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SUMMARY 

Thi s report presents the resul ts of Phase II of a three-phase program 
sponsored by DOE and administered by NASA. The program was initiated in 
June 1983. The objective of the program is to develop a methodology for 

the analysis of insulated diesel engine concepts, validate it with 
experiments, and to use the methodology to address significant issues 
re 1 ated to opt i mi zat i on of the concepts. The progress made on the 
program during the first year has been described in the Phase I Report 

issued in August 1984 (DOE/NASA/0342-1, NASA CR-174783). 

During the first year of the program, work concentrated on the develop­
ment of a new convective heat transfer model based on fluid flow calcu­
lations including swirl, squish and turbulence. Another task that was 
fully completed was a method for studying surface temperature transients 

fully coupled with the in-cyl inder gas-phase heat transfer and with 
steady-state conduction through the engine structure. Preliminary work 
was carried out in areas of heat radiation (completed during Phase II), 
analysis of insulated diesel engine conccepts (continued in Phase II), 

single cylinder engine installation (completed in Phase II) and develop­
ment of experimental techniques (continued in Phase II). 

During the second year of the program, progress was made in a number of 

areas. In the area of heat radiation a comprehensive model was devel­
oped, that represents the key phenomena and processes whi ch affect 
radiation heat transfer in diesel engines. The absorption and emission 
of radiation by soot is treated by a kinetics-based model which cal­

culates the soot formation and burnup. The geometrical description of 
the process, which is essential to calculation of spatial distribution, 

uses a zonal approach capable of treating surface radiation and multiple 

reflections. Predictions were made of heat radiation as a function of 
speed and load, and it was found that for a heavy duty highway truck 
engine, radiation accounts for five to twenty-five percent of the total 

in-cylinder heat transfer. Under insulated conditions this fraction in­
creases, and ranges from ten to over forty percent. Thi s means that 
correct representation of radiative heat transfer is essential in 

insulated engine studies. 
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A methodology was developed for coupling the multi-dimensional heat 

conduction calculations to cycle thermodynamics and in-cylinder heat 

transfer. This methodology can use network-type representations of the 

structure, as well as detailed finite element models (FEM). Further, a 

rigorous mathematical procedure was developed for the treatment of the 

piston-liner interface, accounting for the piston motion and the result­

ing thermal interactions. Using NASTRAN FEM code, finite element repre­
sentation of the baseline metallic Cummins NH engine was constructed. 

The model was then employed in a parametric study of the effects of 

engi ne load at rated speed. Detail ed results for heat fl ux and tem­

perature distributions as a function of load were obtained including the 

details on the piston-ring-liner interface. Using the simpler network 

representation, parametric studies were carried out to demonstrate the 

app 1 i cabi 1 i ty of the integrated heat trans fer methodology and to doc­

ument some important effects of speed, load and insulation level on 

component temperatures and main heat paths. 

Studies were carried out of some of the key issues in low heat 

rejection engines using the developed heat transfer methodology 

including convective and radiative gas-phase heat transfer, multi­

dimensional heat conduction and cyclic heat conduction transients. A 

wide-ranging design analysis matrix was covered, including seven 

different heat rejection configurations, and three different engine 

operating conditions. These studies led to the identification and 

definition of an important insulation parameter labeled retained­

heat-conversion-efficiency (RHCE), which is the efficiency with which 

in-cylinder heat retained in the gases by insulation is converted 

directly into work. For a typical turbocharged intercooled highway 

truck engine at rated conditions RHCE is near 35-40 percent. This RHCE 

1 eve 1 is hi gher than that predi cted by previ ous models due to differ­

ences in heat transfer models, specifically due to differences in 

spatial and temporal distribution of the heat transfer. As a result, 

the predicted thermal efficiency benefits of insulation are greater than 

previously reported by others, especially for engines with no exhaust 

heat recovery. Insulation of cylinder liner was found to bring only 
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marginal efficiency benefits" offset by the negative effects of lower 
volumetric efficiency, lower power and higher piston-ring-liner 
temperatures. A pract i ca 1 z i rconi a-coated confi gurat i on with a cooled 
meta 1 1 i ner, i ntercoo 1 ed, wi th combi ned turbocompoundi ng and Rankine 
cycle exhaust heat recovery, provided a 26 percent increase in thermal 
efficiency over a metallic cooled turbocharged intercooled baseline 
engine. Non-intercooled diesel engines have an even larger percentage 
increase in thermal efficiency, but since they start with a lower 

efficiency in their cooled baseline configuration, this larger increase 
only serves to close the gap between the non-intercooled and intercooled 
engines. 

The analytical methodology is being supported by engine experiments 

carried out at Purdue University on a single-cylinder engine. The 
purpose of these experiments is to provide experimental data for cali­
bration and validation of the methods. The single cylinder test engine 
installed at Purdue University is a Cummins NH engine, provided by the 
Cummi ns Engi ne Co. Ouri ng the second year thi sengi ne was brought to 
operational status including super-charging and air heating equipment 
necessary to d~plicate the in-cylinder conditioni found in turbocharged 
highway truck diesels. A special test cylinder head with access ports 
for the required instrumentation was fabricated and installed as part of 
this effort. In order to provide a suitable access port for the gas 

radiation probe, one intake valve was replaced by a special sleeve. 
Since the engine breathes quite freely through the remaining valve, the 
reduction in air flow can be offset by additional boost from the super­
charger. Special rocker arm and crosshead components insure normal 

timing and lift for the one operational intake valve. 

The experimental data will be acquired using specialized instrumentation 
capable of measuring heat radiation, total surface heat flux and accu­
rately phased cylinder pressure. Radiation heat flux is determined from 
a signal collected by a paired fiber-optic bundle protected from direct 
gas impingement by a sapphire window. The paired bundle splits the 
radi at ion signa 1 into two channe 1 s and conducts each one to its own 
filter/detector system which is responsive to one specific wavelength. 
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Germanium (1.5 ~m) and silicon (0.9 ~m) photodiodes are used for the two 

detectors. The system has been constructed and tested in the single 

cylinder engine and is now ready for calibration prior to use in exper­
imenta 1 segment of the program. Tota 1 heat fl ux is measured by an 
iron-nickel fast-response surface thermocouple installed in the cylinder 

head. Initial designs failed in service and so two alternative designs 
were sUbstituted. Neither has reached the test stage yet. In addition, 
backup probes were ordered from a commerci a 1 source. Pressure-crank­
angle data is measured by a commercial water-cooled pressure transducer, 
used throughout the di ese 1 industry, combi ned wi th a preci s ion angl e 
encoder ri gi dly mounted to the engi ne crankshaft. Top dead center 
reference is determined by the optical proximeter described in the first 
year report. 
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INTRODUCTION 

A technological thrust is currently in progress to develop insulated, 
low heat rejection diesel engines which exhibit higher thermal effici­
ency than current state-of-the-art diesel engines. Both industrial and 

government funded programs of s i gnifi cant magnitude are in place to 
deve lop the hi gh temperature materi a 1 s, 1 ubri cants and techni ca 1 know­
how required to achieve this potential. 

Integral Technologies Incorporated (IT!) is carrying out a three year, 
three phase program, funded by the U.S. Department of Energy and 
administered by NASA-Lewis Research Center, aimed at developing a com­

prehensive heat transfer and thermal analysis methodology oriented 
speci fi ca lly to the des i gn requi rements of i nsul ated di ese 1 engi nes. 
The technology developed in this program· will make possible a quanti­

tative analysis of the low heat rejection concept, including the 

determination of the degree of heat transfer reduction and performance 

improvement that may be realistically achieved, the identification of 
des i gn strategi es that may be adopted toward that end, and a detail ed 
characteri zat i on of the thermal envi ronment. in whi ch new materi a 1 s , 
lubricants and lubricant concepts will have to exist. 

The program is comprehensive in that it addresses all of the heat trans­

fer issues that are critical to the successful development of the low 

heat rejection diesel engine, i.e.: 

1) in-cylinder convective and radiative heat transfer; 
2) cyclic transient heat transfer in thin solid layers at compo­

nent surfaces adjacent to the combustion chamber; 
3) heat transfer and heat fl ux paths to the movi ng interface 

between the piston, rings and liner; 
4) steady-state heat conduction in the overall engine structure; 
5) II sl ow" transients in the engine structure resulting from 

warmup or changes in speed and load. 
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Heat transfer data for development and validation of the metholodogy are 
being acquired at Purdue University under subcontract. In order that 
practical considerations are adequately taken into account in the devel­
opment of the analytical methods, the program is structured around a 
commercial, state-of-the-art, heavy-duty diesel engine. Early in the 

program, NASA approved ITlls request to involve a major diesel engine 

manufacturer in the program on a voluntary, non- funded bas is. As a 
resu 1 t, the Cummi ns Engi ne Company and IT! have reached an agreement 
along these lines and Cummins I extensive design and testing experience 

in this field is available to the program. 

The IT! program is comprised of a set of integrated analytical and 
experimental tasks. This Phase II report provides a detailed review of 
the ITI program approach, including the technical issues which underlie 
it, a summary of the methods that have been developed and the results 

which have been obtained in the second year of the contract effort. 

Results obtained during the first Phase of the program have been 
presented in the Phase I Report -- NASA CR-174783. 

TECHNICAL ISSUES UNDERLYING ITI PROGRAM 

A controlled amount of heat transfer is incorporated by design in cur-
I 

rent metal engines to assure adequate cooling of internal surfaces even 
at the highest thermal loadings, i.e. at the highest fuel flow rates 
occurring at the rated speed and load. The result is that a substantial 

amount of fuel energy is carri ed away from the combustion chamber, 
reducing the in-cylinder cycle efficiency and the energy availability of 
the exhaust gases. Based on ITlls calculations, for typical Class 8 
highway truck diesel engines the heat transfer from the combustion 

chamber gases ranges from over 10 to 30 percent of the fuel energy 

depending on the operating conditions. 

In order to reduce the rate of in-cylinder heat transfer substantially, 
it is necessary to increase the temperature of in-cylinder surfaces from 
current values near SOOoK to well over 1000oK. Since the current levels 
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of heat transfer are near the lowest achi evab 1 e with pract i ca 1 metal 

components, efforts are concentrated on the design of components using 

high temperature materials which would require less engine cooling. For 

a number of reasons, cost being prominent among them, ceramics appear to 

be the most likely candidates to satisfy the requirements set by practi­

ca 1 cons i derat ions. However, thei r use as engi ne structural materi a 1 s 

introduces a multitude of materials-oriented, engine design considera­
tions. Some of the more prominent of these are: 

1. material strength, toughness and stability at elevated temper­

atures; 

2. thermal conductivity of high temperature, high strength, 

durable materials; 

3. fatigue due to high cyclical thermal loading; 

4. thermal expansion matching for ceramic and metallic materials; 

5. lubricant stability and performance at high temperatures; 

6. friction and wear characteristics with new structural materi­

als and lubricants, which should be at least comparable to 

current technology engines. 

As a result, sizable programs to evaluate insulated engine materials and 

designs and exhaust energy recovery methods (e.g., power turbine, 

organic Rankine cycle) are currently in progress, supported by both the 

industry and by the government. To be most effective, these efforts 

should be grounded in a comprehensive system analysis, which combines 

thermodynamic and heat transfer considerations and is designed to fully 

assess the implications of the concept as well as its feasibility and 

benefi ts in pract i ca 1 terms. The need for such an anal ys is becomes 

apparent once one cons i ders some bas i c facts about the engi ne heat 

transfer process: 

1. Combustion gas temperatures (spatially averaged) may be 

expected to reach values of up to 1800-2000oK at the highest 

thermal loading, which corresponds to a cycle-averaged temper­

ature of 1300-1400o K. Therefore, in order to eliminate or 

substantially reduce the convective heat transfer, the average 
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wall temperature must be allowed to rise up to or near these 
levels. 

2. Materials available for combustion chamber application appear 
to be limited to about 1400o K, which is close to the value 

estimated above for the desired average wall temperature. 
However, the materials limitations are accentuated by the fact 
that the wall temperature is non-uniform spatially as well as 
temporally. 

3. Some of the heat transfer is due to heat radiation, which is 
cited in the literature to be on the order of 20-30% of the 
total heat rejected (see Chapter I). This radiation emanates 
from the hottest portions of the flame (on the order of 
25000 K) which are well above any envisioned wall temperatures. 

Consequently, it is likely that in insulated engines with low 

convective heat transfer, a much higher percentage of the heat 
transfer will be through the radiation mechanism. 

4. There. is a complex i nteracti on between the pi ston, pi ston 
rings, lubricants and the cylinder liner surface which deter­
mines the amount of energy (approximately three percent of the 
fuel energy) which is dissipated into heat at the interfaces 

and the direction of the resulting heat flow. At these inter­
faces issues of adequate lubricant life must be balanced 
against heat rejection paths created by lubricant cooling. 

Therefore, due to fundamental physical phenomena (i.e., radiation, 
piston ring friction and limitations posed by currently envisioned 

materi a 1 s) , some engi ne he,at transfer to coolant wi 11 have to be per­
mitted. Additional limitations on maximum permissible temperatures may 

a 1 so be imposed by the 1 ubri cant properties. Beyond these, there are 
numerous other considerations, such as the magnitude of wall temperature 

swings and their impact on thermal stress fatigue, temperature limita­

tions deriving from the large expansions to which the hot components 
will be subjected, and special cooling that may have to be provided for 

injectors and exhaust valves. 
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OUTLINE OF THE ITI PROGRAM 

It is apparent that the task of development of the low heat rejection 

engine is a multifaceted one, and it requires a synergistic approach 

combining a number of engineering disciplines and technologies. Promi­

nent among these are: heat transfer, thermodynami cs, engi ne des i gn and 

development, high temperature structural materials, and high temperature 

lubrication. All of these issues are coupled and need to be assessed 

and ultimately solved together. They are linked together by what might 

be termed the /I engi ne envi ronment, /I i. e., gas temperatures and pres­

sures, wall surface temperatures, trans i ent and steady state thermal 

profiles within the walls, etc. This environment has impact on engine 
heat transfer and thermodynamic efficiency and at the same time is a key 

input into the selection of materials and high temperature lubricants. 

The constraints that derive from the ranges of applicability of practi­

cal and forthcoming materials and lubricants must serve to keep specific 

designs for reduced heat rejection engines within realistic bounds. For 

cost effective development of this technoloqy one must be able to assess 

the merits of different approaches in achieving significant reductions 

in heat rejection without compromising engine durability. 

In view of all the technical issues discussed previously, the ITI 

program is structured around the development of an integrated methodol­

ogy which can address the special design considerations inherent in the 

insulated engine concept. The general objectives of the program are: 

1. Development of a systematic methodology for quantitative 

assessment of heat transfer and thermal processes in insulated 

engines which can serve as a tool for concept optimization; 

2. Validation of the methodology with experimental data; 

3. Application of the resulting methods to a comprehensive analy­

sis of insulated engine design and operation, including 

evaluation of temperature fields in structure materials and 

temperature of lubricated surfaces. 
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To achieve these objectives, a number of closely related program 
elements or task areas have been defined. These are: 

1) development of spatially and temporally resolved convection 
and radiation heat transfer submodels, 

2) analysis of conductive heat transfer during fast and slow 
engine transients, 

3) analysis of multi-dimensional steady state conduction heat 
transfer, 

4) thermodynamic cycle analysis, 
5) basel i ne cooled engi ne experiments and cal ibrati on of heat 

transfer models, 
6) insulated engine experiments and code validation, 
7) comprehensive analysis of the insulated engine concept and of 

materials implications. 

These elements are described in more detail below. 

Heat Transfer Models. Because they lack the basic physics of the 
convective process, the engine heat transfer correlations available in 
the literature are not applicable to detailed studies of heat transfer 
such as those needed in insulated engine analysis. New correlations 
were developed in the IT! program for convective heat transfer for 

bowl-in piston geometries, which include the effects of actual gas 
velocity, turbulence and zoned combustion. At the same time a sophis­
ticated model was developed for heat radiation, which includes features 

such as the use of flame temperature instead of averag~ chamber 
temperature, extinction coeffi ci ents based on soot concentration, and 
zonal geometrical model accounting for geometrical details of the 

combustion chamber and of the burned zone. Both of these correlations 
predict heat transfer in a spatially resolved fashion as well as time 

resolved. 

Transient Conduction. The heat flux to the wall is highly transient 

with concentrated bursts of high heat flux followed by relatively long 
peri ods of low heat fl ux rates. Thi s pattern produces temperature 
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transients in thin layers adjacent to the combustion wall surfaces. 

This dynamic heat conduction through the chamber walls is being analyzed 

by a transient one-dimensional heat conduction code which includes the 

effects of finite wall heat capacity. The model can handle layered or 

laminated walls, and this is an important capability, permitting studies 

of unconvent i ona 1 materi a 1 s. Of interest are the surface temperature 
dynamics (time-varying wall temperature can reduce heat transfer) as 
well as thermal stress and fatigue produced by the temperature waves in 
the thin layer near the surface. 

Steady' State Conduction. The heat flux from the gases to the surfaces 
of the combustion chamber passes through the thin transient layer into 

the structure below. There the temperature field is steady-state (at 

fixed engine speed and load). It may be solved for by a network repre­
sentation of the structure or by finite-element methods. Such a 

solution provides information about the temperature distribution 

produced in the structure by the engine combustion process. The 

calculated details of surface temperatures in the piston, along the head 

and in valves and along the liner set boundary conditions for the one­

dimensional transient heat transfer calculations and feed back into the 

gas-wall heat transfer calculations. In this manner, the whole heat 
transfer/thermal problem is closed, and may be solved by appropriate 

analytical techniques. 

Thermodynamic Analysis. The entire heat transfer problem is driven by 
the engine air flow and combustion phenomena. Thus, the central element 

within which an advanced heat transfer the methodology must be imple­

mented is a re 1 i ab 1 e, detail ed model of the engi ne ope rat ion. Thi s 

model has to provide time resolved information about combustion chamber 

pressure, temperature and thermodynamic properties (separately for 
burned and unburned bases), flow velocities and mass flow through 

valves, intake angular momentum flux, details of the injection process, 
as well the instantaneous piston location and chamber geometry. The 

heat transfer calculations in turn feed back into the thermodynamic 

ana 1 ys is and they have an effect on the instantaneous energy balance 
which ultimately determines the piston work done and exhaust temper-
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atures. The engine thermodynamic cycle code used in this work is 

described in the Phase I Report. In addition to the capability to 

descri be the i n-cyl i nder processes, ita 1 so treats the engi ne as a 

system, including the turbocharger, aftercooler and power turbine. This 

allows prediction of the effects of insulation on the ultimate per­

formance objective -- i.e., the overall system thermal efficiency. 

Base 1 i ne Engi ne Experi ments. Experi ments are bei ng carri ed out on the 

Cummins single cylinder engine based on the 14 liter NH series, repre­

senting a typical state-of-the-art (non-insulated) 01 diesel engine. 

The engine test matrix includes a wide range of speeds and loads to 

provide an essential data base for subsequent analyses. This includes 

measurements of combustion chamber pressure and also the development and 

application of a technique for measurements of radiative heat transfer. 

