
J Supercond Nov Magn (2018) 31:639–645
https://doi.org/10.1007/s10948-017-4416-7

ORIGINAL PAPER

Topological Phases Emerging from Spin-Orbital Physics

Wojciech Brzezicki1,2 ·Mario Cuoco1,2 · Filomena Forte1,2 ·Andrzej M. Oleś3,4
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1 Introduction

Transition metal oxides are fascinating materials where sev-
eral degrees of freedom (i.e., spin, orbital, charge, etc.)
couple and, from a theoretical point of view, need to be
treated on equal footing in order to provide reliable predic-
tions. In undoped 3d Mott insulators large on-site Coulomb
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interactions localize electrons and the coupling between
transition metal ions is controlled by a low-energy spin-
orbital superexchange introduced first by Kugel and Khom-
skii [1]. As for spins, orbital degrees of freedom have a
quantum character and can drive strong fluctuations which
end in destroying long range order [2] or lead to exotic novel
types of magnetic order [3]. However, such cases are rare
in eg systems and, typically, long range order in both spin
and orbital sector develops in perovskite lattices [4], with
the corresponding correlations following the Goodenough-
Kanamori rules [5]. A well known example is the spin-
orbital order in LaMnO3 [6], with different energy scales
for spin and orbital order [7]. However, there are numerous
deviations from these rules caused either by superexchange
on non-linear bonds [8], or by lattice frustration such as for
instance in LiNiO2 [9], or by spin-orbital entanglement [10],
or, finally, by the presence of next nearest neighbor hop-
ping [11]. In t2g systems, orbital superexchange has leading
contributions with SU(2) symmetry along a given cubic
direction thus orbital fluctuations are much stronger [12]
than in eg and a spin-orbital liquid emerging from intrin-
sic frustration is more likely to occur [13–15]. On the other
hand, ordered states may be even stabilized by orbital fluc-
tuations [16] as for instance in LaVO3 [17] and Ca2RuO4

[18]—in this latter case spin-orbit coupling also plays a
role [19]. Quantum fluctuations and spin-orbital entangle-
ment [20] are of great importance in this class of materials
and may lead to novel phenomena as superconductivity in
the pnictides driven by competing symmetries at orbital
degeneracy [21], or spectacular topological structure of
the excited states in the one-dimensional (1D) SU(2)⊗XY
model [22], or, finally, dimerised phases [23].

Doping of Mott insulators adds another charge degree of
freedom in spin-orbital systems and leads to several remark-
able phenomena. Recently, short-range charge-density wave

Abstract We study the evolution of spin-orbital corre-
lations in an inhomogeneous quantum system with an
impurity replacing a doublon by a holon orbital degree
of freedom. Spin-orbital entanglement is large when spin
correlations are antiferromagnetic, while for a ferromag-
netic host we obtain a chain with only orbital interactions.
In this regime, the orbital model can be mapped on spin-
less fermions and we uncover topological phases with zero
energy modes at the edge or at the domain between magnet-
ically inequivalent regions.
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Fig. 1 Artist’s view of a ring of length L = 8 containing seven d4 host
atoms i = 2, . . . , 8 with parameters {U2, J2} and one charge impurity
d2 at site i = 1 (filled circle), with parameters {�, J1}. The color
convention for the bonds 〈i, i + 1〉 is the same as in Figs. 2, 3, and 4

for t2g electrons [4], responsible for the high spin states with
spin S = 1 at the host d4 ions. In the regime of strong
electron interactions, we obtain a spin-orbital model with
spin S = 1 at every site and an orbital degree of freedom
described by a pseudospin T = 1

2 . Since we work in one
dimension and with t2g orbitals, we select the cubic axis c

with the active orbitals [16]: |a〉 ≡ |yz〉 and |b〉 ≡ |xz〉.
However, the situation becomes less familiar when some

of the d4 ions are substituted by the d2 ones. In the regime
of low doping, all the bonds will be either between two d4

ions, called host bonds, or between d2 and d4 ions around
an impurity site—these we call hybrid bonds. The superex-
change Hamiltonian for both kinds of bonds has a generic
form (all the bonds are along the cubic axis c in the 1D
chain) [32],

