex that stabilizes the Psn holoprotein at an early step in γ-secretase assembly. Subcomplex levels of Aph-1 are down-regulated by stepwise addition of Psn, suggesting that Aph-1 might not enter the mature complex. In contrast, Pen-2 accumulates proportionally with Psn, and is associated with Psn endoproteolysis during γ-secretase assembly. These results demonstrate that Aph-1 and Pen-2 are essential cofactors for Psn, but that they play different roles in γ-secretase assembly and activation

    Disruption of Drosophila melanogaster Lipid Metabolism Genes Causes Tissue Overgrowth Associated with Altered Developmental Signaling.

    Get PDF
    Developmental patterning requires the precise interplay of numerous intercellular signaling pathways to ensure that cells are properly specified during tissue formation and organogenesis. The spatiotemporal function of many developmental pathways is strongly influenced by the biosynthesis and intracellular trafficking of signaling components. Receptors and ligands must be trafficked to the cell surface where they interact, and their subsequent endocytic internalization and endosomal trafficking is critical for both signal propagation and its down-modulation. In a forward genetic screen for mutations that alter intracellular Notch receptor trafficking in Drosophila melanogaster, we recovered mutants that disrupt genes encoding serine palmitoyltransferase and acetyl-CoA carboxylase. Both mutants cause Notch, Wingless, the Epidermal Growth Factor Receptor (EFGR), and Patched to accumulate abnormally in endosomal compartments. In mosaic animals, mutant tissues exhibit an unusual non-cell-autonomous effect whereby mutant cells are functionally rescued by secreted activities emanating from adjacent wildtype tissue. Strikingly, both mutants display prominent tissue overgrowth phenotypes that are partially attributable to altered Notch and Wnt signaling. Our analysis of the mutants demonstrates genetic links between abnormal lipid metabolism, perturbations in developmental signaling, and aberrant cell proliferation

    Endosomal entry regulates Notch receptor activation in Drosophila melanogaster

    Get PDF
    Signaling through the transmembrane receptor Notch is widely used throughout animal development and is a major regulator of cell proliferation and differentiation. During canonical Notch signaling, internalization and recycling of Notch ligands controls signaling activity, but the involvement of endocytosis in activation of Notch itself is not well understood. To address this question, we systematically assessed Notch localization, processing, and signaling in a comprehensive set of Drosophila melanogaster mutants that block access of cargo to different endocytic compartments. We find that γ-secretase cleavage and signaling of endogenous Notch is reduced in mutants that impair entry into the early endosome but is enhanced in mutants that increase endosomal retention. In mutants that block endosomal entry, we also uncover an alternative, low-efficiency Notch trafficking route that can contribute to signaling. Our data show that endosomal access of the Notch receptor is critical to achieve physiological levels of signaling and further suggest that altered residence in distinct endocytic compartments could underlie pathologies involving aberrant Notch pathway activation

    Modeling Clinically Heterogeneous Presenilin Mutations with Transgenic Drosophila

    Get PDF
    SummaryTo assess the potential of Drosophila to analyze clinically graded aspects of human disease, we developed a transgenic fly model to characterize Presenilin (PS) gene mutations that cause early-onset familial Alzheimer's disease (FAD). FAD exhibits a wide range in severity defined by ages of onset from 24 to 65 years [1]. PS FAD mutants have been analyzed in mammalian cell culture, but conflicting data emerged concerning correlations between age of onset and PS biochemical activity [2–4]. Choosing from over 130 FAD mutations in Presenilin-1, we introduced 14 corresponding mutations at conserved residues in Drosophila Presenilin (Psn) and assessed their biological activity in transgenic flies by using genetic, molecular, and statistical methods. Psn FAD mutant activities were tightly linked to their age-of-onset values, providing evidence that disease severity in humans primarily reflects differences in PS mutant lesions rather than contributions from unlinked genetic or environmental modifiers. Our study establishes a precedent for using transgenic Drosophila to study clinical heterogeneity in human disease

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014

    Novel Common Genetic Susceptibility Loci for Colorectal Cancer

    Get PDF
    BACKGROUND: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screenin
    • …
    corecore