The acqui red data wi 11 be used to test and cali brate the new corre 1 a­

t ions for convection and radi at i on heat transfer developed in thi s 

program, using the thermodynamic cycle analysis in the pressure-time 

mode. In order to obtain the highest quality experimental data, state­

of-the-art techniques and instrumentation for accurate pressure-time 

data acqui sit i on are bei ng developed. Thi s inc 1 udes accurate cali bra­

tion of pressure transducers and the development of a precise method of 

crank angle indication based on an optical proximeter approach. A 

multiple-color method described in Chapter V will be applied to obtain 

accurate measurement of heat radiation in the engine environment, 

supported by an in-depth analytical study of heat radiation from sooting 

flames. 

Insulated Engine Experiments. The baseline engine will be converted to 

an insulated engine by implementation of substitute materials. The main 

objective of these experiments will be to generate a reliable data base 

for testing and validation of the heat transfer and thermal methodology 

developed in this program. Accordingly, in choosing the locations and 

methods of i nsul at ion, use wi 11 be made of the methodology to produce 

meaningful changes in heat rejection, but at the same time every effort 

wi.11 be made to insure that the i nsul at ion app 1 i ed does not interfere 

wi th the abi 1 i ty to acqui re accurate data. The experi ence of Cummi ns 
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Engine Company, available to the program, is expected to be a very 

va 1 uab 1 e resource duri ng thi sport i on of the work. The base 1 i ne data 
obtained in the initial set of experiments (see above) will provide a 
reference for before-and-after compari sons. In preparation for the 

experimental evaluation, instrumentation for temperature, heat flux and 

pressure measurements is being developed. These have to be suitable for 
high temperature operation, and in addition, techniques for their 
correct implantation into the ceramic components have to be found. The 
acquired data on temperatures, heat fluxes and engine performance will 

feed back into the thermodynamic cycle analysis and will be used to 
validate the design methods and concepts developed in the course of this 
project. Thus, a solid foundation for the refinement of the heat rejec­
tion strategies and for amplifying the design insights obtained in the 
analytical part of this program will be established. 

Heat Rejection Analysis. Using the complete methodology, i.e., the 
thermodynamic cycle code, heat transfer submodels, one-dimensional heat 
conduction model for the near surface layers, the multi-dimensional heat 
conduction model for the surrounding structure and engine system model 
including turbocharger, power turbine and Rankine bottoming cycle, 

studies of heat rejection and engine performance are being made. The 
studies include baseline cooled engine, superinsulated limiting case, 
and span a whole range of intermediate insulating strategies utilizing 

spray coatings and monolithic ceramics. The engine conditions include 
rated speed/load, peak torque and rated speed/part load. The addition 
of the turbocharger, power turbine and Rankine bottoming cycle to the 

model provides a meaningful assessment of efficiency gains and also of 

materials requirements for these components. 

One of the key outputs of the calculations will be the definition of the 
operating dynamic thermal environment of an insulated engine, knowledge 
of which is an essential input not only for selection and application of 
high temperature structural materials and lubricants but is also criti­

cally important in guiding the extensive research and development 

efforts that are underway in these fi e 1 ds. In thi s context different 
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strategies of heat rejection with different degrees of insulation are 

being investigated, weighing the growing severity of problems arising 

from increasing degree of insulation against the well-known benefits of 

increased thermodynamic efficiency, greater available energy in the 

exhaust and reduced or eliminated cooling system. 
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I. HEAT RADIATION IN D.I. DIESEL ENGINES 

INTRODUCTION 

A significant portion of in-cylinder heat transfer in diesel engines is 

due to heat radiation. Its importance relative to the convective heat 
transfer increases with increasing engine load and it will further 
increase as a result of evolutionary developments towards low heat 
rejection engine concepts. 

In thi s chapter we address the i n-cyl i nder heat transfer process from 
the modeling point of view. A complementary experimental program is 
underway at Purdue University, carried out on a single cylinder Cummins 
engine, whose objective is to provide heat radiatjon measurements for 
model vali~ition. The present work extends the previous modeling effort 

carried out by the authors (Phase I Report, NASA CR-174783) which 

concentrated on modeling of the convective heat transfer. Similarly, as 
in that work, the emphas is is.., 1 aced here on descri pt i on of the key 
physical mechanisms involved, and on spatial resolution, extending the 

treatment of both beyond the previous state of the art. 

Radiation heat transfer in internal combustion engines is produced by 
soot particles (if present during the combustion process) and by carbon 
dioxide and water molecules. Radiation is also emitted by many of the 
intermediate chemical species formed during combustion, but their 

concentration levels are small, and their effect is less important. 
Unlike soot, whose radiation is broad band, radiation from gaseous 
species is concentrated in narrow spectral bands, and its total 

magnitude is substantially smaller than that produced by soot. 

In spark ignition engines, where the combustion is relatively soot free, 
the radiation heat transfer is always small compared to the convection 
heat transfer. By contrast, in diesel engines the radiation heat 
transfer during the combustion process can be of the same order of 

magnitude as the convection heat transfer. The relative magnitude of 
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these two components for the overall cycle is a point argued about in 
the literature, which tends to place the radiation magnitude at between 
10 and 40 percent of the convection heat transfer magnitude. The 
uncertainty about this stems mainly from the fact that the split between 
radiation and convection heat transfer is highly dependent upon the 

engine design and operating characteristics. Other contributing factors 
are the difficulties of making such measurements, as well as the par­

ticular arrangement and location of the viewing port used to measure the 
radiation, which can significantly affect the collected radiation in­
tensity. However, it seems to be well established that in state of the 
art metallic engines the heat transfer from gases to wall is dominated 
by convection, and radiation adds a smaller contribution. Thus, it has 
been considered acceptable until recently to treat radiation heat 
transfer in a rudimentary fashion or to lump it together with con­
vect ion. 

A special impetus for efforts to understand and quantify radiation heat 
transfer comes from the trend towards the development of low heat re­
jection (insulated) diesels. By applying insulating materials to diesel 

engines, one may expect to reduce the convective heat transfer more than 

the radiation heat transfer, making the latter the dominant source of 

gas-to-wall heat transfer. Thus, whereas the heat radiation has been a 

relatively minor element in studies of conventional diesel engines, its 
role in insulated engines is much more pronounced and of critical im­
portance to assessments of the effects of i nsul ati on on engi ne heat 

transfer and performance. In consideration of the recent improvements 

in the detailed description of convective heat transfer (Phase I Report, 

NASA CR-174783), it became essential that parallel improvements be made 

in the modeling of radiation heat transfer. 
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EXPERIMENTAL STUDIES OF DIESEL HEAT RADIATION 

A number of experimental studies have·concentrated on diesel engine heat 
radi at; on over the past two decades. The observations made in these 

experiments provide an important source of data needed for validation of 

radiation models, giving an insight to the trends and magnitudes of 
radiation heat fluxes under typical engine conditions. In this section 

we review the experimental evidence to which references will be made in 
a later section dealing with model predictions. It should also be 
pointed out, that an experimental program is under way which will 
provide additional data for validation of the present model. 

The first of the experimental studies in diesel heat radiation 
apparently was the work of Ebersole et al (1963) who used a fast 

response thermocouple located in the head behind a removable window. 
The engine used was a supercharged (pressure ratio, PR=2.3) two-cycle 01 
di ese 1 engi ne. By measuri ng the surface temperature wi th and wi thout 

the window, they deduced the ratio of radiant to total heat transfer as 
a function of engine load at a contant engine speed. The results were 

plotted as percent of maximum indicated horsepower and they showed that 
cycle-averaged radiant heat transfer increased from 5 to 45% of the 
total heat transfer, as load increased from 10 to near 100% of the rated 

load. 

Flynn et al (1972) used a multi-color optical technique in which a 

detector was placed behind a window, viewing into the combustion .chamber 
radially from the side near the head/cylinder interface. To provide 

access to the combustion gases inside the piston cup, a passage was cut 
across the piston top. The probe thus measured radiation along a line 

extendi ng through the cut passage and across the cup di ameter. The 
engine used in this work was a DI diesel operated in a supercharged mode 
(PR=2). The radiation was measured by a mono-chromator at seven 

di screte wavelengths from 1 to 4 I-Im. By fi tt i ng the seven readi ngs, 
they obtained the spectrum of the radiation from which they deduced the 
apparent radiant temperature and emissivity. From these they calculated 

the radiant heat flux per unit area as 
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· q = t; a T4 
a a 

This expression is strictly valid only for an infinite wall adjoining a 

medium with uniform properties (temperature and emissivity), and it is a 

good approximation if the entire volume of the engine were filled with 

uniformly distributed dnd strongly absorbing/emitting gas. From the 

spectrum of the radiation they also determined that Hottel's suggestion 

regarding the variation of soot emissivity with wavelength 

t; = 1 - exp (-kL/AO. 95) 

was well supported by their data. The peak apparent radiant temperature 

they deduced, was about 2300o K, producing a peak radiant flux of 1.3 

MW/m2 . By comparison to some earlier data taken on the same engine they 

concl uded that the time-average radi ant heat transfer accounted for 

about 20% of the total heat transfer at their standard operating point. 

Their data also indicated a delay between the start of heat release and 

the start of radiant emission (4-6 CA degrees), indicative of reduced or 

no soot production during the premixed burn period. A no-boost run 

simulating naturally aspirated operation having a pronounced premixed 

burn, had no radiant emission during the premixed burn period. A 

further indication of these trends came from a run with a large 

inject i on advance and also from a run wi th lower cetane number fuel, 

both of which again had an extensive premixed burn with no associated 

radiation. In summary, the data form a very consistent picture which 

strongly supports thei r statement that there is no s i gnifi cant soot 

production during the premixed burn. 

Oguri and Inaba (1972) studied two 01 engines, one naturally aspirated 
(engine A) and one turbocharged (engine B); in addition, some limited 

data were obtained in a third engine. The total heat transfer was 

measured by a surface thermocouple, and the radiation heat transfer was 

measured by the same technique as used by Ebersole et al, i.e. a thermo­

couple behind a window. The radiation flux probe was located in the 

head at a radi all ocat i on near the edge of the pi ston cup. The peak 
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radi at ion fl uxes were lower than those measured by Flynn et a 1, about 
0.42 MW/m2 for engi ne A, and 1. 1 MW/m2 for eng; ne B. The ratio of 

radiation to total heat transfer was found to depend on engine load, 
reaching values around 17% for engine A and 33% for engine B. 

Sitkei (1974) also measured radiation in a 01 diesel, but his des­
cription of the technique and results is not detailed enough to allow 

deduction of general results. 

Dent and Suliaman (1977) used a fast response pyroelectric thermal 
detector to measure radiation, and a thin film thermocouple to measure 
the total heat fl ux. The engi ne used was a naturally aspi rated 01 

diesel with deep cup and swirl combustion system. The measurements were 
taken at two locations on the head, one near the center and one above 

the piston crown. The center detector showed highly peaked emissions 
with maxima near TDC, increasing in intensity with speed and load from 

0.09 to 0.55 MW/m2. The outside detector showed lower peaks and 

broader, longer emission curves, reflecting the fact that the detector 
was shielded by the piston crown near TDC, and that the flame expanded 
outward into the squi sh zone and into the detector vi ew on the power 
stroke at which time flame temperatures were already below peak levels. 

The overall level of emission agreed with the results obtained by Oguri 

and Inaba in their naturally aspirated engine, but was much lower than 

that measured by Flynn et al under no-boost conditions. 

PRIOR MODELING APPROACHES TO DIESEL HEAT RADIATION 

To calculate radiation heat transfer, one has to first address several 
key issues which have a direct impact on the calculated radiation level 

and on the spatial distribution of the radiation along the combustion 

chamber surfaces. These issues are: 
1. Soot temperature 

2. Absorption and emission of heat by soot 
3. Geometrical representation and viewing factors 
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A 11 of these parameters depend on engi ne speed and load and vary wi th 

crankangle as well. In this section we shall review literature dealing 

with modeling of diesel engine radiation heat transfer, and indicate how 

the above three issues have been addressed by others in prior investiga­

tions. 

The earliest models of radiation heat transfer are typified by the model 

proposed by Annand (1963) 

(1) 

where T g is the mass averaged gas temperature from a one-zone model. 

The constant C lumps the effects of gas and wall emissivity. According 

to Annand, its value is greater than unity (1.5-3.0), which quite obvi­

ously is an artifice compensating for the use of the mass average 

temperature instead of the much higher soot temperature. In these earl} 

models, there were no attempts to determine the crankangle variation of 

the absorption coefficients or to account for flame/combustion chamber 

geometry. 

Sitkei and Ramanaiah (1972) addressed these issues and proposed the use 

of experimentally obtained flame temperatures and of soot emissivity in 

the form 

where 

q = e cr (T 4 - T 4) 
f w 

e = 1 - exp (-kpQ) 

(2) 

(3) 

where p is combustion chamber pressure, Q is a mean beam length defined 

as 
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Q = 3.6 VIA 

where V is combustion chamber volume and A its surface. The absorption 

factor k in equation (3) was deduced by them from their experiments and 

was presented as a function of crank angle and excess air ratio. 

Kunitomo et al (1975) proposed a model similar to that of Sitkei, com­

plemented by a soot emissivity correlation. This correlation linked 

soot emissivity to gas emissivity (C02 and H20)--an implausible proposi­

tion. 

More recently, Chang and Rhee (1983) calculated soot emissivity from an 

expression involving soot volumetric fraction. In that approach they 

used Rayleigh-limit expression ratio for the very small diesel soot 

particles. However, the model did not include calculation of the 

requi site soot vol umetri c fraction or radi at i on temperature, nor di d 

they consider a realistic flame/combustion chamber geometry. In 

addition, they applied their emissivity model within the context of a 

highly idealized representation of the in-cylinder processes rather than 
to actual diesel engine conditions. 

Chapman et al (1983) have recently contributed to the modeling effort by 

inclusion of spatial resolution through geometrical modeling. They 

modeled the radiating soot volume as opaque conical jets emanating from 

the injector, and solved for spatial distribution of the resulting heat 

flux by considering all direct viewing areas between the conical jet 

envelopes and the surrounding walls. It should be pointed out that 

treating the burned zone as being opaque implies that the absorption 

coefficient is always very high with emissivity of the burned zone equal 

to unity. However, literature shows that this limit is only approached 

in the mi ddl e of the combusti on peri od in hi ghly loaded turbocharged 

engines. Most of the time the burned zone is partially transparent and 

it must be treated by a volume rather than surface approach. 
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After the present work was completed, a parallel development appeared in 

the literature, the work of Whitehouse and Shahad (1984), who applied a 

zonal approach to geometrical representation of heat radiation between 

gas and surface elements. The combustion chamber content was divided 

into seven zones and to each of these were attributed the time varia­

tions of gas temperature and emissivity. Their model did not calculate 
these two quantities, however, and values obtained from experiments were 

used instead. 

In summary, the literature shows a gradual development of the various 

elements requi red to construct a comprehens i ve heat radi at i on model. 

However, a complete model accounting for all of the key parameters has 

been lacking. 

PRESENT APPROACH 

In this chapter we shall describe our approach to the construction of a 

comprehensive heat radiation model applicable to diesel engines. 

The heat radiation model which will be described here is imbedded in a 

general I.C. engine simulation code IRIS, which is currently being used 

to study a wi de range of engi ne processes and des i gn confi gurat ions. 

The present model seeks to descri be the i n-cyl i nder heat radi at ion 

process in a comprehensive way, subject to the constraint that the 

numerical burden introduced by the model on the overall engine simula­

t ion is not excess i ve so as not to compromi se the capabil i ty to carry 

out extensive parametric studies at acceptable costs. 

As a result, the radiation model has been constructed on a level consis­

tent with that used to represent the combustion process. The combustion 
chamber is divided into two zones, burned and unburned, and the carbon 

particles (soot) produced by the combustion are assumed to remain con­

fined within the burned zone. The radiation produced by the gas species 

is small and is neglected in our approach, although its inclusion would 

not be a major complication. The error introduced by this neglect is 
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likely to be most important during the latter portion of the combustion 

when soot 1 eve 1 s decrease rapi dly due to soot burnup, but duri ng the 

early portions of combustion the soot absorption dominates the radiation 

process and the error is very small. The conditions within the burned 

zone are assumed to be spatially uniform, specifically the soot concen­

tration, absorption coefficient and temperature. Further, the soot­

laden gas is assumed to be gray, although in calculation of the total 

effective absorption coefficient the actual spectral variation of the 

absorption coefficient is taken into account. The surrounding surfaces 

are assumed to be diffuse. 

The method used in our approach requi red work ins i x separate areas, 

which form the key complementary elements of the radiation model: 

1. Combustion model 

2. Geometrical description of the burned zone as a function of 

crankangle 

3. Radiation temperature 

4. Absorption coefficient 

5. Soot concentration model 

6. Spatial distribution of radiation heat flux. 

The mode 1 i ng approaches employed in these areas are descri bed in the 

subsections which follow. 

Combustion Model. During the combustion period the content of the 

combustion chamber is divided into two parts: unburned and burned. The 

burned products of ai rand fuel are thermodynami cally treated as a 

mixture of 11 species representing the key combustion products. 

During each time step, a portion of mass in the unburned zone is trans­

ferred to the burned zone according to the combustion rate. This rate 

is calculated from a combustion correlation which accounts for premixed 

combustion, diffusion burning, and a slow mixing IItail ll burning region 

which becomes increasingly important at rich overall equivalence ratios. 
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Geometrical Description. The burned zone is assumed to be located in 

the central portion of the combustion chamber, surrounded by the unburn­
ed zone. The volume of the burned zone is calculated from its mass and 
dens ity, avail ab 1 e from a two- zone thermodynami c mode 1. Its shape is 

obtained from a geometrical model which calculates the thickness of the 
surroundi ng unburned zone. Near TOC, all of the burned volume 1 i es 
inside the piston bowl and, as the piston descends, this volume expands 
into the squish region and eventually fills the whole combustion chamber 

(Figure 1-1). This geometrical model is the same as that already 

introduced in the convective heat transfer model (Phase I Report, NASA 
CR-174783) . 

Radiation Temperature. The radiating soot temperature has always been 
an issue in engine radiation modeling, because it is difficult to 

predict. Previous investigations used, for example, the mean gas tem­

perature (recognized now to be much too low) and adiabatic flame 
temperature. In the present model we link the radiation temperature to 
the average temperature of the burned zone (Tb). After the start of 

combustion, Tb at first gradually increases from its initial value, 
reaching a maximum shortly after TDC, and then decreases rather rapidly 
towards the end of combustion due to rapid entrainment of air from the 

unburned zone and volume expansion. Up to the point of the maximum, the 

model sets Trad = 0.9 Tb. This is done to account for the preferential 

radiant heat transfer from the soot particles which are thus cooler than 
the surrounding burned gases .. After the burned zone temperature maximum 

has been reached, the soot radiation temperature is obtained from 

where rb increases from zero to unity during the tail end of the 
combustion period as a function of the ratio of burned mass to total 

cylinder mass. This particular form of the radiation temperature was 

adopted in order to refl ect the fact that due to the fourth power 
temperature dependence the effective soot radiating temperature is 
domi nated by the actively burni ng fl ame front, whose temperature is 
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Figure 1-1 

6 

1 

Geometrical model representing the unburned 
and burned (shaded) gas zones. Numbers refer 
to individual surface zones. 
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hi gher than the average of the burned zone (whi ch i ncl udes actively 

burning species as well as burned-out products and which is being 

diluted by entrained air). Also, since the soot is produced in the 

flame itself, its concentration is the highest in these hottest parts of 

the burned zone. Better radiating temperature prediction could probably 

be obtained from a more detailed burned zone model tracking 3 or more 

zones during combustion, but that would require a substantial increase 

in the model complexity impacting also the thermodynamic model and the 

geometric zonal model described below. 