Hb = Jb

∑

〈i〉

{
K

(b)
i,i+1

�Si · �Si+1 + Q
(b)
i,i+1

}
, (1)

where the label b = {0,h} stands for the type of bond and

the operators
{
K

(b)
i,i+1

}
and

{
Q

(b)
i,i+1

}
act in the orbital space

at two sites, {i, i + 1}. These operators differ fundamentally
for the hybrid and host bonds, i.e., for the host they take the
U(1) symmetric form of,
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whereas for the hybrid bonds the symmetry is lowered,

K
(h)
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Here, τα
i are the Pauli operators describing doublon/holon

fluctuating between |a〉 and |b〉 orbitals. They are defined
by the Pauli matrices �σ as

�τi =
(

a
†
i b

†
i

)
· �σ · (

ai bi

)T
, (6)

where hardcore boson operators a
†
i and b

†
i create holon or

doublon in the orbitals |a〉 and |b〉, respectively.
Coefficient Jb in the spin-orbital model (1) is a superex-

change constant and is given by J0 = 4t2
0 /U2 and Jh =

2t2
h /� (note that the excitations which provide the main

called stripe phase was reported in doped cuprates [24]. It
has been suggested that the critical charge, orbital, and spin
fluctuations near the quantum critical point provide the pair-
ing interaction [25]. As in doped cuprates, the holes doped
in t2g orbitals may be mobile due to three-site terms [26] or
self-organization in stripe phases [27]. However, the forma-
tion of orbital molecules makes 1D insulating zigzag states
kinetically more favorable than metallic stripes [28]. Insu-
lating state is also found [29] when holes are confined near
charge defects in Y1−xCaxVO3 [30].

In contrast, neutral defects in spin-orbital systems lead
to orbital dilution (with a local increase of spin to S = 3

2 )
[31] or to charge dilution [32] (with invariant spin S = 1
states), and to the changes in spin-orbital order [33]. These
phenomena are distinct from the orbital dilution in cuprates
where holes remove simultaneously spin and orbital degree
of freedom [34]. The t2g systems with charge dilution
are unexplored yet—they will likely play a major role in
future functional materials and, possibly, in novel elec-
tronic devices. The purpose of the paper is to investigate
the consequences of charge dilution in a t2g system due
to the substitution of a d4 by a d2 transition metal ion.
Such type of doping allows to uniquely design a spin-
orbital correlated environment with an orbital degree of
freedom having an inequivalent charge character. Indeed,
for d2 and d4 valence configurations, the empty orbital (i.e.,
holon) and the doubly occupied state (i.e., doublon) set the
orbital degree of freedom, respectively. As an experimental
motivation we mention, among the various emergent phe-
nomena and the many possible hybrid oxides which could
be designed, that (i) dilute Cr doping for Ru reduces the
temperature of the orthorhombic distortion, induces fer-
romagnetic (FM) order and anomalous negative thermal
expansion in Ca2Ru1−xCrxO4 (with 0 < x < 0.13) [35],
and (ii) Mn-substituted single crystals of Sr3Ru2−xMnxO7

rapidly drive an unusual metal-insulator transition and E-
type antiferromagnetic (AF) order at low doping [36]. The
theoretical search for the consequences of holon-doublon
substitution is performed for a 1D ring and we analyze both
spin and orbital correlations around the charge defect. We
give reasons why the FM regime is well designed to search
for topological aspects of the present model.

2 Spin-Orbital Physics and Charge Dilution

We consider a 1D ring made of d4 transition metal ions in
the insulating regime, with one d2 charge defect, see Fig. 1.
The physics of the undoped system is governed by a spin-
orbital superexchange model which is equivalent, through
an electron-hole transformation, to that introduced for vana-
dates [37]. It depends on two Kanamori’s parameters: the
intraorbital Coulomb element U2 and Hund’s exchange J2
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contribution on the hybrid bond go in one direction only),
where tb (b = 0, h) is a hopping amplitude along host-host
or impurity-host bond, and U2 is the Hubbard interaction for
the host (d4) atoms. � is a typical excitation energy scale in
the virtual process d2

i d4
j ⇒ d3

i d3
j (or charge transfer energy)

given by,

� ≡ Ie + 2U1 − 3U2 − 6(J1 + J2). (7)

