50 research outputs found

    Topological Phases emerging from Spin-Orbital Physics

    Get PDF
    We study the evolution of spin-orbital correlations in an inhomogeneous quantum system with an impurity replacing a doublon by a holon orbital degree of freedom. Spin-orbital entanglement is large when spin correlations are antiferromagnetic, while for a ferromagnetic host we obtain a pure orbital description. In this regime the orbital model can be mapped on spinless fermions and we uncover topological phases with zero energy modes at the edge or at the domain between magnetically inequivalent regions.Comment: 6 pages, 5 figures, submitte

    Ultrashort Lifetime Expansion for Indirect Resonant Inelastic X-ray Scattering

    Get PDF
    In indirect resonant inelastic X-ray scattering (RIXS) an intermediate state is created with a core-hole that has a ultrashort lifetime. The core-hole potential therefore acts as a femtosecond pulse on the valence electrons. We show that this fact can be exploited to integrate out the intermediate states from the expressions for the scattering cross section. By this we obtain an effective scattering cross section that only contains the initial and final scattering states. We derive in detail the effective cross section which turns out to be a resonant scattering factor times a linear combination of the charge response function S(q,ω)S({\bf q},\omega) and the dynamic longitudinal spin density correlation function. This result is asymptotically exact for both strong and weak local core-hole potentials and ultrashort lifetimes. The resonant scattering pre-factor is shown to be weakly temperature dependent. We also derive a sum-rule for the total scattering intensity and generalize the results to multi-band systems. One of the remarkable outcomes is that one can change the relative charge and spin contribution to the inelastic spectral weight by varying the incident photon energy.Comment: 9 pages, 3 figures embedde

    Field-induced Orbital Patterns in Ferromagnetic Layered Ruthenates

    Full text link
    We study the evolution of orbital patterns in ferromagnetic layered ruthenates due to the competition of Coulomb interactions, compressive c axis and orthorhombic distortions in the presence of a polarizing orbital field coupled to the angular momentum. By means of the exact diagonalization on a 2x2 cluster and a cluster embedded analysis where inter-plaquette interaction is treated on mean field level, we determine the ground-state phase diagram. Specifically, we demonstrate that, via the activation of two or three of t_2g local orbital configurations, an external field applied along different symmetry directions can lead to inequivalent orbital correlated states. Starting from an antiferro-orbital pattern, for the easy axis case an orbital ordered phase is induced, having strong next nearest neighbors ferro-orbital correlations. Otherwise, a field applied along the hard axis leads a reduction of local orbital moment in a way to suppress the orbital order.Comment: 11 page

    Magnetic Excitations in La2CuO4 probed by Indirect Resonant Inelastic X-ray Scattering

    Get PDF
    Recent experiments on La2_2CuO4_4 suggest that indirect resonant inelastic X-ray scattering (RIXS) might provide a probe for transversal spin dynamics. We present in detail a systematic expansion of the relevant magnetic RIXS cross section by using the ultrashort core-hole lifetime (UCL) approximation. We compute the scattering intensity and its momentum dependence in leading order of the UCL expansion. The scattering is due to two-magnon processes and is calculated within a linear spin-wave expansion of the Heisenberg spin model for this compound, including longer range and cyclic spin interactions. We observe that the latter terms in the Hamiltonian enhance the first moment of the spectrum if they strengthen the antiferromagnetic ordering. The theoretical spectra agree very well with experimental data, including the observation that scattering intensity vanishes for the transferred momenta q=(0,0){\bf q} = (0,0) and q=(Ï€,Ï€){\bf q} = (\pi,\pi). We show that at finite temperature there is an additional single-magnon contribution to the scattering with a spectral weight proportional to T3T^3. We also compute the leading corrections to the UCL approximation and find them to be small, putting the UCL results on a solid basis. All this univocally points to the conclusion that the observed low temperature RIXS intensity in La2_2CuO4_4 is due to two-magnon scattering.Comment: 11 pages, 13 figures, Phys. Rev. B 77, 134428 (2008) (v4: corrected figs 7

    Tuning interchain ferromagnetic instability in A2Cr3As3 ternary arsenides by chemical pressure and uniaxial strain

    Full text link
    We analyze the effects of chemical pressure induced by alkali metal substitution and uniaxial strain on magnetism in the A2Cr3As3 (A = Na, K, Rb, Cs) family of ternary arsenides with quasi-one dimensional structure. Within the framework of the density functional theory, we predict that the non-magnetic phase is very close to a 3D collinear ferrimagnetic state, which realizes in the regime of moderate correlations, such tendency being common to all the members of the family with very small variations due to the different interchain ferromagnetic coupling. We uncover that the stability of such interchain ferromagnetic coupling has a non-monotonic behavior with increasing the cation size, being critically related to the degree of structural distortions which is parametrized by the Cr-As-Cr bonding angles along the chain direction. In particular, we demonstrate that it is boosted in the case of the Rb, in agreement with recent experiments. We also show that uniaxial strain is a viable tool to tune the non-magnetic phase towards an interchain ferromagnetic instability. The modifcation of the shape of the Cr triangles within the unit cell favors the formation of a net magnetization within the chain and of a ferromagnetic coupling among the chains. This study can provide relevant insights about the interplay between superconductivity and magnetism in this class of materials.Comment: Accepted in Phys. Rev. Materials as a regular article. 13 pages, 23 figures, 3 table