Absorption Coefficient. As already mentioned, the soot is considered to 

be uniformly distributed over the burned zone. The absorption coeffici­

ent produced by this soot concentration can be calculated using the 

wealth of experimental and analytical studies of radiation soot laden 

gases available in the literature. 

Radiation from soot depends on its spatial distribution, particle sizes 

and their refractive indices. For the small sizes encountered in diesel 

combustion an approximation known as the Rayleigh limit applies. From 

the Mie theory (van de Hulst, 1957), the absorption coefficient can be 

written 

367tfv 
a ---AS A 

nk fv = - g(n,k) 
A 

(1-1) 

where f is the volume fraction of soot in the gas and nand k are the 
v 

refraction and absorption index, respectively, both of which are func-

tions of the particular fuel properties and of A. It should be noted 

that in this limit of small particle sizes, absorption coefficient a is 
independent of the actual part i c 1 e size. Based on experi mental data, 

Hottel (1954, p. 100) shows that the spectral distribution of aAs is 

broadband with a shape 

a ,.., 
AS' 
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where n is close to unity in the infrared region and approaches 1.4 in 
the visible range. The experimental results of Flynn et al (1972) 
confirm this dependence with n ~ 0.95. As a result, the function g(n,k) 

in equation (1-1) is approximately independent of the wavelength. 

For a volume with uniform temperature and composition, one can calculate 
spectral emittance of soot for a layer of thickness L from 

(1-2) 

Assumi ng that g(n, k) is indeed independent of wavelength, and subst i­
tuting equation (1-1) into (1-2), and integrating over the entire wave-

1 ength space the product of E?-., and the blackbody thermal spectrum to 
obtain the average soot emittance, one obtains a solution that can be 

expressed as (Yuen and Tien, 1977) 

(1-3) 

where T is the soot temperature and where ~(3) is the pentagamma 

function, and C2 is a constant in Planck's spectral energy distribution. 

Close approximations to the above equation are expressions 

(1-4) 

and 
(1-5) 

Experimental data (Gray and Mueller, 1974, p. 69) show that the function 
9 has values that depend on the fuel hydrogen-to-carbon ratio. For oil 

flames they quote g ~ 6.3. 

Substituting for 9 and C2 into equation (1-4) yields 
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or 

E = 1 - exp(-1575 f TL) 
s v 

a = 1575 f T v (1-6) 

Therefore, to calculate the soot absorption coefficient it is necessary 
to have the value of soot concentration. Thi s concentration can be 

obtained from a soot model which tracks the instantaneous rates of soot 

production and oxidation and integrates them in time. 

The absorption coefficient described above is strictly applicable only 

to radiation from the soot laden gases and to soot radiation reflected 

off the walls. Radiation emitted by the walls themselves is attenuated 

in the sooting volume with an absorption coefficient which is different 

due to di fferent spectral content of thi s radi at ion. However, since 

this component of radiation is the smallest of all those considered, it 

was decided to minimize the model complexity and use the same absorption 

coefficient even for this portion of the radiation. 

Soot Concentration Model. Soot formation is intrinsic to the diesel 

diffus i on combustion process, and it stems from burni ng occurri ng in 

oxygen-poor regions surrounding the fuel droplets. The physical pro­

cesses involved are very complex, as they depend on: 

chemistry of precursor reactions, 

coagulation and particle growth processes, 

carbon oxidation chemistry, 

which in turn depend on: 

fuel composition, 

pressure, 

temperature, 
local fuel and oxygen concentrations. 

The final tailpipe soot level is a small quantity, being the result of 

two large and essentially cancelling processes of formation and burn up. 

Thus, prediction of the exhaust level is subject to substantial uncer-
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tainty. Fortunately, in this work we are much less concerned about the 

residual level than about the much larger levels occurring during the 

combustion. 

The initial thrust of this work concentrated on review of available 

empi ri ca 1 models in the 1 i terature whi ch descri be the rates of soot 

formation and of subsequent burnup. The review showed two models for 

soot production, one due to Khan et al (1973) 

ds 
dt ~ ~~ Pf exp(-20000/T) 

where s is soot mass, ~F is equivalence ratio in the formation zone, Pf 

is partial pressure of fuel in the formation zone and T is the unburned 

temperature. Another model is that due to Hiroyasu and Kadota (1976) 

ds dt ~ P exp (-10000/Tb) 

where Tb is the burned zone temperature. 

As for soot burn up, there are four prior models. Nagle and Strickland­

Constable proposed 

ds 
-~ dt 

where P
02 

is partial pressure of oxygen, and function f is a complex 

Arrhenius-type expression. Fenimore and Jones suggested 

ds _ p1/4 p1/2 T- 1/2 exp (-19000/T) 
dt ~ 02 H20 

Hiroyasu and Kadota (1976) used 

ds - ~-dt 
6s ---d- P02 exp (-20000/T) 

Ps s 

and, Lee et al (1962) proposed 
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It is seen that there are wi de differences between the vari ous models 

proposed to date. This is perhaps not too surprising, as the formation 

and burn up mechanisms overlap and thus are difficult to reliably 

separate, and this is probably responsible for the difficulties 

encountered by researchers in thi s fi e 1 d, as evi denced by the di ffer­

ences in the empi ri ca 1 models developed to date. Furthermore, much of 

the data on whi ch these mode 1 s are based were obtained in 1 aboratory 
burner flames rather than in diesel engines. 

Since none of these models have been validated for diesel engines, there 

was no clear choice for a model to adopt. It was, therefore, decided to 

develop a new model, whose form would be guided by previously proposed 

models, engine parameters known to affect soot levels, and available 

diesel engine data. 

An important part of the model formulation is its linkage to the com­

bustion model. The soot model can incorporate only the available 

variables that the combustion model actually calculates, and the 

dependence on temperatures, equivalence ratio, partial pressures of 

certai n speci es, etc., is strongly i nfl uenced by the detail s of the 

combustion model which in itself is an inexact representation. As a 

result, the final expressions employed in the present work are in many 

ways empirical correlations rather than first principle models. 

In the model, the time development of soot mass is described as a 
process taking place in two regions: 1) an actively burning region, and 

2) a fully burned region. The amount of fuel burned in any finite time 

increment is assumed to produce soot, which immediately begins to burn 

up. Since the mass from the actively burning zone is continuously being 

entrained into the fully burned zone, the soot formed in the actively 

burning zone is entrained as well. The actively burning zone is assumed 
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to be a very thin layer separating the burned and unburned zones and as 

such does not require a separate thermodynamic zone. 

The amount of soot entering the burned zone is described in the model by 
a net formation term 

(1-7) 

representing the processes taking place in the actively burning zone. 
The variable Y02 is the mole fraction of available oxygen in the 

actively burning zone, and md is the rate of fuel burned in the 
diffus i on burni ng mode. The fuel burned in premi xed mode produces no 
soot, in accordance with experimental evidence presented by Flynn et al 

(1974), Bryzik and Smith (1977) and others. The values of the 
constants, obtained by optimization and comparison to literature data, 

are A1 = 0.38 and A2 = 5000. 

The subsequent burn up in the burned zone is described by 

(1-8) 

where Ps is soot density, ds diameter of an elementary soot particle (a 
single soot particle consists of strings of many such elementary parti­
cles) and P02 is the partial pressure of oxygen in the burned zone. The 

reason for using the elementary soot particle diameter is that is much 

more representative of the soot surface area than the total soot 
particle diameter. The optimum values of the constants are B1 = 0.015 

and 82 = 5000. The soot density is taken to be Ps = 900 kg/m3, which is 
the mean of values quoted in the 1 i terature (400-1500 kg/m3). The 
diameter of elementary soot particles entering the burned zone is taken 

to be ds = 0.040 <IItotal (IJm). In the range of interest, <II = 0.3-0.8, 

this gives values of d = 0.012-0.032 IJm, which is in agreement with s 
values quoted in the literature (see ego Siegla and Smith, 1981). 
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Extensive study of available literature on soot levels occurring during 

combustion and on tailpipe levels provided guidelines for adjusting the 

constants of the model. 

With these constants the model was exercised over a range of engine 

speeds and loads for a turbocharged heavy duty engi ne and for a 

naturally aspirated engine. The results will be presented in a later 

section. 

Spatial Distribution of Radiation Heat Flux. The next element to be 

tackled was the method of calculation of the spatial distribution of the 

radi at i on heat fl ux. The complete sol ut i on of thi s problem requi res 

solution of the radiation transfer equation, which includes wall 

emission, gas emission and absorption, and scattering. The scattering 

term, representing scatteri ng from fuel droplets, can be negl ected, as 

shown in the Phase I report of this program. This reduces the transfer 

equat i on to a form whi ch 1 ends i tse 1 f to zonal approxi mat ion, a pro­

cedure developed by Hottel and Sarofim to solve the equation of radiant 

transfer in enclosures containing a radiating medium. Its principle is 

the discretization of the radiating medium into sub-volumes and of the 

enveloping surface into subsurfaces, each of which has uniform temper­

ature and uniform absorption coefficient or emissivity, respectively. 

These smaller elements are referred to as zones. The equation of 

transfer is then integrated over each individual surface zone over all 

directions from which it can receive radiation. Since the conditions 

are uniform over the other N-1 zones from which the radiation arrives, 

the double integrals can be split into N-1 parts, which can be written 

as a product of two factors: one is the emissive power of the zone and 

the other is a function of the geometri ca 1 confi gurat i on of the two 
zones that face each other and of the absorption coefficient in the 

medium separating the two zones. 

The zonal method is very powerful and it includes the representation of 

all key heat radiation mechanisms indicated in Figure 1-2 i.e.: 
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Figure 1-2 Representation of heat radiation processes, 
including radiation from gas to wall, reflection 
from one wall onto another and back into the gas, 
and radiation from one wall to another with 
absorption in the sooting gas. 
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1. soot radiation to walls, 

2. surface radiation from one wall to other walls, including 

absorption in the gaseous medium, 

3. reflection of incident radiation from one surface to other 
surfaces. 

Following the derivations of Siegel and Howell (1981, p. 646) one starts 

wi th heat fl ux at surface k whi ch may be wri tten as the difference 

between the incoming and outgoing heat fluxes 

(1-9) 

where the outgoing flux for a gray diffuse surface may be expressed as 

(1-10) 

that is as the sum of radi at ion emi tted by that surface and refl ected 

port i on of i ncomi ng radi at i on. The i ncomi ng fl ux may be expressed as 

4 

Akqi,k = I SjSkqo,j + I gnsk cr Tn (1-11) 

It may be noted that the above summations contain terms which are the 

products of emissive power and of geometrical/absorption factors SjSk 

and gnsk' as discussed above. These geometrical/absorption factors have 
the dimension of area and are called direct viewing areas (DVA). 

Substituting from equations (1-10) and (1-11) into (1-9), and after some 

manipulation, one obtains 

(1-12) 
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This equation describes heat absorbed by a surface (lhs of equation 

(1-12)) in terms of incoming radiation from reflections from other sur­

faces, heat radiated by other surfaces, heat radiated by the gas, less 

the heat loss by outgoing radiation from the surface itself. In mathe­

matical terms, this is a set of coupled algebraic equations, one for 

each subsurface of the combustion chamber. As seen in Figure 1-1, in 

the present work we discretize the combustion chamber into six sub­

surfaces (seven if pi ston has re-entrant bowl shape). In the present 

formulation there is only one gas zone, i.e., n = 1. 

Equation (1-12) requires the determination of the OVAlS - 49 surface­

to-surface OVAlS and 7 gas-to-surface OVAlS. Due to symmetry of SjSk 

and due to the presence of a number of zero terms, much smaller numbers 

need to be determined. Also, it may be shown that SjSk and gnsk are 
related, and this further reduces the computational effort. 

The OVAlS can be calculated from 

SjSk = lin ff t(s) cos 8k dwk dAk 

gnsk = lin ff a(s) cos 8k dwk dAk 

(1-13) 

(1-14) 

i. e., they are the result of double integration over the surface area 

Ak, and over a unit hemisphere contructed above an infinitesimal part of 

Ak, of the incoming radiation from an area A. passing through an absorb-
J ' 

i ng medi urn wi th . absorption coeffi ci ent c. Along each radi at i on ray 

extending from surface Aj to surface Ak one can calculate the integrated 

values of absorptance 

a(s) = 1 - exp (- fads) 

and of transmittance 

t(s) = exp (-fads) = 1 - a(s) 
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needed for integration on equations (1-13) and (1-14). 

It should be noted that the method treats the burned zone as transparent 
when the absorption coeffi ci ent is small, and it automat i ca lly pro­
gresses to an opaque (surface) model as the absorption coefficient 
increases. Even when a is very 1 arge, rays grazi ng the burned volume 
are only partially absorbed, however, rather than fully absorbed as they 
would be in a surface model such as that of Chapman et al (1983). 

In calculating the OVAls one can use the tabulated results available for 
simpler geometries, such as axisymmetric ones, in numerous textbooks and 
handbooks dealing with radiation heat transfer. 

Another method of calculation of the requisite OVAl s is through the 
solution of the differential approximation to the equation of transfer 
for the who 1 e combustion chamber. There is a who 1 e seri es of such 
n-order methods, the simplest of them being the PI approximation (Siegel 
and Howell, 1981), the derivation of which is presented in the Appendix. 

PREDICTION OF HEAT RADIATION IN A CONVENTIONAL COOLED DIESEL ENGINE 

Turbocharged Engine at Rated Conditions 

Baseline case. The model was first applied to a turbocharged Cummins NH 
series engine operating at rated conditions (2100 RPM, 350 BHP, intake 
pressure 2.26 bar, intake temperature 371K, trapped air fuel ratio 30.1, 

injection timing 21°BTDC). Emissivity of all surfaces was assumed to 
equal 0.85. The burn rate predicted using a combustion correlation for 
a two-zone combustion model that is part of the IRIS code is shown in 
Figure 1-3. The dotted line shows the apparent burn rate that would be 

deduced by a single zone model. 

The combustion model provides essential inputs into the soot model, such 
as the burned zone temperature and composition. The burned zone 
temperature (Figure 1-4) rises to over 2800o K, and then decreases during 
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the 1 ater stages of combustion. Thi s temperature is important to the 

kinetics of both formation and burn up. Cylinder pressure reaches a 

peak of almost 130 bar and then rapidly decreases during the expansion. 

The soot burnup process is sensitive to the instantaneous values of the 

partial pressure of O2 , i.e., the product of pressure and molar fraction 

of O2 • The 1 atter quantity ri ses duri ng the 1 atter portions of the 

combusti on process, as the burned zone entrai ns ai r from the unburned 

zone. The product of the two reflects these two trends, as shown in 

Figure 1-5. The variation of the soot kinetic rates with crank angle is 

shown in Figure 1-6. Both curves of formation and of burn up have 

similar shapes. The formation leads the burn up and is responsible for 

the initial growth of the soot mass. Where the two curves cross is the 

point where the soot mass reaches the maximum. 

then takes over and it governs the level to which 

the end of combustion. This level is strongly 

The burnup mechani sm 

the soot is reduced by 

1 inked to the exhaust 

levels, since only a relatively small amount of burnup takes place after 

the end of combustion. 

The resulting soot instantaneous concentration level (Figure 1-7) 

reflects the trends discussed above. It ri ses sharply in the early 

stages of combustion, reaches a maximum and then decays to a low value. 
The maximum concentration level reaches 0.48 g/m3 based on total 

cylinder mass (expanded to ambient conditions), while when based on 

burned zone mass it reaches a value of 3.1 g/m3. This latter magnitude 

is ina good agreement with the data deduced by Matsuoka (1981). The 

shape of the instantaneous soot mass curve also agrees we 11 with the 

experimental results of Matsuoka. 

The soot concentration has a direct effect on the absorption coefficient 

of the burned zone. The emissivity of the burned zone depends on the 

product of the absorption coefficient and of the optical depth of the 

burned zone. Representing the optical depth by a mean beam length (lm) 

calculated from the volume of the burned zone, one can calculate the 

product al shown in Figure 1-8, which is indicative of the average zone 
m 

conditions. The average emissivity is an exponential function of alm 
i. e. 
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at ambient conditions. 



.j:o 

.j:o 

2.5 

2.0 

1.5 
tn 
tn 
W 
...J 
Z 
0 - 1.0 (f) 

iii 
:E -c 

0.5 

0.0 

2100 RPM. FUll LOAO 
ABSORPTION COEFFFICIENT x M.B.l. 

( ) 

-45. . -30. -15. o. 15. 30. 45. 60. 75. 90. 105. 
CRANK ANGLE • DEGREES 

Figure 1-8 Burned zone absorption coefficient times mean beam length of the 
burned zone volume. 



e = 1-exp (-aL ) m 

and it follows that near TDC the burned zone is optically quite thick 

and almost opaque, getting 1 ess thi ck as soot burns up duri ng the 
expansion stroke. 

The resultant radiation fluxes per unit area are shown in Figures 1-9a 

and 1-9b. They display a wide variation from surface to surface 

according to the effective view factors between the burned gas zone and 

the surfaces on one hand, and between the various surfaces on the other 

hand. The peak fl ux values reach 1. 4 MW/m2, whi ch agrees wi th the 
findings of Flynn et al (1972). These high rates pertain to the 
surfaces closest to the flame near TDC, i.e. the cup surfaces and the 
head surface above it. The squi sh zone surfaces and the 1 i ner have 

substantially lower radiation fluxes per unit area, especially early on, 

when all of the burned zone is still contained inside the cup. Towards 

the end of combustion all surfaces tend to receive similar levels of 

heat flux. The abrupt increase in flux visible in the curves of 

Figure 1-9 is due to the beginning of burned zone expansion from the cup 

into the squish zone. 

The breakdown of total radiation heat transfer rate between piston, head 

and liner is shown in Figure 1-10, displaying a much lower heat transfer 

into the liner due to the piston shielding action. The split between 

the convection .:.nd radi at i on heat transfer is gi ven in Fi gure 1-11, 

indicating that radiation accounts for only a little over ten percent of 

the total heat transfer at this operating condition. 

Effects of Wall Emissivity. The radiation that reaches the surfaces of 
the combustion chamber is partly reflected back into the chamber. There 

it travels towards the other surfaces and is attenuated as it passes 
through the burned gases which absorb part of the radiation. ,Upon 

reaching a solid surface, the radiation is again partly absorbed and 

partly refl ected, and so there is an i nfi ni te sequence of refl ect ions 

with rapidly decreasing intensity. 
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The case wJ1ere the bottom of the cup is replaced by a highly polished 

surface with essentially zero emissivity is shown in Figure 1-12. 

Comparing these results with Figure 1-9 one observes that the bottom of 

the cup now receives no radiation (all is reflected), while other 

surfaces absorb increased radiation fluxes. The main beneficiaries are 

seen to be the cup side and the central portion of the head, followed by 

the outside portion of the head. The liner and the piston crown, which 

do not have a di rect vi ew of the pi ston cup bottom duri ng the active 

radiation period, show only a very small increase coming from secondary 

reflections off the other surfaces. 