Here, U1 and J1 are Hubbard and Hund’s interactions at
the d2 impurity site. Ie is the energy mismatch of the
electronic levels at two ions; since � must be positive
and relatively large, this implies that Ie > Ui must be
the largest energy scale in the system. The coefficients
AK(Q), . . . , CK(Q) and DK(Q), . . . , GK(Q) in (2)–(5) are
numerical constants depending on microscopic parame-
ters of the ions: AK(Q), . . . , CK(Q) depend only on host’s
parameter η0 and DK(Q), . . . , GK(Q) both on host’s and
impurity’s Hund’s exchange η1 and η2, where

η ≡ J2

U2
, η1 ≡ J1

�
, η2 ≡ J2

�
. (8)

All these η’s measure the relative strength of Hund’s
exchange with respect to typical excitation energy—in case
of host bonds it is U2, whereas for hybrid bonds it is �

(7). The exact functional forms of these coefficients are
complicated and will be reported elsewhere.

The properties of the host and hybrid bonds are the fol-
lowing: a single host’s bond is always FM in spin and AF in
orbital sector because of an orbital singlet which is formed
on a bond [16]. This however is not stable when there are
more than one bond—for a longer 1D system as for L = 8
chain considered here we find AF spin correlations for low
η (8) turning FM in a high η limit. The case of a hybrid bond
is much simpler: despite the complicated form of the Hamil-
tonian (1) it always gives AF spin correlations accompanied
by FM 〈τ z

i τ z
i+1〉 orbital correlations. Because of these intrin-

sic difference between host and hybrid bonds, it is essential
to check the ground state properties of a finite system with
single impurity, see Fig. 1.

In Fig. 2, we show the ground state spin and orbital cor-
relations obtained for a closed chain of L = 8 sites with a
single d2 impurity, see Fig. 1. The results are shown as func-
tions of η for fixed values of J0, Jh, η1, and η2 which weakly
influence the overall behavior. Due to translational invari-
ance, one finds four inequivalent bonds, see Fig. 1. There are
two regimes: (i) AF with total spin S = 2 (

〈∑
i Sz

i

〉 = 2) for
η < 0.09, (ii) FM with S = 6 (

〈∑
i Sz

i

〉 = 6) for η > 0.09
(however the hybrid impurity bonds are always AF). In the
AF regime at η = 0, all the spin correlations are AF, but
a level crossing occurs at η = 0.033 where the magnetic
moment delocalizes from the impurity to its two neighbors,
remaining nearly constant within these three sites.

Surprisingly, for increasing η < 0.09, the spin cor-
relations between second and third neighbors of impurity
become soon FM, due to spin-orbital entanglement, but the
remaining spin correlations are AF. In the FM regime, all the
host bonds have almost saturated FM spin correlations, �
+1, while they tend to the classical value of −1 for increas-
ing η on hybrid bonds, see Fig. 2a. The orbital 〈τ z

i τ z
i+1〉

correlations behave more regularly; they are AF for host
bonds and FM for hybrid bonds in both regimes of η, see
Fig. 2b. For the off-diagonal orbital correlations, we define
the conventional τ±

i operators as τ±
i ≡ 1

2 (τ x
i ±τ

y
i ) (here

τ
x(y)
i are normalized to ±1). It turns out that 〈τ+

i τ−
i+1〉 corre-

lations are significant only for the host bonds and 〈τ+
i τ+

i+1〉
only for hybrid bonds and they are always AF, see Fig. 2c.

To investigate the spin-orbital entanglement, we intro-
duce covariances for the various correlators,

Czz
i,i+1 =

〈�Si
�Si+1τ

z
i τ z

i+1

〉
−

〈�Si
�Si+1

〉 〈
τ z
i τ z

i+1

〉
, (9)

C+σ
i,i+1 =

〈�Si
�Si+1τ

+
i τ σ

i+1

〉
−

〈�Si
�Si+1

〉 〈
τ+
i τ σ

i+1

〉 + H.c., (10)

with σ = ±. In Fig. 3, we show the spin-orbital covariances
in the AF and FM regime. One finds that both longitudinal
(Czz

i,i+1) and transverse (C+σ
i,i+1) covariances are large in the

AF regime. Moreover, as one could expect, they are much
lower at higher η > 0.1 when the host spin correlations
are FM, while they tend to zero as η increases, see Fig. 3.
Interestingly, the transverse covariance for the hybrid bond
is positive (C++

i,i+1 > 0) in the entire regime of parame-
ters which suggests that double orbital excitations are strong
on hybrid bonds. Thus, we conclude that the factorization
into spin and orbital operators is a good approximation only
in the FM regime and for this case we set the spin-spin
correlations as equal to ±1 for the host-impurity bonds.

