1,325 research outputs found

    Reduction of tilt rotor download using circulation control

    Get PDF
    The effect of boundary layer control blowing on the download of a wing in the wake of a hovering rotor was measured in a small scale experiment. The objective was to evaluate the potential of boundary layer control blowing for reducing tilt rotor download. Variations were made in rotor thrust coefficient, blowing pressure ratio, and blowing slot height. The effect of these parameter variations on the wing download and wing surface pressures is presented. The boundary layer control blowing caused reductions in the wing download of 25 to 55 percent

    Gravitational Lensing & Stellar Dynamics

    Full text link
    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.Comment: 6 pages, 2 figures; Invited contribution in the Proceedings of XXIst IAP Colloquium, "Mass Profiles & Shapes of Cosmological Structures" (Paris, 4-9 July 2005), eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP Sciences

    Methods for heat transfer and temperature field analysis of the insulated diesel phase 2 progress report

    Get PDF
    This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the framework of thermodynamic cycle codes. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition

    Methods for heat transfer and temperature field analysis of the insulated diesel

    Get PDF
    Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed

    Determination of the Antiferroquadrupolar Order Parameters in UPd3

    Get PDF
    By combining accurate heat capacity and X-ray resonant scattering results we have resolved the long standing question regarding the nature of the quadrupolar ordered phases in UPd_3. The order parameter of the highest temperature quadrupolar phase has been uniquely determined to be antiphase Q_{zx} in contrast to the previous conjecture of Q_{x^2-y^2} . The azimuthal dependence of the X-ray scattering intensity from the quadrupolar superlattice reflections indicates that the lower temperature phases are described by a superposition of order parameters. The heat capacity features associated with each of the phase transitions characterize their order, which imposes restrictions on the matrix elements of the quadrupolar operators.Comment: 4 pages, 5 figure

    Optically-induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice

    Full text link
    We report the experimental observation of a lensing effect on a Bose-Einstein condensate expanding in a moving 1D optical lattice. The effect of the periodic potential can be described by an effective mass dependent on the condensate quasi-momentum. By changing the velocity of the atoms in the frame of the optical lattice we induce a focusing of the condensate along the lattice direction. The experimental results are compared with the numerical predictions of an effective 1D theoretical model. Besides, a precise band spectroscopy of the system is carried out by looking at the real-space propagation of the atomic wavepacket in the optical lattice.Comment: 5 pages, 4 figures; minor changes applied and typos corrected; a new paragraph added; some references updated; journal reference adde

    Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large-scale structures

    Get PDF
    We report the detection of a significant (5.5 sigma) excess of correlations between galaxy ellipticities at scales ranging from 0.5 to 3.5 arc-minutes. This detection of a gravitational lensing signal by large-scale structure was made using a composite high quality imaging survey of 6300 arcmin^2 obtained at the Canada France Hawaii Telescope (CFHT) with the UH8K and CFH12K panoramic CCD cameras. The amplitude of the excess correlation is 2.2\pm 0.2 % at 1 arcmin scale, in agreement with theoretical predictions of the lensing effect induced by large-scale structure.We provide a quantitative analysis of systematics which could contribute to the signal and show that the net effect is small and can be corrected for. We show that the measured ellipticity correlations behave as expected for a gravitational shear signal. The relatively small size of our survey precludes tight constraints on cosmological models. However the data are in favor of cluster normalized cosmological models, and marginally reject Cold Dark Matter models with (Omega=0.3, sigma_8<0.6) or (Omega=1, sigma_8=1). The detection of cosmic shear demonstrates the technical feasibility of using weak lensing surveys to measure dark matter clustering and the potential for cosmological parameter measurements, in particular with upcoming wide field CCD cameras.Comment: 19 pages. 19 Figures. Revised version accepted in A&

    Quantum global vortex strings in a background field

    Full text link
    We consider quantum global vortex string correlation functions, within the Kalb-Ramond framework, in the presence of a background field-strength tensor and investigate the conditions under which this yields a nontrivial contribution to those correlation functions. We show that a background field must be supplemented to the Kalb-Ramond theory, in order to correctly describe the quantum properties of the vortex strings. The explicit form of this background field and the associated quantum vortex string correlation function are derived. The complete expression for the quantum vortex creation operator is explicitly obtained. We discuss the potential applicability of our results in the physics of superfluids and rotating Bose-Einstein condensates.Comment: To appear in Journal of Physics A: Mathematical and Genera
    corecore