    Intra-chain collinear magnetism and inter-chain magnetic phases in Cr3As3-K-based materials

    Full text link
    We perform a comparative study of the KCr3As3 and the K2Cr3As3 quasi 1D compounds, and show that the strong interplay between the lattice and the spin degrees of freedom promotes a new collinear ferrimagnetic ground state within the chains in presence of intrachain antiferromagnetic couplings. We propose that the interchain antiferromagnetic coupling in KCr3As3 plays a crucial role for the experimentally observed spin-glass phase with low critical temperature. In the same region of the parameter space, we predict K2Cr3As3 to be non-magnetic but on the verge of the magnetism, sustaining interchain ferromagnetic spin fluctuations while the intrachain spin fluctuations are antiferromagnetic.Comment: Accepted in Phys. Rev. B as a regular articl

    Identification and Somatic Characterization of the Germline PTEN Promoter Variant rs34149102 in a Family with Gastrointestinal and Breast Tumors

    Get PDF
    Genetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the PTEN gene have been previously identified in patients with PTEN hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a PTEN promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer. In order to investigate the putative functional role of the rs34149102 A allele variant, we evaluated the status of PTEN alterations at the somatic level. We found that PTEN protein expression was absent in the GEJ adenocarcinoma tissue of the index case. Moreover, we detected the occurrence of copy number loss involving the PTEN rs34149102 major C allele in tumor tissue, revealing that the second allele was somatically inactivated. This variant is located within an active regulatory region of the PTEN core promoter, and in silico analysis suggests that it may affect the binding of the nuclear transcription factor MAZ and hence PTEN expression. Overall, these results reveal the functional role of the PTEN promoter rs34149102 A allele variant in the modulation of PTEN protein expression and highlight its contribution to hereditary cancer risk

    Characterization of a rare variant (c.2635-2A>G) of the MSH2 gene in a family with Lynch syndrome

    Get PDF
    Abstract Introduction: Lynch syndrome is caused by germline mutations in one of the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2) or in the EPCAM gene. Lynch syndrome is defined on the basis of clinical, pathological, and genetic findings. Accordingly, the identification of predisposing genes allows for accurate risk assessment and tailored screening protocols. Case Description: Here, we report a family case with three family members manifesting the Lynch syndrome phenotype, all of which harbor the rare variant c.2635-2A>G affecting the splice site consensus sequence of intron 15 of the MSH2 gene. This mutation was previously described only in one family with Lynch syndrome, in which mismatch repair protein expression in tumor tissues was not assessed. In this study, we report for the first time the molecular characterization of the MSH2 c.2635-2A>G variant through in silico prediction analysis, microsatellite instability, and mismatch repair protein expression experiments on tumor tissues of Lynch syndrome patients. The potential effect of the splice site variant was revealed by three splicing prediction bioinformatics tools, which suggested the generation of a new cryptic splicing site. The potential pathogenic role of this variant was also revealed by the presence of microsatellite instability and the absence of MSH2/MSH6 heterodimer protein expression in the tumor cells of cancer tissues of the affected family members. Conclusions: We provide compelling evidence in favor of the pathogenic role of the MSH2 variant c.2635-2A>G, which could induce an alteration of the canonical splice site and consequently an aberrant form of the protein product (MSH2)

    Orbital-selective metal skin induced by alkali-metal-dosing Mott-insulating Ca2RuO4

    Full text link
    Doped Mott insulators are the starting point for interesting physics such as high temperature superconductivity and quantum spin liquids. For multi-band Mott insulators, orbital selective ground states have been envisioned. However, orbital selective metals and Mott insulators have been difficult to realize experimentally. Here we demonstrate by photoemission spectroscopy how Ca2_{2}RuO4_{4}, upon alkali-metal surface doping, develops a single-band metal skin. Our dynamical mean field theory calculations reveal that homogeneous electron doping of Ca2_{2}RuO4_{4} results in a multi-band metal. All together, our results provide evidence for an orbital-selective Mott insulator breakdown, which is unachievable via simple electron doping. Supported by a cluster model and cluster perturbation theory calculations, we demonstrate a type of skin metal-insulator transition induced by surface dopants that orbital-selectively hybridize with the bulk Mott state and in turn produce coherent in-gap states
    corecore