3 Topological States in the Orbital Model

Factorization of spin and orbital degrees of freedom is
allowed in the FM regime and leads to an effective orbital-
only Hamiltonian,

H 0
i,j = 1

4
J0

1

1 − 3η
�τi �τj ,

H h
i,j = Jh

(
Axxτ

x
i τ x

j + Ayyτ
y
i τ

y
j + Azzτ

z
i τ z

j

)
, (11)

for the host and hybrid bonds, respectively. This purely
orbital Hamiltonian can be mapped on spinless fermions by
the Jordan-Wigner transformations.

For symmetry reasons, we find an exact relation Azz ≡
−Axx , and we also get that Axx and Ayy almost compensate
each other so their sum Axx +Ayy = δ has a relatively small
amplitude. It is however important to point out that δ 	= 0
because in the representation of Jordan-Wigner fermions δ
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Fig. 2 Ground-state spin and
orbital correlations on the bonds
for a closed chain of length
L = 8 shown in Fig. 1. The
computation is performed by
means of exact diagonalization
as a function of η. Left
column—AF host with small η,
right column—FM host with
larger η. Rows: a spin 〈 �Si

�Si+1〉
correlations, b orbital 〈τ z

i τ z
i+1〉

correlations, and c orbital〈
τ+
i τ−

i+1

〉
(
〈
τ+
i τ+

i+1

〉
) correlations

for the host/hybrid bond.
Parameters: J0 = 1, Jh = 2,
η1 = η2 = 1

is proportional to the hopping amplitude whereas Axx −Ayy

gives pairing amplitude — both are necessary to induce a
topological non-trivial state. All the {Aα,α} coefficients are
functions of η1 and η2, while we find that the dependence
on η1 is very weak. Thus, we fix η1 = 4 (η is already fixed
as η = 0.2) and we show the behavior of the Aα,α coupling
in Fig. 4c. We note that η2 = 0 is a high symmetry point
where Aα,α ≡ 0.5 for any η1.

Hence, by means of the Hartree-Fock decoupling, we
deal with fermion-interaction term 〈τ z

i τ z
i+1〉 in a self-

consistent manner and we obtain the bond
〈
τα
i τα

i+1

〉
orbital

correlations for a periodic (and infinite) system with one
d2 impurity per every L = 8 sites. We find that in the
present parameter regime the 〈τ z

i τ z
i+1〉 vanish and one gets

only the kinetic terms 〈τx
i τ x

i+1〉 and 〈τy
i τ

y

i+1〉. For the host

bonds, they are all AF while for the hybrid ones the xx

correlations are AF and yy ones are FM, see Fig. 4a. Inter-
estingly, we obtain a discontinuous transition at η2 = 0+
between anisotropic and isotropic phases—the difference
between xx and yy correlations is triggered by any finite
η2, see Fig. 4b. Finally, at finite η2, one always gets a
regime with a non-trivial topological phase with respect to
the Jordan-Wigner fermionic representation.

Indeed, the fermionic Hamiltonian in the momentum
space is given by a matrix Hk that belongs to the BDI
Altland-Zirnbauer class [38]. Thus, it can have a non-trivial
Z topological number. The topological invariant can be
determined by looking at Hk in the eigen-basis of the chiral
symmetry where it consists of two anti-diagonal blocks uk

and u
†
k . The determinant of uk , Dk ≡ det uk , is a complex
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Fig. 3 Ground state spin-orbital
covariances Cαβ

i,i+1 on the bonds
for a closed chain system of
length L = 8 (Fig. 1), obtained
via exact diagonalization as
functions of η for orbital
correlations: a

〈
τ z
i τ z

i+1

〉
;

b
〈
τ+
i τ−

i+1

〉
(
〈
τ+
i τ+

i+1

〉
) for the

host (hybrid) bonds. Left (right)
column — AF (FM) host with
small (large) η. Parameters:
J0 = 1, Jh = 2, η1 = η2 = 1

Fig. 4 Orbital model results
obtained in Hartree-Fock (11) in
the regime of FM host as a
function of η2 = J2/�: a bond
correlations 〈τx

i τ x
i+1〉 and

±〈τy
i τ

y

i+1〉 (solid and dashed
lines), with color convention as
in Fig. 1; b magnified view of (a)
for η2 → 0; c orbital couplings
Azz and sum Axx + Ayy (solid
and dashed) for hybrid bonds,
and d topologically relevant
quantities, ImDπ/2 and D0Dπ