Another example is shown in Figure 1-13 which pertains to a case where 

all walls are highly reflective with e=O.OI. The most noticeable result 

is the uniformity of flux over all the surfaces due to multiple reflec­

tions. The overall level of heat flux is seen to be very low, and this 

is due to the fact that the refl ected radi at i on passes after each 

refl ect i on through the absorbi ng medi urn whi ch absorbs a 1 arge part of 

the refl ected energy. Thi sis mostly so duri ng the 1 atter part of 

combustion when the burned zone extends over most of the volume. Early 

on there is less absorption of the multiply-reflected radiation by the 

gas and thi s accounts for the skew of the fl ux profi 1 es towards the 

beginning of combustion. 

Effect of Cup Geometry. One of the capabi 1 it i es of the method is the 

representation of gas zone and in-cylinder geometry and of their effects 

on heat flux per unit area absorbed by separate portions of the 

combustion chamber surfaces. The importance of such resolution may be 

seen in Figure 1-14, which describes the results obtained with a 

different piston cup shape: a deeper cup with d/bore=0.43 and 

depth/bore=0.40, as compared to the baseline cup with d/bore=0.73 and 

depth/bore=0.09. It may be observed that for thi s geometry the fl ux 

into surfaces surrounding the squish zone is significantly reduced 

(Figures 1-14a and 1-14b), while the surfaces adjacent to the cup retain 

the high flux levels seen in Figure 1-9. Area integrated heat transfer 

rates show even more pronounced differences, with head and liner being 

50 



U'1 

N 
::E 

~ 
::E 

~ 
U. 

I-

~ 
el .... 
I­
< .... 
C 
< 
0:: 

1.5 

1.2 

0.9 

0.6 

0.3 

0.0 

2100 RPM. FULL LOAD 
ZONAL MODEL RADIATION HEAT TRANSFER FLUXES 
CUPBOTC >.CUP SIDE ( .......... >. P.CROWN f-----) 

f-

f-

f-

foe 

• 

.... 
l .\ 
: \ 
: ~ 
: ~ . . 
: ~ · . · . · . .' ~ · . · . · . · . : ~ · . · . : : · . · . · . · . · . .: \ . . . . . . · . · . · . · . j . 

! 
: 
! : ... -"", . ,,, 

: " . , \ : , \ . , \ : , \ :, \ 
: I " -e. 

I,' " .... . 
: , .. -. ' ...... :: .... .. _~._- '-&1., • • 

-45. -30. -15. O. 15. 30. 45. 60. 75. 90. 105. 
CRANK ANGLE • DEGREES 

Figure 1-12a Effect of wall emissivity: highly reflective cup bottom; ---cup bottom, 
..... cup side, --- piston crown. 



U'1 

'" 

N 
::E 
"'­
~ 
::E 

x 
:3 u. 
I-

~ 
:I: 

a ..... 
I­
< ..... 
c 
~ 

2.0 

1.6 

1.2 

0.8 

0.4 

0.0 

2100 RPM. FULL LOAO . 
ZONAL MODEL RADIATION HEAT TRANSFER FLUXES 
LINER ( >. HEAD OUT E""""">. HEAD IN ~----- > 

,-, , \ 
I , 

I , 
I' , 
I ' 
I ' 
I ' 
I ' 
I ' 
I ' , , 

I ' 
I ' 

I ' , ' 
I ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' , ' 

I ' , ' I '. \ , " \ 

" , , ~ \ 
I " \ " , 

" ' . .... 
-45. -30. -15. O. 15. 30. 45. 60. 

CRANK ANGLE • DEGREES 
75. 90. 105. 

Figure 1-12b Effect of wall emissivity: highly reflective cup bottom; --- liner, 
-_ ... head above piston crown, --- head above cup, 



U'I 
w 

2100 RPM. FULL LOAD 
ZONAL MODEL RADIATION HEAT TRANSFER FLUXES 
CUPBOT( ).CUP SIDE ( .......... ). P.CROWN E-----) 

O. 003 i ... __ === __ 

N 
:::E 

" 0.002 ~ 
::E 

• X 
::J 
...J 
LL 

I- 0.002 
i1i ::z: 
:z c - 0.001 I-
< 
1-4 
C 
< 
0: 

0.001 

0.000 ' , , i ) 

-45. -30. -15. O. 15. 30. 45. 60. 75. 90. 105. 
CRANK ANGLE • OEGREES 

Figure 1-13 Effect of wall emissivity: all surfaces highly polished; ---- cup bottom; 
- _. - . cup side, --- piston crown. 



l1' 
~ 

N 
% 

" :. 
% 

X 
:::l 
...J 
U. 

I-

~ :z: 
z 
o ..... 
I­
< ..... 
o 
< a:: 

1.5 

1.2 

0.9 

0.6 

0.3 

0.0 

2100 RPM. FULL LOAD 
ZONAL MODEL RADIATION HEAT TRANSFER FLUXES 
CUPBOT ( ). CUP SIDE ( .......... ). P. CROWN E-----) 

:- -. '. · ", · ". · -. : .! 

n
· ~ · . · . · . · . · . · . · . · . · . · . · . · . · . · . · . · . 

, .. - .. ~ 
.... - .. ,1 "',', 

,,,..,..... ','" 
" ' .... -" 

-45. -30. -15. O. 15. 30. 45. 60. 75. 90. 105. 
CRANK ANGLE • DEGREES 

Figure 1-14a Effect of cup geometry: deep cup; ----cup bottom, .... cup side, --- piston 
crown. 



~ 
~ 

1.5 

N 
% 

" =- 1.2 
% 

X 
::::J 

Li 
t- 0.9 
til 
:J: 

~ .... 
t- 0.6 
< .... 
CJ 
< a:: 

0.3 

0.0 

2100 RPM. FULL LOAD 
ZONAL MODEL RADIATION HEAT TRANSFER FLUXES 
LINER ( ). HEAD OUT ( .......... ). HEAD IN ~-----) 

, .. , ", , "I 
I • I 

I I 
I I 

I I 
, I 

, I 

/ I 
, I 
, I 
, I 
, I 
, I 
, I 
, I , , 

, I 
, I 
, I 
, I 
, I 
, I , , , , 
, ' , ' , , , ' , , , , , , , \ , ' , , , . .. , ' ... 

' . ..... -
-45. -30. -15. o. 15. 30. 45. 60. 

CRANK ANGLE • DEGREES 
75. 90. 

Figure 1-14b Effect of cup geometry: deep cup; ----- liner, ..... head above 
piston crown, --- head above piston cup. 

105. 



U'1 
0'1 

20. 

16. 
3E 
X 

• UJ ..-
< 
~ 12. 
ffi u. 
U) 
z 
< 
0:: B • ..-
I-
< 
UJ 
::t: 

4. 

O. 

2100 RPM. FULL LOAD 
RADIATION HEAT TRANSFER RATES. 
PISTON ( ). LINER ( .......... ). 

,_, ,A, , - , , , , , , , " , , , , , 
I ' 

I ' , \ , , 

HEAD E----- ) 

I ' I ••••••••••• .. ..... ,... . ... ~ .... "'" 
,~ 

-45.. -30. -15. o. 15. 30. 45. 60. 75. 90. 105. 
CRANK ANGLE • DEGREES 

Figure 1-14c Effect of cup geometry: deep cup; breakdown of radiation into ----piston, 
.... ·1 iner, --- head. 



much lower due to shielding produced by the deep piston cup (Figure 
1-14c) . 

Load and Speed Dependence 

To analyze the model performance over a range of conditions, cal cul a­
tions were made for a range of speeds and loads for a simulated turbo­

charged NTC-305 Cummi ns engi ne. The starti ng poi nt for thi s set of 

calculations was a set of performance data for a multicylinder engine 
obtai ned from Cummi ns and used in the Phase I Report. These data 
pertain to peak load conditions at speeds from 2100 RPM down to 800 RPM. 
Us i ng Cummi ns" - supp 1 i ed turbocharger maps a very good agreement was 

obtained between IRIS calculations and the data (see Morel et al, 1985). 

In this present work we varied the engine fueling rate and ran the full 
turbocharged engine simulation using the same maps to obtain the proper 

intake and exhaust plenum conditions at lower loads (100, 75, 50, 35 and 
25 percent of full load fueling rate) at 2100, 1300 and 1000 RPM. The 
calculations included heat conduction through the structure) and as a 
result the wall temperatures were decreasing with decreasing engine 
load. This decrease has an important effect on the calculated convec­

tive heat transfer, but only a very minor effect on the heat radiation. 

The results are shown in Table I, which includes several variables 

related to the soot model, i.e. the maximum value of instantaneous soot 
mass di"vided by mass of fuel burned up to that time, maximum burned zone 

soot concentration, soot concentration at end of combustion, and maximum 
partial pressure of oxygen in the burned zone. It further includes 

radiative, convective and total cycle-integrated heat transfer expressed 

as percent of fuel energy, and ratio of radiation to total heat 
transfer. 

The fi rst of these quanti ties shows the maxi mum fraction of the fuel 
mass burned up to that time that is converted into soot particles. This 
maximum occurs early in the combustion process (at fifteen to twenty 
percent point of combustion duration) and its magnitude varies moder-
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U'1 
co 

** 
--- -_._--

*** 
(s/fuel)* concmax P02 max concfinal %fuel energi: % 

--L max (bar) rad conv total rad/total --
2100 RPM, full load 0.47 0.039 3.08 0.029 5.1 1.2 10.4 11.6 10.5 

75% 0.41 0.034 2.63 0.038 3.7 1.2 10.5 11. 7 10.2 
50% 0.36 0.030 2.23 0.042 2.9 1.1 11. 7 12.8 8.8 
35% 0.29 0.022 1.62 0.031 2.4 0.9 13.1 14.0 6.4 
25% 0.22 0.017 1. 22 0.020 2.0 0.7 16.6 17.3 4.2 

1300 RPM, full load 0.68 0.042 3.87 0.041 3.3 2.6 13.7 16.3 16.0 
75% 0.61 0.040 3.47 0.041 3.1 2.4 14.1 16.5 14.6 
50% 0.50 0.035 2.80 0.032 2.9 2.0 14.8 16.8 11. 7 
35% 0.40 0.029 2.21 0.022 2.8 1.4 16.2 17.6 8.1 
25% 0.30 0.023 1. 68 0.013 2.7 1.0 18.4 19.4 5.1 

1000 RPM, full load 0.77 0.043 4.24 0.084 2.0 3.8 15.0 18.8 20.5 
70% 0.68 0.041 3.71 0.047 2.3 3.5 16.8 20.3 17.2 
50% 0.55 0.036 3.01 0.024 2.7 2.6 17.9 20.5 12.5 
37% 0.44 0.031 2.40 0.013 2.9 1.8 19.4 21. 2 8.3 
25% 0.31 0.025 1.80 0.007 3.0 1.0 21. 3 22.4 4.7 

*Maximum value of instantaneous soot mass as a fraction of cumulative mass of fuel burned. 
**Maximum concentration based o~ the volume of the burned zone mass at that instant evaluated at ambient 

pressure and temperature, g/m . 3 
***Concentration at end of combustion based on total cylinder mass at ambient pressure and temperature, g/m . 

Table I. Parametric Study of Soot levels and Radiant Heat Transfer 
Over a Range of Speeds and loads 



ately with load, reaching over four percent at higher loads. It varies 

over a relatively narrow range from 2.0 to 5.1 bar. The second quantity 

is the maximum concentration of soot based on the volume of the burned 

zone mass at that instant, evaluated at ambient pressure and temper­

ature. The maximum of this quantity occurs at about the same point in 

the process as the fi rst one, ·and its magnitude reaches 1 eve 1 s over 

4g/m3, which, as already pointed out, agrees with the data of Matsuoka 

(1981). The third quantity is the maximum value of the partial pressure 

of oxygen, which is the product of the molar fraction of oxygen Y02 and 

cylinder pressure. Increasing the load raises pressure and decreases 

Y02, and the fi na 1 value thus depends on the balance of these two 

trends. 

The 1 ast of these quant it i es ; s the soot concentration at the end of 

combustion based on the volume of the total cylinder mass, evaluated at 

ambient pressure and temperature. This quantity displays a large varia­

tion with load and speed. The sensitivity of this parameter is not 

surprising, since the end-of-combustion value is the difference between 

two large numbers, cumulative soot production and soot burn up, which 

amplifies the effects due to temperature and oxygen concentration (load) 

and time available for soot oxidation (speed). It is also quite well 

correlated with P02. The resultant values given in Table I and in 

Figure 1-15 reflect all of these dependencies. In general, they show an 

increase in the fi na 1 1 eve 1 s of soot concentrations wi th i ncreas i ng 

overall equivalence ratio ~, which is mainly due to the reduction in the 

partial pressure of oxygen. 

The results for 2100 RPM show a somewhat surprising trend, where the 

final soot concentration is maximum at <I> = 0.36 and decreases towards 

the rated load. At 1300 RPM there is an indication that a maximum soot 

concentration is reached at the maximum point. At the lowest speed, 

where P02 decreases with increasing ~, the soot concentration increases 

monotonically. This is due to a combination of higher burned zone 

temperature and higher P02 which produces high rates of soot burnup. A 

revi ew of broad range of 1 i terature data deal i ng wi th exhaust soot 

levels shows that the calculated values are of the right magnitude. 
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Table I also contains the results of the associated heat transfer 

calculations. They show the ratio of the radiant, convective and total 

in-cylinder heat transfer to the fuel energy, and the ratio of the 

radiant to the total heat transfer. The radiant heat transfer is seen 

to vary from 0.7 to 3.8 percent of fuel energy (Figure 1-16). It is 

higher at lower speeds due to higher soot concentrations and also longer 

period (in seconds) over which it acts. The convective heat transfer 

vari es 1 ess strongly, from 10.4 to 21. 3 percent of fuel energy. The 

total heat transfer varies from 11.6 to 22.4 percent of fuel energy over 

the range investigated. Finally, the fraction of the radiant heat 

transfer as a part of the total in-cylinder heat transfer, varies from 

4.2 to 20.5 percent; as seen in Figure 1-17, this ratio correlates well 

with the equivalence ratio independent of engine speed, but it should be 

realized that this plot also includes the effects of the variations in 

the boost pressure, and so thi s fi ndi ng is not necessari ly uni versa 1. 

Injection Timing 

One of the engine parameters influencing the radiation is injection 

timi ng. It affects the peak temperatures and pressures, and al so the 

proportion of fuel burned in the premixed mode, which does not generate 

soot. To test the model predictions, a timing sweep was made at two 

engine conditions: rated and peak torque (1300 RPM). In these 

calculations the inlet and exhaust plenum conditions were held at the 

values calculated at the nominal timing for each case. The results 

showed that due to lowered rates of burnup the exhaust soot concentra­

tion increased sharply with retarded injection (Figure 1-18), and 

radiation heat transfer rate increased as a consequence (Figure 1-19). 

For this supercharged case, the amount of fuel burned in the premixed 

mode (which does not produce soot) varied from a maximum of 9.8% of 

total injected fuel at -310 timing, down to a minimum of 0.4% as -10 

timing in the rated case, and in a similar manner in the peak torque 

case. These amounts were small enough to have only a secondary effect 

on the trends seen in Fi gut'e 1-19. Compari ng the radi at i on rate to the 

trends obtained by Flynn et al (1972), one finds that the experiments 
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had the same trends with timing, except that the slope of radiation heat 

transfer rate with timing was larger. 

Intake Temperature 

The next parameter investigated was the effect of intake temperature. A 

parametri c study was made, in whi ch the intake and exhaust pressures 

were kept constant and the IVC chamber temperature was varied from 310 

to 510° K. The fueling rate was also varied to keep the overall equiv­

alence ratio fixed at the rated value of 0.47. Over this range, the 

premixed burn fraction showed only a minor variation from 6% down to 2%, 

and it had almost no effect on the observed resul ts. The increased 

temperature produced larger peak soot concentrations and lower exhaust 

soot levels, which agrees with the trends observed by Kadota and Henein 

(1981). The total radiation heat transfer was almost unaffected by the 

variation of the inlet temperature, despite the fact that the peak 

burned zone temperature increased by almost 1800 K over thi s range of 

in 1 et temperatures. The 1 i ke ly reason for thi s may be the changi ng 

ignition delay, which decreased from 100 CA to 5.2°CA. As was seen in 

Figure 1-19, ignition advance produces a decrease in heat radiation, and 
this decrease may have offset any increase that would have been 
generated by the hi gher burned zone temperature. By contrast, the 

increasing intake temperatures increased the convective heat transfer 

substantially from 5.9% for the 3100 K case (this IVC temperature is 

equivalent to about 2500 K intake temperature) which was highly fueled to 

maintain constant ~, to 15.2% for the 5100 K case which was fueled at a 

correspondingly lower rate. 

Intake Pressure 

Another important variable is intake pressure. It's effect was studied 

by varying the pressure at IVC while keeping ~ constant through adjust­

ments of the fueling rate, and keeping IVC temperature constant as well. 

As the intake pressure is changed, a number of key vari ab 1 es vary as 

well. These include ignition delay, premixed burn fraction, burned zone 

66 



temperature and partial pressure of oxygen. The last two of these 

parameters had a strong effect on the soot burnup and thei r effect is 

quite clearly seen in Figure 1-20, showing a decrease in end of com­

bustion soot levels with increasing pressure. The premixed burn 

fraction decreased with increasing boost from 19.4% at p=0.95 bar down 

to 0.2% at p=3.0 bar, increasing the rate of soot formation and thus 

partially offsetting the effects of increased burnup. Nevertheless, the 

radiation heat transfer expressed in percent of fuel energy decreased by 

about 0.8 percentage points (Figure 1-21). The convective heat transfer 

decreased over the same range by about 2.6 percentage poi nts of fuel 

energy. Calculating the time-average heat radiation rate from a formula 

correlating the data of Flynn et al (1972, et.al) one finds that 

increasing the intake pressure from 1 bar to 2 bar decreases the radi­

ation heat transfer (in terms of fuel energy) by 19% and increasing it 

to 3 bar decreases it by a total of 35%. This compares quite well with 

the reductions seen in Figure 1-21, of 23 and 41 percent, respectively. 

Naturally Aspirated Engine 

To explore the predictions of heat radiation for naturally aspirated 

engines, a simulation was carried out for an engine based on the Cummins 

NH. The only difference was in the compression ratio which was 

increased from 14.5 to 15.5 by reducing the TOC clearance. The engine 

was simulated at 2100 RPM as the rated point, it was fueled at a rate 

producing $ = 0.52 and injection timing was set at - 18° to control the 

peak rate of pressure rise. The rate of combustion calculated from a 

combustion correlation is shown in Figure 1-22, and it shows a pro­

nounced ignition delay of 14.1°CA producing a sizable premixed burn 

peak. The predicted soot concentration levels (Figure 1-23) were 
somewhat higher at the peak than those calculated for the turbocharged 

engine (Figure 1-7), and much higher than the TC engine at the end of 

combustion. 

The calculated radiation heat flux per unit area (Figure 1-24) was lower 

in magnitude in the cup area than for the Te engine, but about the same 
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in the squish zone. The area-integrated radiation heat transfer rates 

(Figure 1-25) were lower for the piston and the head, but larger on the 

liner due to the combustion and radiation shift (produced by the long 

ignition delay) towards higher crank angles where the piston is in a 

lower position. Integrated over all surfaces, the radiation heat 

transfer accounted for about 18 percent of the total heat transfer 
(Figure 1-26). 

A timing sweep was carried out to investigate the sensitivity to this 

parameter for naturally aspirated engines. This sweep showed a rapid 

rise in calculated soot levels of the end of combustion (Figure 1-27a). 

To this rise corresponded a rise in the radiation heat transfer, 

reaching a peak of over two percent of the fuel energy (Figure 1-27b), 

near injection timing of -70
, beyond which radiation began to decrease 

due to lower radiation temperatures. The radiation share of the total 

heat transfer rose with retarded timing to over 20 percent (Figure 

1-27c). The premixed fraction varied considerably with timing, having a 

value of 43% at -280
, 28% at -230

, 18% at -180 and a minimum of 10% at 

-80
• Since no soot is formed in the model from the fuel burned in the 

premixed mode, this variation contributed significantly to the observed 

sharp initial rise in radiation heat transfer seen in Figure 1-27b. 

EFFECT OF INSULATION ON HEAT RADIATION 

A significant question involved in the design and optimization of in­

sulated (low heat rejection) diesels concerns the importance of heat 

radiation under insulated conditions. The main effect of wall 

insulation is to raise wall temperatures and thus reduce the temperature 

difference between the gas and the walls, which drives the heat trans­
fer. Since effective gas te~peratures for convective heat transfer 

(cycle-averaged and weighted by the heat transfer coefficient) are on 

the order of 800-12000 K depending on speed and load, it is necessary to 

raise the wall temperatures to those levels in order to completely 

eliminate convective heat transfer. Since heat radiation is driven by 

the soot temperatures, which are on the order of 2000-25000 K, and its 
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dependence on temperature is high order (fourth power), raising wall 

temperatures even to 12000K which will reduce heat radiation by a much 

smaller amount than it does the convective heat transfer. As a result, 

the radiation heat transfer may be expected to become a much more 

significant gas-phase heat transfer mechanism under highly insulated 

conditions, and thus needs to be analyzed and assessed in a detailed 
form. 

When extrapolating the radiation heat transfer levels from conven­

tiona lly cooled to i nsu1 ated engi nes, one needs to account for two 

effects produced by the insulation: 

(1) higher gas temperatures due to lower gas-to-wa11 heat transfer 

which affect: 

soot production and burnup 

soot absorption coefficient 

soot radiation temperature and emissive power; and 

(2) hi gher wall temperatures that begi n to i nf1 uence the overall 

radiation level and wall-to-wall radiative heat transfer. 

All of these effects, some of which increase and some decrease radiation 

heat transfer, are included in the present model, which thus can be used 

to make predictions of the final balance, i.e., the net effect. 

The engine insulation chosen for this part of the study, and used in 

most of the surfaces, was an advanced zirconia plasma-sprayed coating 

whose conductivity was 0.6 W/mK and heat capacity pc = 1.1 MJ/m3 K. The 

coat i ng thi ckness was 1. 5 mm on pi ston, head and upper part of the 

liner, and 1 mm on valve heads. The liner below the top ring reversal 

point was made of 5 mm thick partially stabilized zirconia with con­
ductivity of 2.0 W/mK and heat capacity of 2.5 MJ/m3 K. The ports were 

lined with alumina titanate. The same engine was used as in the cooled 

engine calculations, but the turbocharger turbine was resized from the 

coo 1 ed engi ne basel i ne to take the full advantage of the hi gh exhaust 

temperatures (at rated conditions). The fueling rate was slightly 

reduced to maintain the same overall equivalence ratio and peak pressure 
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as in the basel i ne cooled engi ne. Two engi ne condi t ions were 

analyzed -- rated speed and load, and the 1000 RPM/peak-load condition 

at which the highest heat radiation was found in the cooled baseline. 

Rated speed and load. The i nsul ati on package used rai sed the head and 

pis ton temperatures to about 950 K and reduced the total i n- cyl i nder 

heat transfer from 10.5 percent of fuel energy to 4.6 percent. The 

reduced heat transfer rai sed the maximum mass-averaged chamber tem­

perature by 120 K and maximum burned zone temperature by 50 K. The 

hi gher temperature increased the rates of soot formati on and burnup 

(compare Figure 1-28a to Figure 1-6). The resultant maximum soot 

concentration levels were slightly higher, with the peak shifted to 

lower crank angles, and the end-of-combustion level was 25 percent 

lower. The curves of radiation fluxes had very similar shapes with 

respect to crank angl e as in the cooled case, bei ng several percent 

hi gher at the peak. They tended to exceed the cooled engi ne values 

during the early part of combustion and were somewhat lower during the 

latter part, in agreement with the soot concentration trends. The 

distribution of heat transfer rates between piston, head and liner was 

also quite the same as in the cooled case, except for the increased heat 

radiation to liner at higher crank angles (Figure 1-28b; compare it to 

Figure 1-10). This radiation is due to hot combustion surface chamber 

walls radiating to the cool lower portion of the liner. In terms of 

fuel energy, the radiation remained at the same level as in the cooled 

case: 1. 2 percent of the fuel energy. However, the radi at i on con­

tribution to the total heat transfer increased from 10.5 to 26.1 percent 

(Figure 1-28c). 

1000 RPM, Maximum Load. At the lower engine speed, the engine operates 

at a substantially higher equivalence ratio, Ijl = 0.77 versus Ijl = 0.47 

for the rated conditions. The results were quite similar to those 

obtained at the rated conditions. At this condition, insulating the 

combustion chamber raised the wall temperatures on piston and head to 

about 1150 K, and reduced the total in-cylinder heat transfer from 18.8 

to 10.1 percent of fuel energy. The maximum mass-averaged chamber 
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temperature rose by 220 K and maximum burned zone temperature rose by 

120 K. The peak soot concentration 1 eve 1 again increased s 1 i ght ly, 

compared to the cooled case, and the final value decreased by 30 

percent. The radiation fluxes per unit area increased by about 

15 percent. Expressed in terms of fuel energy, the radiation heat 

transfer increased from 3.8 to 4.3 percent. At the same time, the 

radiation fraction of the total heat transfer increased from 20.5 to 

43.0 percent. 

Summary. The wall insulation increased the wall temperatures to 950 and 

1150 K, respectively, producing burned zone temperatures increases of 50 

and 120 K, respectively. The increased gas temperature raised the 

levels of soot production and burnup, which led to an increase in peak 

soot concentration values and reductions in end-of-combustion levels. 

This higher soot radiation temperature also increased the radiation 

f1 uxes, whi 1 e the hi gher wall temperatures gave ri se to a measurable 

wall-to-wall radiation, especially to the cool lower portion of the 

liner. The contribution of radiation to the total in-cylinder heat 

transfer increased by factor of more than two, to 43 percent in the 

lower speed case. These resul ts confi rm the increased importance of 

heat radiation in insulated engines. 

CONCLUSIONS 

1. A comprehens i ve mode 1 has been developed that represents the key 

phenomena and processes which affect radiation heat transfer in 

diesel engines, including: 

a) two-zone combustion representation with realistic burned 

gas temperatures, 

b) absorption and emission of heat by soot, and 

c) geometrical representation of burned zone and combustion 

chamber geometry and pertinent view factors. 

2. The absorption and emission by soot is treated by a model which 

relies on experimental data linking soot absorption coefficient to 
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soot concentration, and which also calculates the soot level 
through a kinetic model of soot formation and burnup. 

3. The geometrical problem is approached by a zonal model which cal­
culates spatial distribution of radiation heat flux including soot 
radiation to walls, wall-to-wall radiation, absorption of radiation 
in soot, and multiple reflections of incident radiation from one 
surface to the others. 

4. The calculated radiation fluxes per unit area agree with magnitudes 

observed in previous experimental studies. 

5. Predictions of heat radiation for a turbocharged heavy duty diesel 
indicate that heat radiation, cycle averaged, varies from 0.7 to 
3.8 percent of fuel energy, depending on speed and load. Expressed 
in terms of the total heat transfer, radiation heat transfer re­
presents from 4.2 to 20.5 of the total. 

6. When the engine is insulated for low heat rejection, the higher gas 
temperatures affect both the soot mechanisms and radiation fluxes. 
The contribution of radiation to the total heat transfer increases 
very significantly, mainly due to a decrease in the convection heat 
transfer, and to a lesser degree due to an increase in radiation. 
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APPENDIX - P, Approximation Method 

The radiation heat fluxes within the combustion chamber may be calcu­

lated by one of multi-dimensional methods which employ the differential 

approximation to the equation of transfer for the whole combustion 

chamber. There i$ a whole series of such n-order methods, the simplest 

of them being the Pl approximation (Siegel and Howell, 1981). 

The multi-dimensional equation of transfer can be written as 

3 
... 1 oi(r,s) [ 
L . ~ - a ib(r) - i(r,s)] 

j-l J VXj 

(A-I) 

where the 1 j I S are the di rect i on cos i nes, and rand s are pos i t ion 

vector and unit vector in S direction, respectively. 

The moments of i are generated by multiplying 1 j and integrating over 

all solid angles w. Some new notation is introduced to designate the 

moments: 

The zeroth-order moment i(O) represents the incident radiation G(r). 
The first moment i

j
(l) is the radiative energy flux q(r) in the 

j-direction. The second moment i kj (2) is the radiative pressure. The 

zernth-order moment equation is the integral of Eqn. (A-I) itself over 
solid angles. Applying the definition of ;Co) and i(1) one writes 
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The first moment equation is obtained by multiplying Eqn. (A-I) by lj 

and integrating over all solid angles. 

(A-2) 

By conti nui ng the process, an i nfi ni te set of moment equation can be 

generated. 

The next step is to approximate the infinite set of moment equation by a 

finite set. When such a truncation is carried out, there will in 

general be n equations and n+l unknowns. The additional equation needed 

to re 1 ate the moments and provi de a determi nate set is obtained by 

representing the unknown angular distribution of i as a series of 

spherical harmonics and then truncating this series after a finite 

number of terms. The series expression used to represent i is 

CD +1 

i(r,s) - ! : A~(r)Y~(w) 
1 .. 0 m--1 

where Al m( r) are coeffi ci ents to be determi ned, and the Y 1m are the 

normalized spherical harmonics. For the P-l approximation the series 

retain only the 0,1 terms. This gives an equation for iCr,s) that is 

satisfied into the first three moment equations to give 

(0) 0.5 o( ) 
i (r) - 2T. AO r 

(A-3) 

(A-4) 
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where 0kj is the Kronecker delta. 
(A-3) and (A-4) gives 

o Eliminating AO (r) by combining Eqns. 

(A-5) 

Substituting Eqn. (A-5) into Eqn. (A-2) gives 

(A-G) 

Combining Eqns. (A-5) and (A-G) and eliminating i(I)(r) gives PI 

approximation to the equation of transfer 

(A-7) 

where G(r) is replaced by i(O). Using Eqn. (A-7) PI approximation in a 

two-dimensional axisymmetric cylinder can be written as 

~(lOG,) + .!......£.(l"oG) 3 [G 4 1 ] 
OZ aoz ror aor • a - ~ b (A-8) 

The first term at the left-hand side of Eqn. (A-B) can be written in a 

finite-difference form as 
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G -G 
_ [d (i +1 i) 

i +1 llz 

G. - Gi 1 
d ( ~ - ))/Vz 

1 llz 

2 
.. [( d i + 1 G i + 1 - (d i + 1 +d i ) G i +d i G i _ 1 ) ] / ( llz ) 

(A-g) 

where d replaced l/a. The second term at the left-hand side of Eqn. 

(A-8) is expressed as a finite-difference form 

1 0 cG 1 oG ~G 
-:-( ci r-)" [ d r () d (u)] / 
ror or rj j+l j+1 or j+1 - jr j or j llr 

(A-IO) 

substituting Eqns. (A-g) and (A-IO) to (A-8) gives a finite difference 

equation 

4 2 
- d .. , . Gil j +d . G + 12 a O'T ( Az) 

~~.,J +, ~,j i-l,j 1,j i,j 
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Using Marshak boundary condition, the wall boundary condition is 

prescribed by 

2 4 
= 4 en aT \,7 

Eqn. (A-II) can be expressed in a finite difference form as 

2 42 G 
4cn aT + -(2-c) \,7+1 

\,7 3 alln 
G \,7 

c + ; ( 2 - c) a ~n 

(A-ll) 

The PI-approximation results for a finite cylinder containing an 

absorbing and emitting medium are compared with the exact numerical 

results and P3-approximation (Menguc and Viskanta, 1984) in Figure A-I. 

The normalized heat fluxes obtained from the PI approximation at the 

wall are generally in good agreement with those based on exact analysis. 

For a thin medium (i.e. t = aR = 0.1), the PI-approximation is almost 

the same as the P3-approximation; however, for larger t, it tends to 

overpredict the heat flux. 
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II. INTEGRATED MODELING OF STRUCTURAL HEAT CONDUCTION IN THE 
CONTEXT OF ENGINE CYCLE SIMULATION 

INTRODUCTION 

The heat deposited on the surfaces of engine components by gas 

convection and radiation, and heat generated by friction between engine 
components, is transmitted by conduction heat transfer through the 

structural components to coolant, oil and the environment. 

The problem of calculation of heat conduction in the engine structure 

involves the following elements: a) calculation of surface thermal 
loads, due to gas convection and radi at ion, coo 1 ant convection, and 
frictional heat; b) specification of structure thermal properties; c) 
representation of engine structure geometry; d) derivation of a 

tractable approximation of the heat conduction equation as it applies to 

the particular geometry (e.g., by the finite element or equivalent 

technique); and e) solution of derived equations for temperature 

di stri but ions. The fi rst two i terns above depend on structural 

temperatures, which make the problem non-linear, and couple the solution 

of the conductive equations to the solution of the appropriate 

convect i ve/radi ant heat transfer and fri ct i ona 1 heat generation prob-

1 ems. 

In the context of engine thermodynamic cycle simulation an additional 

coupling derives from the fact that combustion gas pressures and 

temperatures, which affect the convective, radiant and frictional 

thermal loads on the structure, are themselves functions of the 

instantaneous energy balance that includes heat transfer to the 
structure, whi ch in turn depends on structure temperatures. To the 
extent that heat conduction controls overall heat transfer, a model for 

it ought to be integrated into the simulation. 

Thi s chapter descri bes approaches for i ntegrati on of steady-state and 

cyclic (surface) conduction heat transfer computation to cycle simula-
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tion procedures. First, prior work related to heat conduction computa­

tions in cycle simulation is briefly covered and today's modeling needs 

are reviewed. Then, a methodology is described for application of the 

finite element method for modeling of heat conduction within the engine 
structure in the context of engine cycle simulation. The techniques 

described are general and can be utilized with all cycle simulation 

procedures to an extent that depends on the degree of the spatial 
resolution they comprise. 

Following the outline of the methodology, a description is given of two 

structural models, namely a network model of steady-state heat con­

duction in diesel geometries and a detailed FEM model of a Cummins 

engine. Results obtained by cycle simulation runs with both network and 

FEM methodologies are presented. Effects of speed, load and progressive 
insulation on zonal -temperatures and heat transfer rates have been 

investigated. In the presentation of the FEM results, emphasis has been 

placed on temperature distributions, peak temperatures, details of liner 

surface heat transfer and comparison to network predictions. The 

results document sensitivities to various parameters, and they 

demonstrate the capabilities of the methodology. 

The last section of this chapter concerns the modeling of cyclic surface 

thermal transients. The model used for this purpose is described in the 

Phase I report. This section focuses on the incorporation of the model 

in a cycle simulation code and describes an extension of the technique 

for coupling steady-state and transient computations, which allows 

rigorous treatment of the piston-liner interface and accurate prediction 

of liner temperature excursions. Results showing effects of progressive 

insulation on this aspect of heat conduction, are also documented. 

PRIOR METHODS OF MODELING HEAT CONDUCTION IN CYCLE SIMULATION 

Since the convective and radiative heat transfer from combustion gases 

to combustion chamber walls provi des the bul k of the heat load on the 

structure of I.C. engines and directly affects performance and fuel 
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efficiency, heat transfer modeling efforts for the purposes of cycle 
simulation have tended to focus on the gas phase heat trar,sfer. In 

addi t ion, in convent i ona 11y cooled engi nes the range of wall temper­

atures is relatively narrow. Consequently, steady-state conduction heat 

transfer has been represented in cycle simulations by very simple 

models: 

1) Prescribed values, based on estimated or measured wall temperatures 

were input into the simulation. 

2) Lumped characterization of the engine structure by a single thermal 
resistance between combustion chamber surfaces and coolant surface, 

where a coolant temperature and heat transfer coefficient are 

prescribed, i.e.: 

Q + h A (T 
rad gas gas gas 

- T ) = (T - T )/R 
wg wg wc struc 

= h 
cool 

A (T 
cool wc 

- T ) 
cool 

(1) 

where hgas and Tgas are the effective mean gas heat transfer coef­
fi ci ent and temperature, Qrad is the mean radi ant heat trans fer 

rate, T and T are mean gas-side and coolant side wall tempera-wg wc 
tures and A and A 1 are surface areas on the gas and coolant gas coo 
sides, respectively. Thus, gas and coolant side surface tempera-

tures T and T representing the entire surfaces are solved for, wg wc 
but there is no accompanying spatial resolution. In addition, 

there is the obvious difficulty posed by the need to estimate the 

equivalent structure resistance, Rstruc. 

3) Thermal resistance network concept which uses several different 
temperatures T to characterize different combustion chamber (and wg 
cool ant/oi 1 si de) surfaces of the structure. The surfaces are 

joined by a network of thermal resistances forming an analog elec­

trical circuit (Figure 2-1a,b). A set of algebraic linear equa­

tions is solved to determine temperatures at all surfaces and nodes 
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Figure 2-1 Examples of simple thermal resistance networks for 
a) piston-liner heat transfer; and b) heat transfer 
in a diesel engine head. 

98 



of the network. A good example of such a network, including 

separate piston, liner and head and port surface nodes is given by 

Borman (1964). Using such models, effects of individual component 

dimensions and mean thermal properties on heat transfer and thus 
engine performance can be estimated. The technique also lends 

itself to further generalization, in that increasingly complex 
networks can be constructed to characterize more geometrical detail 
and/or materials differentiation. 

In the last two decades, advances in speed of computation have allowed 

detailed investigations of heat conduction in engine components via 

extended or geometri ca 1 networks and the mathemat i ca lly more formal 

finite difference and finite element methods. The latter has allowed 
the modeling of structure geometry and thermal properties at a level of 
great detail (e.g., Li, 1982, Holtman et al., 1984, McDonald, 1985). A 

need to couple solutions of combustion gas thermodynamics and component 

temperatures has also occasionally been recognized: Woschni (1980), has 
suggested the alternating application of cycle simulation and some form 
of heat conduction solution for the engine structure. Kao and Wallace 
(1981) have proposed a techni que in whi ch pi ston temperature resul ts 

obtained from a finite element solution could be condensed into a 
one-dimensional form so as to compute an equivalent conductance which 

can be utilized in conjunction with a global cycle simulation model. 

However, no examples of detailed conduction models, completely inte­

grated into cycle simulation procedures in order to account for all of 

the couplings, have been reported in the literature. 

Effects of combustion chamber wall cyclic temperature excursions on heat 

transfer and engine performance have also been acknowledged but ignored 

in cycle simulation procedures. This practice is acceptable for conven­
t; ona 1 metal eng; nes due to the small magn; tudes of these trans i ents, 

but introduces measurable inaccuracies for insulated engines. 
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CURRENT MODELING NEEDS 

Some of the more recent developments in engine design and research, as 
well as in modeling techniques, are providin.g the impetus for total 
integration of more sophisticated structural heat conduction models into 
cycle simulation methodologies: 

1) The trend toward development of low heat rejection (insulated) 

engines by the use of low conductivity ceramics, has provided an 
entirely new structural environment. The wall temperatures rise 

significantly and their level can be calculated only by a detailed 
combined convection/radiation/conduction solution. In addition, 
there is interest in predicting the steady state and transient 

temperature distributions in engine components so that thermal 
stresses in insulating (ceramic) parts may be calculated. 