(solid and dashed). Parameters:
J0 = 1, Jh = 2, η1 = 4, η = 0.2

number which yields a non-trivial topological number if it
winds around the (0, 0) point in the complex plane as k

changes from 0 to 2π . In the present case, this happens if

(i) the imaginary part of Dπ/2 is non-vanishing and (ii) the
determinants D0 and Dπ have opposite signs. In Fig. 4d, we
observe that indeed these conditions hold as long as η2 > 0.
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Fig. 5 Energy spectra and edge
states for a fully disordered 1D
chain (12) of size L=20000 and
N =200 random impurities for:
a a closed chain, and b an open
chain, exhibiting two zero
energy states in the gap. The
occupation probabilities {pi} for
the Majorana zero-energy states
in the gap at: c the right chain
edge, and d the left chain edge

Recently, the topological phase diagram of a 1D tight-
binding model of spinless electrons with an inhomogeneous
distribution of pairing centers has been investigated [39].
The Hamiltonian includes inhomogeneities generated by
diluted pairing centers with a given distribution profile in
the unit cell of length L. For a periodic configuration with
momentum k, we get,

H =
L∑

p=1
k

{
tpc

†
kpck,p+1+�pc

†
kpc

†
−k,p+1+H.c.+μpc

†
kpckp

}
,

(12)

with cL+1,k ≡ eikc1,k and {tp, �p} being the nearest neigh-
bor hopping and on-bond pairing amplitudes. There, we
have found the topological invariant that can be gener-
ally expressed in terms of the physical parameters for any
pairing center configuration [39].

Here, we emphasize the occurrence of edge states and
present the spectra around zero energy for a closed and open
system, see Fig. 5a, b. We note that for an open system,
there are two zero-energy states appearing in the gap. These
are Majorana end modes that arise as a consequence of the
bulk-boundary correspondence in a topologically non-trivial
configuration. In Fig. 5c, d, the spatial occupation probabil-
ities pi for the two zero energy states are explicitly shown in
order to confirm their degree of localization on the right/left
edges of the 1D chain. We also point out that the modifi-
cation of the kinetic term with the inclusion of long-range
hopping is expected to lead to multiple Majorana end modes
both in spinless [40] and spinfull p-wave superconducting
chains [41].

4 Discussion and Summary

In conclusion, we have studied a one-dimensional hybrid
d2-d4 system with a single d2 impurity in a d4 spin-
orbital correlated host. Remarkably, the exact diagonaliza-
tion analysis allows to single out regimes for which the
orbitals and spins can be factorized if the host config-
uration is FM. By this decoupling one finds interacting
orbital pseudospins exhibiting fully isotropic exchange for
the host bonds and fully anisotropic for the hybrid ones.
A Jordan-Wigner transformation and Hartree-Fock decou-
pling allow, then, to map the system on non-interacting
fermions and to find topological non-trivial states. Unex-
pectedly, a topological non-trivial state occurs for any
finite value of J2, i.e., the amplitude of the Hund’s cou-
pling at the host’s ions. For a long chain we explicitly
demonstrate that Majorana-like modes occur at the edge
of the system. We argue that inhomogeneous topological
patterns [42] can be achieved in the present spin-orbital
scenario with Majorana modes occurring, for instance, at
the boundary of the FM region if the impurities drive a
magnetic configuration that has alternating FM with AF
domains.
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for p orbitals in alkali hyperoxides — generalization of the
Goodenough-Kanamori rules. Europhys. Lett. (EPL) 96, 27001
(2011)

12. Khaliullin, G.: Orbital order and fluctuations in Mott insulators.
Prog. Theor. Phys. Suppl. 160, 155 (2005)
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30. Horsch, P., Oleś, A.M.: Defect states and spin-orbital physics in
doped vanadates Y1−xCaxVO3. Phys. Rev. B 84, 064429 (2011)

31. Brzezicki, W., Oleś, A.M., Cuoco, M.: Spin-orbital order modified
by orbital dilution in transition-metal oxides: From spin defects to
frustrated spins polarizing host orbitals. Phys. Rev. X 5, 011037
(2015)
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