2) Due to the i ncreas i ng fi ri ng pressures and thermal loads that 
accompany high BMEP engines, material temperatures are approaching 
allowable limits, and there is increasing interest in accurate 
prediction of local component temperatures. 

3) The general level of sophistication of gas-to-surface (convection, 

radiation) heat transfer models for diesel geometries has increased 

to the extent that they make possible the prediction of gas-to­

surface heat transfer in a spatially and time-resolved manner 
(Phase I Report, NASA CR-174783; also Chapter I of present report). 
These physically-based quasi-dimensional zonal models predict the 
thermal load levels combustion chamber surfaces in a spatially 
reso 1 ved manner. Thus, they can provi de the requi site boundary 

conditions needed by detailed heat conduction models. 

When current engine design analysis needs, and especially those related 
to insulated engines, are carefully reviewed, there emerge two separate 
appropriate levels for the proposed coupling of heat conduction metho­

dologies to cycle simulation procedures: 
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o Heat resistance network models generic to an entire series or 

class of engines, which can be utilized at the concept anal­

ysis stage of development, for parametric studies of effect of 

geometry, materials or insulation strategies on engine per­

formance. While resolving gross features of geometry, such 

models would not incorporate fine geometrical details and 

would be used in the period prior to establishment of a final 

design. 

o Multi-dimensional models, accurately characterizing geometry 

and materials for a specific engine, meant for studies of 

effect of engi ne ope rat i ng condi t ions on detail ed component 

temperature and stress distributions. 

At either level it is desirable to have the capabilities to model not 

only the steady-state conduction, but also to represent and study the 

cyclic transients in surface layers, and transient conduction due to 

engine load and speed changes (thermal shock). 

Cyclic transients (discussed in detail in Morel et al, 1985) affect 

combust i on chamber thermodynami cs and also impact the computation of 

steady-state conducti on in the rest of the engi ne structure. Si nce 

their magnitudes can reach several hundred degrees Kelvin for insulating 

materials, they might be linked to fatigue and the failure of surface 

layers in ceramics that has been observed in engine tests. The load and 

speed transients are much slower than the cyclic transients, and they 

affect the whole structure. Consequently, there is a need to evaluate 

the thermostructural behavior of insulation materials under engine 

conditions such as sudden load changes, cold start etc. 

STEADY-STATE CONDUCTION 

Engine Cycle Simulation 

To carry out the simulations in a realistic manner, the conduction 

representation must be coupled to a thermodynamic cycle simulation 
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providing the boundary conditions for the conduction calculations. In 

this work we used the IRIS engine simulation code, which incorporates 

highly detailed global or zonal descriptions of key engine processes and 
predicts a variety of engine parameters (see Appendix of Phase I 

Report). Convection and radiation submodels resolve gas temperatures, 

heat transfer coeffi ci ents and radi at i on heat fl uxes on a number of 

surfaces representative of diesel geometries (i.e, piston, liner, head, 
with further resolution on each surface). A physically based friction 
model, which tracks boundary and hydrodynamic friction separately at 

ring-liner and piston-liner contacts, computes frictional heat deposited 

at a prescribed number of piston, ring and liner surfaces. Convective 

heat transfer from piston crevice to the appropriate piston and liner 

surfaces is also computed. In the ports, thermodynamic simulation of 

port gases accounts for heat transfer, which is computed at a number of 
port surfaces including port walls, valve backs and stems. In total, 

the simulation distinguishes between 19 surfaces in contact with 

combustion (or intake exhaust) gases, 9 additional friction (piston/ 

liner) surfaces and 21 surfaces in contact with coolant or oil. These 
surfaces form the link used to interface heat conduction methodologies 

to the thermodynamic cycle simulation. 

Finite Element Modeling of Heat Conduction 

In order to accommodate the need for detailed multi-dimensional analysis 
for specific design studies, an interface procedure was developed for 
coupling finite element conduction computations to an engine cycle 

simulation code. The procedure utilizes external finite element 

structure models for heat conduction modeling. The interface was 

constructed in a way that makes it generic, i.e., independent of details 

of the finite element model: the level of resolution of geometrical 

detail and materials differentiation is left to the FEM analyst, to be 

chosen according to the ultimate purpose of the analysis, e.g., peak 
materials temperature determination, or thermal stress analysis. A 

complete engine model (an assembly of engine component geometry models 

including piston, rings, liner, head, valves, etc. and the descriptions 
of thermal interactions among components) must be used to describe all 

102 



of the heat paths, but the 1 eve 1 of reso 1 ut i on need not be uni form. 

On ly components where 1 oca 1 temperatures are of interest need to be 

modeled in full detail, while coarser mesh can be used for the rest. 

In the context of a distributed computational model (network, finite 

differences or FEM) and for the general, trans i ent prob 1 em, the heat 

conduction equation is expressed as 

[C] T + [K] T = Thermal load vector (2-2) 

where [C] and [K] are thermal capacitance and resistance matrices, 

respectively, and T is the vector of nodal temperatures. 

The thermal load vector (Q) acts on the surface nodes, and it can be 

expressed in general as 

Qj = lij Xgjk [Qrad,k + hgeff,k Ak (Tgeff,k -Ti-C~)] 

+ l . . X . k [h k A k (T k-T • ) ] 
lJ CJ C C C 1 

where 
j 
i 
T. 
kJ 

Ak 

+ l. 'Xf ' k [Qf' k] lJ J rlC, 

= 
= 
= 
= 
= 

boundary element nodes (j = l,n i ; n; = 1-4) 
boundary elements number (i = I,m) 
temperature at node j 
thermal load surface number for cycle simulation 
thermal load surface area for surface k 

(2-3) 

lij is a shape function (determined from boundary element geometry) 

which distributes load on boundary element i to each of its nodes j. 

The network approach is a special case of the above procedures, where a 

boundary element has a single node (n; = 1) and l;j=l. 

X 'k' X 'k' Xf ' k are weights that map boundary finite elements i onto 
S1 Cl 1 

areas k on cycle code gas/coolant side and friction surfaces. The 

wei ghts account for the area fracti on needed ; n case more than one 

boundary node maps onto a surface, and also for the fraction of time the 

surface ;s exposed to the thermal load, e.g, 
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A. 
1 Xgik - - (2-4) 

where the integral indicates a cycle average of instantaneous area (e.g 

a liner surface) exposed to gas. The variables Q d k h ff k and ra " g, e , , 
Tg eff k in equation (2-3) are mean radiation heat transfer rate, , , 
effective gas heat transfer coefficient and effective temperature for 

surface k (hg,eff = fhg AglfAg' Tg,eff = fhgTgAglfhgAg)' and hc,k and 
Tc k are coolant or oil surface heat transfer coefficients and temper-, 
atures. The term C~ is a surface temperature correction related to 
surface cyclic transients on surfaces exposed to combustion gases, and 
will be described in a later section. 

The FEM heat conduction interface requires as an input the global finite 

element heat conductance [C] and capacitance [K] matrices, and a 

directory of all boundary elements of the finite element model mapping 

them onto one or more cycle simulation heat transfer surfaces. Also 

requi red in the di rectory are areas and nodal connect i vi ties of the 
boundary elements. 

The gl oba 1 conductance and capacitance matri ces descri be the 1 i near 

equations to be solved. They are computed by formal finite element 

matrix assembly procedures. The global conductance matrix for a 
structure is assembled from conductance matri ces characteri zi ng each 

element. The conductance matri x of each fi ni te element descri bes the 

linear (or higher order) relationships between element nodal temper­

atures that a) establish the heat balance and b) best approximate the 

heat conduction equation within the spatial domain of the element. For 
the models and results discussed here, COSMIC/NASTRAN was used to 

construct geometry representations and compute global matrices, although 
any other multi-purpose finite element code could be utilized. Data on 

the boundary (surface) elements of the FEM model is passed to the cycle 

code in the form of a directory, which associates each boundary element 
with one or more heat transfer areas. Also provided for each boundary 

element in the directory, are the element area (Ai in eq. 2-4), a weight 
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that allows partial mapping onto more than one heat transfer area, and 

the lOis and coordinates for nodes connected to the element. The latter 

are used to generate the "shape functions" which distribute the element 

thermal load to the connected nodes. 

The interaction of NASTRAN and cycle simulation code, including the FEM 

interface and the coupling of between steady-state conduction and 

thermodynamic cycle simulation, is shown schematically in Figure 2-2. 

With the above information acquired by the cycle code through its FEM 

interface, the steady- state heat conduction computations are carri ed 

out, as in the network approach, at the end of each engine cycle. The 

therma 1 load for each element is computed based on mean thermal load 

quantities on the cycle code heat transfer surfaces onto which the 

element has been mapped. This load is in turn distributed to the 

appropriate individual nodal equation right hand sides. Following that 

the equations are solved simultaneously for all nodal temperatures. The 

resul ti ng surface temperatures feed back into the gas heat transfer 

calculations and the process is repeated until convergence of heat 

transfer computations. Structural temperatures are then output and 

postprocessed for contour plotting of component temperature profi 1 es. 

The average time for execution of one cycle of IRIS simulation, with FEM 

computat ions for a 1860 node model, is 3 CPU mi nutes on the DEC VAX 

11/750. Larger and more detailed engine FEM models involving several 

thousand nodes would have larger CPU time requirements. 

STEADY-STATE CONDUCTION: APPLICATION 

Network Conduction Model 

A heat conduction model representative of most 01 diesel geometries was 

constructed using a thermal resistance network approach, developed 

separately by ITI, and was interfaced to the engine simulation code. 

The representative simplified diesel geometry and the thermal resistance 

network are shown in Figures 2-3 and 2-4 respectively. The network 

consists of 159 nodes linked by 252 resistances; its surface nodes map 
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exactly onto the 49 heat transfer (thermal load) surfaces recognized by 
the parent code. 

As shown in Fi gure 2-4, all combustion chamber and port surfaces have 
surface layer nodes and associated cells for which individual thick­

nesses and thermal properties can be prescribed. In addition to the 
structural resistances, resistances between surfaces in contact and 
relative motion (such as piston-liner, ring-liner and valve-seat sur­

faces) are computed based on prescribed contact heat transfer coef­

ficients and the fraction of time surfaces of a pair are in contact with 
each other. Single or multiple (exhaust or intake) valve or ports can 

be handled. The resistances are calculated using exact geometrical 
relationships for simple axisymmetric geometries, except for complex 
geometries such as the head, where approximations are made using 
equivalent mean lengths and areas. Thus for a representative piston with 

a cylindrical cup and a cylindrical-shell liner, the constructed 

equations are equivalent to the finite difference approximation to the 
heat conduction equation. 

Finite Element Model of Cummins NH Engine Components 

A Cummins NH series engine was selected for construction of a finite 

element engine structure model. The total number of nodes in the model 

was 1860, which could be considered an intermediate number for a heat 

conduction model of complex structure. This level is adequate for 
representing an important part of the geometrical detail without 

excessively burdening the simulation with excessive CPU time require­

ments, because the simulation is often executed in parametric studies 
involving multiple runs with numerous cycles in each run. 

The finite element model was constructed using NASTRAN 2-D axisymmetric, 
3-D and scalar elements. The piston geometry, which is mostly axisym­
metri c except for the wri stpi n area, was modeled by 2-D axi symmetri c 

elements. A 3-dimensional representation would not be a significant 

improvement in this particular case, since it would affect only the 
crankcase side of the piston where convective boundary conditions are 

'09 



prescribed only in the average sense, with no spatial resolution. The 

FEM models of piston, liner and rings (which are axisymmetric and were 
modeled as such) are shown in Figure 2-5(a). Not shown in the figure 
are a large number of scalar elements that link piston liner and rings 
with each other. The thermal resistances for these elements were 

computed from the contact res i stance and the fraction of time areas 

associated with nodes in a pair are in contact. Figure 2-5(b) shows an 
axisymmetric valve geometry model. The valve guide above the port was 

also included in this representation. The valves were linked by scalar 

elements to the head structure model at the seats as we 11 as at the 
va 1 ve gui des. Sca 1 ar elements at the val ve- seat contacts account for 
contact resistance and contact time fraction. 

The engine head geometry is truly 3-dimensional and complex, as may be 
seen from a simplified sketch in Figure 2-6. A 3-D model of the head is 

necessary to model all heat paths. A heavy-duty diesel engine head, 
with all its ports, manifolds, coolant, oil and fuel passages and bolt 
holes, valve and injector guides, presents the FEM analyst with a for­
midable 3-D modeling task. The task and model size was kept manageable 
by the following modeling decisions: 

a) of primary importance are direct gas-meta1-coo1ant heat paths such 
as those through the firedeck and through port or manifold walls. 

Other heat paths such as those between coolant passages, and from 
coolant to the exterior through metal were not precisely and geo­

metrically modeled, although the correct extent of structure con­
necting interior surfaces to exterior, was maintained; and 

b) to keep resolution within acceptable bounds, finer details of the 
geometry, expecia11y on the coolant side, where boundary conditions 

are only known in the average sense, were omitted. 

Thus the important details of the head that were emphasized included the 

area directly above the cylinder (firedeck), firedeck topography on the 

coolant side, details of exhaust and intake ports, and the shapes and 

thicknesses of ports. Since the NH head is constructed to span two 
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Figure 2-5 a) 2-D Axisymmetric FEM model of Cummins engine 
piston-liner ring assembly. Piston-liner relative 
axial positions as at TOC. b) 2-D axisymmetric 
model of valve geometry including valve guide. 
Intake and exhaust valves identical. 
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cylinders and has near-symmetry between its sides on each cylinder, only 
one half of the structure was modeled. The structure was divided into 
three major elements: fi redeck, intake mani fo 1 d and exhaust port. 
Mode 1 s for gebmetri es of these three components were supp 1 emented by 

additional representations of heat paths between them and other surfaces 

of the head, such as the injector jacket and the outer surfaces. Scalar 

elements with appropriately computed thermal resistances were used to 
link structures as well as to establish heat paths to valves and liner. 

The firedeck, intake manifold and exhaust port models are shown in 
Figures 2-7, and 2-8(a)-(b). The symmetry plane in the head runs 

through the center of the intake manifold, whi ch is common to two 

cylinders. Thus only the symmetric one-half of the intake manifold was 
modeled. 

Contact Resistances and Coolant Heat Transfer Coefficients 

In IC engines, contact thermal resistances exist between parts of 
assembled or composite components, at the interfaces between stationary 

components, and between components in relative motion. Of these three 
types, the last one is usually the most important. Contact heat 

transfer coefficients are a function of the contact pressure, the 
thermal properties of the interfacial medium, the surface finish and 
hardness of surfaces in contact. Where moti on between components is 

along the interface, the contact res i stance is typi ca lly hi gher due to 
the provided clearance and existence of a lubricant film. 

Determination of the correct values of the contact resistances is 

difficult, but since they are often not too large, their precise value 
is not cri t i ca 1. However, when thei r magni tudes are 1 arge compared to 

thermal resistances on either side of the contact, or if they lie on an 
important heat path, careful attention must be paid to them. Five such 
contacts, namely ting-liner, piston-ring, piston-liner, valve-seat and 
valve stem-guide, were included in both the network and FEM represen­

tations. For each of these contacts a contact heat transfer coefficient 
h. is defined to relate the heat flux to the temperature drop across the 

1 
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Figure 2-7 3-D finite element model of firedeck: orthographic 
view. 
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Figure 2-8 Orthographic views of 3-D FEM models of 
a) exhaust port; b) symmetric one-half of 
intake manifold. 
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interface, i.e., Q/A = h.(TI-T2 ). In reality h. varies spatially and 
1 1 

temporally (with crank angle) for each of the contacts. Since this only 

affects surface transients (which are not large on liner, rings, valve 

sea 1 s or stems), an average coeffi ci ent is appropri ate for use in the 

methodology. The average itself may vary with engine parameters such as 

speed, load, valve spring compression, etc. In the present methodology, 
nominal heat transfer coefficients for the contacts identified for a 
particular design are prescribed as input data to be specified by the 

user. Cycle averages are computed from these nominal values based on 

contact times between various surfaces or subsurfaces. 

Coolant or oil heat transfer coefficients are sensitive to coolant and 

oil velocities and thermal properties, the mechanisms of heat transfer 

(forced convection, impinging jet, splashing, nucleate boiling, etc.) 
and the details of the geometry and fluid flow. Magnitudes of coolant/ 

oi 1 heat transfer coeffi ci ents cited in the 1 i terature vary greatly. 

Reported correlations are generally specific to engine geometry or mode 

of cooling and cannot be universally applied. For results presented in 

present study cool ant/oi 1 and contact heat transfer coeffi ci ents were 

arrived at by running sensitivity studies aimed at matching measured 

temperatures. 

Network Results 

A sample output of network nodal temperatures (Cummins NH engine, rated 

speed/load) arranged into a schematic of diesel combustion chamber 

geometry (not to scale), is shown in Figure 2-9, where G refers to 

gas-side surfaces and C to coolant-side surfaces. In addition to tem­

peratures, heat transfer rates on individual cycle code heat transfer 
surfaces are r~covered from the calculations. At the network level of 

resolution, predicted steady-state temperatures and heat transfer rates 

are spatial averages computed for each surface or volume. Local varia­

tions, which can be significant - as will be seen in FEM results - are 

not resolved. However, there is enough detail in the description of the 

heat paths to produce accurate global heat transfer results. Most of 
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the documented effects of speed and load, as well as progressive insula­

tion at varying load, discussed below, cannot be explained in the con­

text of the heat conduction methodology alone. They are the product of 
the complex interactions with all the cycle code submodels with thermal 

implications, including cylinder and port thermodynamics, flow and 

convection, radiation, friction and soot kinetics in this completely 
coupled methodology. 

Speed and load effects. Vari at i on wi th speed and load of the fraction 

of fuel energy rejected as combustion chamber heat transfer, is shown in 

Figure 2-10. The plotted points correspond to 100, 70, 50, 35 and 25% 

of full load fuel rate at each of the three speeds. The variation of 
this quantity is the result of combined effects of changes in gas heat 

transfer coefficients, effective gas temperature, radiation flux and 
cool ing rate with speed and load. Exhaust port heat transfer (as a 

fraction of fuel energy) also decreases with speed, but has a peak at a 

lower load (Figure 2-11). Effects on heat rejection to oil are shown in 

Figure 2-12. The increase in heat rejected to oil (as a fraction of 
cylinder heat transfer) with speed is partly due to increasing fric­

tional heat generation, but also indicates that the relative importance 

of the main heat paths changes with speed and load. The fraction of 
in-cylinder heat transfer rejected to oil increases with speed, the 

effect being more pronounced between 1300 and 2100 rpm. Variation with 

load is small and exhibits opposite trends at lower and higher speeds, 
respectively. Effects on average temperatures of various component 

surfaces exposed to combustion chamber gases are documented in Fi gure 

2-13. Wall temperatures increase with load but decrease with speed (at 

a constant fuel rate), as would be expected from results shown in Figure 

2-10. Detailed analysis of the code outputs showed that this is caused 

by decreases with speed in radiation heat transfer and mean effective 

gas temperature, and increase in coolant heat trans fer coeffi ci ents , 

which more than compensate for the effect of increasing gas heat trans­

fer coefficients. 

Effects of Insulation. A study of effects of progressive insulation of 

the Cummins NH engine components at rated speed and varying load levels 
was conducted using the capability of the IRIS thermal resistance net-
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work to represent thermal barrier layers on combustion chamber surfaces. 

Effects on surface temperatures as well as on heat transfer rates and on 

heat balance were investigated. The three levels of progressive thermal 
insulation were: a) conventional metallic engine (aluminum piston); b) 
insulated engine with components, including liner, insulated with 1.5 mm 

of zirconia plasma sprayed (ZPS) with k = 0.6 W/mK; c) superinsulated 

engine with all components including liner made of a hypothetical, very 
low conductivity materi a 1 wi th k = 0.01 W/mK. The cool i ng of the 
structure was reduced for the i nsul ated and superi nsul ated confi gura­
tions by decreasing heat transfer coefficients on the coolant side of 
the structure. Oil heat transfer coefficients were kept constant. 

Vari at i on of vari ous component temperatures with load at the three 
levels of thermal insulation is shown in Figure 2-l4(a)-(e). ZPS 
insulation raises component surface temperatures by 100-SOOoK depending 

on load and the particular component, with head (firedeck) and piston 
temperatures being affected the most. Effects on valve and liner 
temperatures are somewhat lower. For the 1 i ner thi sis due to lower 
effect i veness of ZPS as a thermal barri er on the 1 i ner, caused by the 
heat flow path to the oil coolant through the reciprocating piston which 

exists in both the metallic and ZPS cases. This is seen in Figure 2-15 

where the effect of ZPS on heat transfer reduction at vari ous load 

1 eve 1 sis documented separate ly for i ndi vi dua 1 components. The 

effectiveness of the liner insulation is less than that of the piston 
and firedeck at intermediate and high loads. This lower insulation 

effectiveness, combined with adverse effects of high liner temperatures 

on volumetric efficiency and the lubrication of the piston liner 

interface, make liner insulation a questionable strategy. This issue is 

further discussed in Chapter III. Figure 2-16 shows effects of liner 
insulation on top compression ring face temperature, for the insulated 
and superinsulated configurations above. It can be seen that liner 
insulation increases very significantly the ring face temperature 
compared to the baseline. By contrast the configuraton with insulated 
piston and cooled liner actually have lower ring temperatures than the 

baseline due to the reduced heat flux into the piston. 
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The effect of insulation on in-cylinder and on exhaust and intake port 

heat transfer rates is given in Figure 2-17 and 2-18. For the metallic 

and insulated configurations, gas-wall heat exchange - as a fraction of 

fuel energy - increases with decreasing load for the cylinder as well as 

intake and exhaust ports. Heat exchange also decreases with progressive 

insulation. The increase in intake port heat transfer with ZPS insu-

1 at i Qn is the exception and is caused by reduced cool i ng and hi gher 

intake port wall temperatures. Heat transfer is near-zero on all the 

surfaces of the superinsulated configuration except the liner, where the 

balance of the deposited (positive) radiant and (negative) convective 

heat transfer rate result in a small negative overall cylinder net heat 

transfer rate, implying the transfer of frictional heat to the combus­
tion chamber gases. 

An important effect of insulation is on the main heat paths. This is 

seen in Figure 2-19, displaying the effect of load and insulation on 

heat rejected to oil. ZPS insulation increases heat rejection to oil 

due to the shifting of part of the liner thermal load, including fric­

tion heat, to the oil, through the path in the piston structure. For 

the superinsulated configuration this path is removed due to a 

non-conduct i ng pi ston; a new hi gher- res i stance path through the 

piston-liner moving interface is established and heat rejection to oil 

decreases to levels close to those in the cooled case. 

Finite Element Results 

Using the finite element model of the NH engine component geometries and 

the FEM heat transfer methodology described above, a study of effect of 

load (at rated RPM) on component temperatures, was conducted for the 

baseline metallic engine. Of interest in this study were peak 
temperatures as well as temperature and heat flux distributions. Figure 

2-20 shows variation with load of peak temperatures on gas side surfaces 

of various components exposed to combustion gases. The variation for 

each component refl ects the res i stance of the gas-coolant heat path 

through the component, as well as the geometry. As expected, peak 

surface temperatures are higher for components not directly cooled, such 
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as valves and lowest for the liner, which has a large cooled area. The 
sensitivity' to load (slopes of the curves) decreases with increasing 
load for most of the components, except the piston. 

Differences between temperatures averaged from FEM distributions and the 

s i ngl e network temperatures for vari ous regi ons are gi ven in Fi gure 
2-21, which shows that they tend to increase with load. These dif­
ferences are not large, indicating that the network representation gives 
a good estimate of the average conditions. The FEM of course provides 
more detail, including the temperature distribution in each region. 
Taking a difference between the peak steady-state temperature in a given 
region from the FEM solution and the single network temperat"ure which is 
in effect the region average, one obtains an idea of the temperature 
distribution resolution that is lost in the network approach, as docu­
mented by Figure 2-22. Large differences on the pi ston are due to high 

temperatures on the conical protrusion in the cup. On the firedeck, 
large mean-to-peak temperature differences reflect local contacts with 
valves and variations of cooling rate on the coolant side. 

Variation of piston temperature profiles with load is shown in Figure 
2-23. The same contour levels (spread lOoK apart) have been used for 
all load levels so as to maintain a basis for comparison of gradients. 
The temperature at the tip of the central conical protrusion in the cup 
is shown to increase much faster with load than average pi ston crown 
temperature. While it is only about lOoK higher than the latter for 25% 
load, it is as much as 600 K higher for full load. The direction of heat 
flow (indicated by the angle of the normals to contour lines) also 
vari es wi th load, so as to become more radi a 1 wi th i ncreas i ng load. 
This is supported by integrated heat transfer rates from the same study, 
which indicate that the fraction of heat deposited on the piston that is 
rejected to oil (largely at the underside of the piston) decreases by 
20% with increasing load within the load range studied. This is due to 
an increase with load in the temperature difference at the piston-liner 
interface, caused by the relative insensitivity of liner temperatures to 
load; the 1 arger thi s di fference the greater the heat fl ux from the 
piston to the liner. 
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Liner temperature distribution and its variation with load is shown in 

Fi gure 2-24. Li ner temperature profil es are characteri zed by a peak 

temperature just below the portion of the liner permanently exposed to 

combustion gases, caused by the high thermal load as well as absence of 

direct cooling in the region. The heat in this region flows down toward 

the lower (cooled) portion of the liner, sideways to the engine block, 
and up to the firedeck. 

Figure 2-25 shows temperature contours for the gas side surface of the 

firedeck at the five load levels studied. The difference between the 

levels of temperature in the intake and exhaust sides is evident in all 

load cases, with the peak steady-state temperatures always between two 

valves and typically on the valve seats. Near-peak temperatures also 

prevai 1 at the center of the fi redeck, where presence of the injector 

jacket prevents di rect contact with coolant. Largest gradients are 

between intake and exhaust sides and also near the liner on the exhaust 

side. Temperatures, as well as temperature gradients, are lower in a 

plane 7 mm beneath the exposed surface of the fi redec k (Fi gure 2- 26) 

where effects of local surface load differences and hot valves con­

tacting the seats are attenuated by thermal diffusion. 

Variation of temperature distributions in intake and exhaust valves with 

load is shown in Figures 2-27 and 2-28, respectively. Differences 

between local temperatures at identical locations on (each of the pair 

of) intake or exhaust valves were within 5°K. The intake valve is 

cooled at the seat contact by intake air and also by conduction through 

the stem and gui de. Its temperature is hi ghest at the center of its 

face exposed to cylinder gas and decreases roughly linearly with 

di stance from the face. The peak temperature is 50-lOOK hi gher than 

peak fi redeck temperature, but 70-l50K lower than the hi ghest exhaust 

valve temperature. The latter occurs at the center of the exhaust valve 

face. Temperature distribution in the exhaust valve is also signifi­

cantly different from that in the intake valve. The exhaust valve is 

cooled at the seat contact and by conduction through the stem, but it is 

heated on its back face by the hot exhaust gases. The result is a large 

region of near-uniform high temperature at the valve neck, and high 
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temperature gradients where the stem emerges from the guide. Due to the 

highly specific nature of exhaust port and intake manifold geometries, 
temperature distributions on their surfaces may not be of general 
s i gnifi cance. Temperatures on these surfaces are the hi ghest where the 
exhaust port and intake manifold join the firedeck, and rapidly decrease 

with distance from the junctions due to effective cooling of port walls. 
A plot of printed (full load) nodal temperatures superimposed on an 
orthographic view of the exhaust port is shown in Figure 2-29. 

Liner Surface Heat Transfer 

One of the uni que features of the current methodology is the detail ed 
analysis of liner heat transfer that resolves thermal loads on the liner 

spatially and in time while rigorously accounting for piston motion and 
pi ston-l i ner thermal interactions. The correct representation of thi s 

aspect of heat trans fer in reci procat i ng engi nes allows the detailed 

resolution of heat paths and temperatures on the liner surface. The 

detail built into the methodology allows investigation of sensitivity to 

geometry and properties of surfaces at the interface (including rings) 

individual conduct resistances as well as gross geometry and global 
simulation variables. This information is valuable in the evaluation of 
liner insulation strategies and characterization of the thermal 

environment for tribological phenomena on the piston-liner interface. 

Mean (steady-state FEM) results are discussed here, while the transient 

aspects of these calculations will be presented in a later section. 

Variation of liner surface temperature with distance from head and with 
load is shown in Figure 2-30. The peak temperature near the top of the 
1 i ner rapi dly decreases with di stance from head. The center of the 
1 i ner is kept coo 1 by coo 1 ant flow behi nd it; the lower, uncoo 1 ed 
portion is hotter due to heat flow from piston and frictional heat. 
Careful observation also reveals .shallow IIhumpsll at the beginning and 

end of the coo 1 ed regi on where there is prolonged contact wi th the 

hotter piston as it slows down around each TOC and BOC. The above 

pattern repeats itself at all load levels, although load has an 

amplifying effect on the range of local temperature variations. 
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Distribution of total mean local heat flux on the liner is shown in 

Figure 2-31. It is characterized by a high flux region at the top 
(always exposed to gas), followed by a relatively flat high heat flux 

zone (coi nci di ng with the coolant channell ength) and a thi rd regi on 
where net heat flux is slightly negative due to heat rejected to crank­

case oil. There is a minimum around the O.03m location. This area is 

in contact with the piston only shortly and does not receive the full 
effect of piston-liner heat flux. At the same time gas temperatures and 

heat transfer coefficients are reduced by the time it is exposed to gas. 
Spatial and load variations of the individual components of this total 

heat flux, i.e., gas-liner, piston-liner, oil-liner and friction heat 
fluxes, are shown in Figures 2-32, 2-33, 2-34 and 2-35, respectively. 
These plots augment Figure 2-31 by documenting the contribution of each 
heat flux component to the variations in the total. Gas-liner and 
piston-liner heat fluxes were further broken down and they are discussed 
below. The oil-liner heat flux (Fig. 2-34) is negative indicating heat 

loss to crankcase oil. It exists for the portion of the liner exposed 
to crankcase oil as piston rises from BDC to TDC. Frictional heat flux 

(Fig. 2-35) peaks at both ring reversal locations due to boundary 
piston-liner and ring-liner boundary friction. The general rise toward 

the BOC reversal is due to increased effect of hydrodynamic piston skirt 

friction, which exists only below the ring pack. 

Figures 2-36(a) and (b) show distribution of the convective and radi­
ative components of the gas heat flux on the liner. Radiative heat flux 
is present only for the region near the head; this is the only part of 

the 1 i ner exposed to gases duri ng the re 1 at i ve ly short peri od in the 

expansion stroke, when a radiant sooting flame is present in the 

combustion chamber. The spatial and load variation components of total 
piston-to-liner heat flux that are due to piston-liner and ring-liner 
thermal interaction are shown in Figures 2-37 and 2-38, respectively. 
The sp 1 it between pi ston-l i ner and ri ng-l i ner heat fl ux appears to be 
roughly equal. Piston-liner heat flux slowly increases with distance 

from head and peaks at the BDC 1 i ner-pi ston crown contact, where the 
highest temperature difference between piston and liner is reached. Due 
to groove-ring resistances, successive ring temperatures vary less than 
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Figure 2-31 Distribution of total heat flux along the gas side of liner at rated 
speed and varying fuel rate (FEM results; Cummins NH engine; 
conventional, cooled; symbols as in Figure 2-30). 
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speed and varying fuel rate. (FEM results; Cummins NH engine; conventional, 
cooled; symbols as in Figure 2-30). 
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Figure 2-33 Distribution of piston-liner heat flux along the gas side of the liner at 
rated speed and varying fuel rate. (FEM results; Cummins NH engine; 
conventional, cooled; symbols as in Figure 2-30). 
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symbols as in Figure 2-30). 
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temperature on the side of the piston. Thus, distribution of ring-to­

liner heat flux is mostly determined by the instantaneous piston speed, 
and it peaks at both the TDC and BDC top-compression-ring-liner 

contacts. Piston-liner heat flux and its components have a weaker 

dependence on load than both gas convection and radiation fluxes on the 
liner. 

CYCLIC COMBUSTION CHAMBER WALL TEMPERATURE TRANSIENTS 

One of the complex features of engi ne conduction heat transfer is the 

existence of temperature excursions (swings) produced in surfaces 

exposed to combustion gases by the cyclical and highly peaked nature of 
gas-to-wall heat transfer. The magnitudes of these swings are low for 

conventional metallic engines «300 K) but may reach 2000 
- 2500 K for 

ceramic materials currently proposed for insulated engines. The study 
of cyclic transients is important due to their implications regarding 
materials fatigue and thermal stress and also because of their effects 
on insulated engine performance. During Phase I, a one-dimensional 
transient heat conduction model was developed for computing cyclic 

transients on engine surfaces exposed to combustion gases. This model 

and its application are discussed in detail in the Phase I report and 

also in Morel et al, (1985). 

Incorporation of 1-D transient heat conduction model into cycle 

simulation 

The 1-D transient heat conduction model can be used in conjunction with 
the fi ni te element or network steady- state conduction methodo 1 ogi es 

described previously. It can be applied to each of the individual 
in-cylinder heat transfer surfaces recognized by the cycle simulation. 
There are eleven separate in-cylinder surfaces which include three 
piston surfaces, three liner surfaces (top sixth, middle third and 
bottom half) three concentri c head surfaces, and exhaust and intake 

valves. To perform these calculations within the computational time 

constraints of the coupled approach, both the time step and the mesh 
size within the penetration depth have been optimized (Phase I Report). 
Since it is sufficient to integrate the transient heat equation at 
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three-degree crankangle increments for adequate accuracy, the 1-0 

transient heat transfer computations need not be done synchronously with 
the cycle simulation but are performed at the end of each cycle using 

stored information. In addition, the convergence of the computation is 
assisted every cycle by adjusting the profile within the penetration 

depth for the mean heat flow predicted by the steady-state conduction 
model. Thus it suffices to iterate only a few times per cycle and for 
most cases only once, before a true cyclic solution is attained. The 
mean cyclic heat flux on a surface i of area Ai exposed to gas is ex­
pressed as 

fh .f . fh TI. (2-5) 
= A·fh . gl gl - T . - 9 W1 

1 gl W1 
fh . gl fh . gl 

where subscript g refers to gas and w refers to wall. 

The wall temperature deviation from mean, T~i (= Twi-Twi ) predicted by 
the 1-0 transient heat transfer model is used to calculate the third 

term inside the parentheses in the above expression, which defines C~i 

in eq. (2-3), which ;s the second order correction on time average 
surface temperature. These corrections are fed back to the steady-state 
conduction model for use in the convective boundary conditions as 
indicated in equation (2-3). At the same time, the instantaneous wall 

temperature is used in the computation of the heat transfer component of 
the gas energy balance. Thus, a three-way coupling between cycle 
thermodynamics, steady-state and transient heat transfer is established. 

Treatment of piston/liner thermal interaction and wall temperature 
transients 

In addition to surfaces permanently exposed to gas, the coupled 1-0 

transient model was implemented for liner surfaces and for piston ring 
faces in sliding contact with the liner. The relative motion of the 
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piston with respect to the liner has been accounted for in the 

steady-state conduction model described above, by prescribing time 

averaged resistances based on clearances, heat transfer coefficients and 
contact times between pi ston ri ng and 1 i ner surface nodes. Thus the 
piston-liner thermal path has been included in the steady-state con­

duction model. However, the effect of the cyclic temperature transients 
on these surfaces also· needs to be accounted for. While the magnitudes 
of these swings are smaller than those on surfaces permanently exposed 

to gas, they affect pi ston-l i ner heat transfer since the temperature 
difference between pi ston and 1 i ner surfaces is much sma 11 er than the 
gas-wall temperature drop. The transients also affect the tribology of 

the piston-liner interface. The incorporation of the cyclic transient 
heat conduction model into the simulation allows the resolution of 
temperature transients on these surfaces. The implementation of the 
one-dimensional model to the liner and ring surfaces requires that all 

applied surface heat loads be accounted for in a correctly time-resolved 
form. The procedure used to accomplish this is described below. 

Liner temperature transients. For 1 iner surfaces, the one-dimensional 
model is driven by inputs from gas convection and radiation models when 
a surface is exposed to gas; however, whi 1 e they are covered by the 
piston and traversed by the rings, the thermal load is calculated based 
on piston and ring temperatures and ring-liner/piston-liner heat 

transfer coefficients, as well as friction heat generated by ring-liner 
and piston-liner friction. The piston-to-liner and ring-to-liner heat 

transfer coefficients are inputs and assumed to be constant. When ring 
transients are being solved for, the instantaneous ring temperatures are 
used for the definition of part of the instantaneous heat transfer rate 

on the liner. 

The instantaneous heat transfer rate to liner zone i is, 

ql i ner, i = qgl, i + Iq 1 .. + Iq 1 .. + qfl, i jp,lJ jr,lJ 
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where the subscripts are defined as: (gl = gas-liner) 
(pl = piston-liner) 
(fl = friction heat) 
(rl = ring-liner) 

The subscripts j for piston and rings indicate piston side zone (there 

are 5 in IRIS) and the ring number (up to 4; j=l is the top compression 
ring). Piston side-zones and rings are shown in Figure 2-39). 

Substituting for the first three terms on the right hand side the equa­
tion becomes 

qliner,i = hgiAiXgi(Tgi-Twi) + IhpjAiXpij(Tpj-Twi) 
j 

+ Ih .A.x .. (T .-T .) + qfl,l. rJ 1 r1J rJ W1 
j 

Xg1·, X 1.J·' X .. are instantaneous area of exposure fraction (0 < x < 1) p r1J - -
to gas (g), piston (p) and rings (r). Tpj and Trj are temperatures of 
piston zones and rings, and hpj and hrj denote the heat transfer coef­
ficients for heat exchange between piston zones and liner, and rings and 

liner. They are assumed to be constant, but the current implementation 
allows time variation (e.g., for hrj due to changes in oil film thick­

ness and transition to boundary lubrication). 

Time-averaging the above equation, one obtains the mean heat transfer to 

liner zone i 

-qliner,i = JhgiAiXgi [T .-T .J + IJh .A.x .. [T .-T .] gl W1 j PJ 1 P1J PJ Wl 

+ IJh .A.x .. [T .-T .] 
j rJ 1 rlJ rJ Wl 

-
+ qfl,i 
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The above equation can be rewritten as 

- I 

qliner,i = hgi,eff Agi [Tgi,eff - TWi - Clgi ] 

I 

+ l: hpJ' Ap1' J' [T . - f . - Cl .. ] j PJ W1 p, 1 J (2-7) 

I I 

+ l: h . A " [f . + C 1 .. - f . - Cl .. ] + Cifl1. j rJ r1 J rJ r, 1 J W1 r, 1 J 

where piston surfaces were assumed not to have temperature swings (i.e., 

f pj = T pj)' (-) and (I) denote mean and devi at i on from mean for tem­
peratures, and the following quantities have been defined: 

A . = A.Ix .; gl 1 gl 
_ Ihgi Xgi 

h . - I gl,eff xgi 

T _ Ihgi Tgi Xgi 
gi,eff - fh. x . 

A .. = A .Ix .. ; 
P1J 1 P1J 

I h . x .. 
h " ff = I PJ p1J = h . p1J,e xpij PJ 

I h .. x " 
h .. = f1J r1J = h

rJ
. 

r1J,eff xrij 
A .. = A.Ix .. ; r1 J 1 rl J 

I 

I I h . T . x . 
C = gl W1 gl 

1 g, i I hg; xgi 

I 

I IT. x .. 
C = rJ r1 J 

1 
.. 

r ,1 J I x .. r1J 

I 

I _ I TWi xpij 
Clp,ij - I x .. 

I 

Clr,ij = 

P1J 

I 

IT. x " W1 r1J 

I x " r1J 

gl gl 

Thus, cycle-averaged heat transfer can be expressed with cycle averaged 

(effective) heat transfer coefficients, areas and temperatures, provided 

that second order correction terms C'g,i' C'p,ij' C~l,ij and C1r,ij are 
used to modi fy the mean temperature di fferences. A 11 of these cor-

rection terms are calculated after the 1-0 computations and are used in 

the boundary conditions to the steady-state conduction equations for 

liner nodes. Instantaneous liner surface temperatures are also used for 
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gas heat loss computation and as thermal loads for calculation of 1-0 

ri ng trans i ents. An i nterna 1 check to compare values of q 1 .. and 
p ,1 J 

qrl,ij computed from averaged quantities against the integrated ones is 
used to monitor the convergence of the coupled problem. 

Ring Temperature Transients. In accordance with the above expressions, 
the instantaneous heat transfer to the face of ring j can be expressed 
as, 

I I 

= L h . A.x " (f . + T . - 1 . - T
rJ

·) + qf . i r J 1 rl J Wl Wl r J r, J 

Mean heat transfer rate to ring face is then, 

-
qring,j 

I I = Lfh .A.x .. (1 . + T . - 1 . - TrJ·) + qf . i rJ 1 rlJ Wl Wl rJ r,J 

f TI. X .• 
1 . + Wl rlJ - 1 . -

Wl f rJ xrij 

I I 

= ~fhrj Arjj [Twi + Clr,ij - Trj - Crl,ij] + qfr,j 
(2-8) 

The second order correction terms Cli .. and Cil .. are used to modify r,lJ r ,1J 
steady- state equations for nodes placed at ri ng faces. rhe ri ng face 

temperature histories obtained from the 1-0 model for rings are used in 
defining the thermal load for the liner 1-0 transient computation. The 
instantaneous ring face temperatures are also important for determining 
lubricant temperature and viscosity. 

Frictional Heat Deposition. The heat generated by hydrodynamic and 
boundary friction at ring-liner contacts, skirt hydrodynamic frictional 

heat, and piston-liner boundary friction heat due to side-foree-induced 
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rubbing of piston on liner, are calculated by an engine friction model 

described in Chapter III. Each of these components has temporal (and in 

the case of the liner, spatial) variation. The 1-D model for liner 

nodes uses one-half of the appropri ate amount of each instantaneous 

fri ct i ona 1 heat (rate) component as a dri v i ng thermal load for the 

transient computation. For the ring I-D transient computations, the 

other half of each of the ring-liner frictional heat rate components is 

used as thermal load. Integrated averages of all friction heat rates 

form a part of the thermal load for the steady-state conduction compu­
tation. 

The division of the frictional heat on a one-half basis to the two 

surfaces in the sliding contact is based on argument of physical plaus­

ibility. The local division of heat is not critical to the overall heat 

balance (on piston and liner) as long as the interface resistance 

remains smaller than the surrounding conductive and convective resis­

tances. 

The fri ct i on mode 1 is not sens i t i ve to temperature or inateri a 1 compo­

sition. Hence, frictional heat generation and its variation is influ­

enced only indirectly by changes in thermal conditions and materials 
(e.g., differences in coolant temperature or insulation strategy) 

through their effects on combustion chamber pressure, a parameter with 

significant effect on friction. 

Cyclic transient temperature and piston-ring-liner heat transfer 

Using the coupled steady-state and cyclic transient heat transfer 

methodologies described above, results for temperature histories of 

various surfaces were obtained. Simultaneously, the heat transfer rates 

at liner and ring surfaces and their breakdown into individual com­

ponents (gas convection, gas radiation, friction heat, heat from piston 

and ri ngs to 1 i ner) were computed. Runs' were carri ed out for the 

turbocharged Cummi ns NH engi ne deve 1 opi ng 350 HP at 2100 rpm and full 

load, with three materials configurations: 
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1. Baseline engine with metal thermal properties: aluminum 

piston, iron head and liner, steel valves and rings. 

2. Insulated engine with piston, liner, head and valves coated 
with a 1.5 mm thick layer of plasma sprayed zirconia (PSI; k = 
0.6 W/mK, pc = 1.1 MJ/m3 K). 

3. "Superi nsul ated" engi ne with all components except ri ngs made 

of a hypothetical low conductivity material, k = 0.01 W/mK; 
pc = 3.1 MJ/m30K). 

The thermal resistance network methodology was utilized for steady-state 
conduction computations. Baseline coolant/oil heat transfer coefficients 
used were set at levels producing component temperatures consistent with 
current design practice. Coolant heat transfer coefficients were then 

decreased by 30 to 90% for the insulated configurations. 

Cyclic transients on piston and head. Figures 2-40 (a,b,c) show cyclic 

temperature variation on piston surfaces for baseline (metallic), 
insulated and Isuperinsu1ated" engines. As insulation is increased, 

temperature swings rise, up to 560K for the Isuperinsu1ated" conditions. 

Also wall temperatures approach gas temperature and their profiles 

i ncreas i ng1y resemble that of the gas temperature (note especi ally the 

decrease after IVa). Variations between different surfaces are due to 
differi ng effective gas temperatures, heat trans fer coeffi ci ents and 

radiation heat fluxes applicable to each individual surface .. The valve 

and firedeck surface temperature profiles are quite similar to those 

shown here, except for di fferences magnitude and shapes, produced by 

differences in applied heat loads and material properties. 

Transients on exhaust port surfaces. Figures 2-41 (a,b,c) show cyclic 
vari at ions of temperature on surfaces in the exhaust port. They are 
representative of those found on port walls near the valve (port 1), 

walls of port closer to exhaust manifold (port 2) and of the rear 

surface of the valve. Since port surfaces are thermally loaded mainly 

whi 1 e the exhuast valve is open, thei r temperatures ri se duri ng that 
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period. For the metallic case, the variations of port surface temper­

atures follow the pattern of port flow (and therefore heat transfer 

coefficient) consisting of blowdown and a piston-induced exhaust pulse. 

The swings are only a few degrees and diminish in the downstream direc­

tion. The valve is hotter than the port surfaces and heat transfer to 

it is domi nated by the hi gh vel oei ty of the flow through the valve 

rather than slower, averaged port vel oci ty. Thi s exp 1 a ins the s i ngl e 

hump for the valve back temperature history after EVa, compared to the 

two humps for the port walls. 

In the insulated case (2-41b), the magnitudes of the swings are much 

higher due to the different material properties. The exception is the 

valve back, which was not insulated. Another noticeable change is the 

reduced magni tude of the, second pul se whi ch is due to the hi gher port 

temperatures. For IIsuperinsulated" conditions (2-41c) the exhaust gas 

temperature falls during blowdown below those of the port surfaces, thus 

coo 1 i ng them, resul t i ng in an altogether di fferent shape in the tran­

sients. Although higher than for the baseline case, the port surface 

swings of the insulated cases are still much smaller in magnitude than 

those of the in-cylinder surfaces, reaching 65K for the superinsulated 

case and only 20K for plasma sprayed zirconia. 

Liner transients. Cyclic temperature variations on liner zones are 

shown in Figure 2-42 (a,b,c). The shape of these profiles is quite 

complex and is the result of the many interactions between the liner and 

piston and rings. The overall configuration is that shown in Figure 

2-39. The magnitude of swings is the largest on the top liner zone, 

where it reaches about 30% of the magni tude found on the pi ston sur­

faces. The liner surface temperatures clearly show the effect of 

shi e 1 di ng by pi stan, and each zone has a temperature peak duri ng its 

exposure to gas. The magnitude of the peak decreases for the lower 

zones, and all peaks have lower magnitudes than those for permanently 

exposed surfaces. The effects of heat deposited by piston zones and 

frictional heat generation by the traversing rings are manifested as 

secondary peaks during the periods when liner zones are covered. These 

are best discernible for all three liner surfaces when valves are open 
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and the gas heat transfer is low. Peaks on both sides of valve-open TOC 

indicate temperature increases resulting from convection and frictional 

heat bei ng depos ited on the 1 i ner surfaces due to contact wi th the 
hottest top pi ston zone. Sma 11 er and sharper fl uctuat ions occur at 

initiation or termination of contact between liner and piston zones or 

rings. These underestimate to some degree the magnitude of the local 

liner temperature peak under the face of a ring, since they are computed 

for each liner zone in a lumped sense. A finer liner divhion into a 

larger number of zones such as available with FEM conduction model, 

would be required to resolve these with a greater accuracy. 

Predi ct ions such as the above are an important input for studi es of 
lubrication, friction and wear at piston-liner and ring-liner contacts. 
They can be used as the basis for asperity contact or IIflash ll temper­

ature calculations, as well as evaluation of surface materials and 

lubricant thermal, mechanical and chemical properties. 

Piston-liner heat transfer. The detailed treatment of the piston-liner 

interface including the effect of cyclic transients allows prediction of 
instantaneous heat transfer between piston and liner. Figure 2-43 

(a,b,c) shows cyclic variation of piston-to -liner heat transfer for 

metallic, insulated and superinsulated configurations. For the metal 
engine, the heat flow is always positive (in the piston to liner 

di rect ion). It is reduced near TOC, where pi ston contacts the hottest 

1 i ner zones and the mean temperature drop between the two components 
decreases. 

For the insulated configurations with cooled piston underside, the net 

heat transfer is actually from the liner to the piston, i.e., the heat 
deposited on the liner during exposure to gas and by friction, is 

transferred to piston. Instantaneous heat transfer becomes positive for 
short intervals on both sides of each SOC when piston is in contact with 
coolest portions of liner. For the superinsulated case, the cyclic 

variation of piston-liner heat transfer is similar, but the transferred 
heat consists mainly of frictional heat deposited on liner, since the 

gas-to-wall heat transfer has been significantly reduced. 
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Figure 2-44 (a,b,c) amplifies on the above distinctions between the 
metallic, insulated and superinsu1ated configurations, and it indicates 
major heat paths and heat balances on piston and liner. The major heat 
paths for these three cases are as follows: 

Metall ic: 

Insulated: 

Superinsu1ated: 

gas-piston-oi1 
gas-piston-1iner-coo1ant 
gas & friction-liner-coolant 

gas & friction-1iner-piston-oi1 

friction-liner-gas 

friction-1iner-piston-1iner-oi1 

For the insulated engine, the piston collects most of the heat deposited 

on the insulated liner as it travels upstroke. Most of that heat is 
rejected to oil. The superinsu1ated case is characterized by two heat 
paths. Fi rst, the temperature of the exposed portion of the 1 i ner is 
elevated to the extent that net convective heat transfer is negative 
(from liner to gas) and exceeds the positive contribution of radiation, 
imp 1 yi ng that some of the fri ct i on heat is also rej ected to the gas. 
Second, since both piston and liner are non-conducting, frictional heat 
is transported downward by being temporarily stored in surface layers. 

It is first stored in the piston and then transferred to and stored in 
the lowest liner zone from where it is rejected to oil. The 
superi nsu1 ated resu1 t thus serves to graphi ca lly demonstrate the heat 

path along the moving piston/liner interface. As a result of this path, 
the effectiveness of the liner insulation as a thermal barrier is 
reduced, as some of the heat is removed and carried away by the piston. 

Effects of neglecting transients. To quantify the effects of not fully 
coupling surface cyclic transients to the steady-state methodology, 
(i . e., neg1 ect i ng 2nd order correction terms), the computations were 
repeated for the metallic, insulated and Isuperinsu1ated" configura­
tions, but the 1-D transient conduction model was suppressed, thus 

setting all correction terms (to steady-state boundary conditions) in 
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eqs. (2-4) (2-6) and (2-7) to zero. Predicted steady-state temperatures 

and heat transfer rates with and without the inclusion of the effect of 

cyclic transients were compared. 

Almost no differences were found in the metallic case, which is not 

surprising in view of the small magnitude of the swings for this case. 

For the insulated configuration, total cylinder heat transfer was 

over-predicted (5.34 vs. 5.05% of fuel energy) by neglecting transients, 

with overpredictions of heat transfer rate to individual components by 

up to 7.2% and mean component temperatures by up to 3SoK. For the 

hypotheti cal superi nsu1 ated engi ne, component heat transfer rates and 

temperatures were overpredicted by up to 22% and 1220 K respectively, 

although total cylinder heat transfer (which is negative and occurs 

mostly when the liner temperature is higher than the gas temperature) 
was not affected. The above resu1 ts i ndi cate that there is a loss of 

accuracy in mean temperature and heat transfer predictions when effects 

on cyclic transients on mean thermal load on components are neglected. 

The relative errors increase with increasing insulation due to the 

increasing amplitude of the swings. The effect of the heat loss error 

on engi ne performance predi cti ons is small. More important are the 

effects of neglecting transients on surface temperature prediction, both 

on the mean and the peak values, and consequently on predictions of 
thermal stresses generated in the structure and safety margins with 

respect to peak allowable material temperatures. 

SUMMARY 

1. A steady-state finite element heat conduction methodology was 

developed for use with a thermodynamic I.C. engine simulation code 

in a coupled solution procedure. Such a procedure makes possible 
design-stage studies of engines, to determine accurate peak 

component temperatures and temperature distributions simultaneously 
with detailed engine performance predictions. The methodology has 

been fully coupled to the convective, radiative and gas heat 

transfer and friction computations as well as to a transient 

conduction model. Exercising the model requires the pre-processing 
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of finite element structural (geometry, properties) data into a 

generic and compact packet of information (consisting of global 

conductance matrix, ordering array, and boundary element directory) 

which is then input into the thermodynamic cycle code. This can be 

accomplished with most existing general-purpose finite element 
software. 

2. An important contribution is the rigorous mathematical procedure 
developed within the context of above conduction models, which is 

an essential element required for correct treatment of the 
piston-liner interface, accounting for the motion of the piston and 

the periodic gas-liner, piston-liner and (crankcase) oil-liner 

thermal interactions and the effect of cyclic transients. 

3. An existing network steady-state heat conduction model, less 

computationally demanding than the FEM model, was used to carry out 

parametric studies to quantify and document effect of speed, load 

and progressive insulation on average component temperatures, heat 

transfer rates and heat paths. Significant differences were 
documented between surface temperatures of various components 

(piston, liner, firedeck, valves) forming the combustion chamber. 
These variations generally increase with load and insulation. The 

study of insulation effects has shown the increasing effectiveness 

of insulation at higher loads and has identified variations in heat 
transfer reduction (due to insulation) among different combustion 

chamber surfaces. Most notably different is the liner, which 

differs from the other components by being only partially exposed 

to gases, and by the presence of piston-liner interactions. The 
hypothet i ca 1 case of II superi nsul ated ll components was also used in 

the study to estab 1 ish 1 i mi ts in temperatures and heat trans fer 

rates and demonstrate the changes in heat path patterns with insu-
1 ati on strategy. A separate study was carried out of effects of 

progressive insulation on cyclic transients, with an emphasis on 

pi ston-l i ner thermal interactions and effects of negl ect i ng tran­
sients. The errors stemming from neglecting cyclic transients were 

shown to affect the predicted heat transfer and steady-state 

temperatures for insulated configurations. 
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4. Us i ng COSMIC/NASTRAN, fi nite element representations of a Cummi ns 

NH seri es engi ne combustion chamber components were constructed. 

NASTRAN axisymmetric, 3-D elements and scalar elements were used to 

model the geometry. Thermal interactions at the piston-ring, 
ring-liner piston-liner and valve-seat interfaces were included in 

the representations. The NASTRAN code was used to obtain the 
gl oba 1 conductance matri x, orderi ng array and a boundary element 
directory for the engine FEM model. 

5. The FEM steady-state heat conduction methodology was exercised in a 

parametri c study of effects of load at rated speed us i ng the FEM 
models of Cummins NH engine geometry. Variations of peak temper­

atures as well as differences between FEM and network temperature 

results, with load, were documented. Effect of load on detailed 
component temperature distributions were also obtained. Results 

support experimentally established information on peak temperature 
locations and IIhot spots II (e.g., firedeck between exhaust valves, 

exhaust valve face and neck). In addition, effects of specific 

features of the analyzed engine design (conical protrusion in 
piston cup, in-port coolant channels etc) were observed. Detailed 

results on liner surface heat flux distribution including effects 

of load and various heat paths, were obtained as a result of the 
capability to rigorously treat the piston-liner thermal interface. 
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III. EXAMINATION OF SOME OF THE KEY ISSUES IN LOW HEAT 

REJECTION ENGINES 

INTRODUCTION 

Improvement in engi ne thermal effi ci ency by reduction of i n-cyl i nder 

heat transfer has received much attention. The objective is to retain 

within the cylinder (ie., conserve) the fuel energy normally lost to 

heat transfer to increase the work done on the piston, as well as to 

provide a higher temperature exhaust stream for downstream energy 

recovery. Experimental programs are underway, which are attempting to 

develop durable low heat rejection engine components and also to 

demonstrate the potential benefits of this concept in practical 

prototype hardware. 

The issues facing the engine designer are diverse and complex. They 

include key questions concerning application of insulation within the 

engine such as: 

1) which materials to use, 

2) what are the preferred locations within the combustion 

chamber; 

3) how thick a layer is needed; 

4) application methods (coatings, brazing, interference fit, 

etc.); 

5) what temperatures and stress levels will exist in the 

insulating materials within the envelope of operating condi­

tions; and 

6) what thermal and mechanical properties these should have to 

insure the desired benefits and life. 

These questions serve only to highlight issues that, in reality, are 

highly interactive and must be addressed in a coupled way in order to 

optimize the design. From the point of view of benefits, the questions 

one needs to ask relate to: 

1) conversion efficiency, i.e. the split between the conserved 

heat that flows directly to piston power and that which flows 

into exhaust energy; 
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2) magnitude of benefits for a turbocharged engine with no 

exhaust energy recovery; 

3) comparison of turbocompounding to Rankine cycle bottoming; 

4) desirability of intercooling under insulated conditions; 

5) effects of insulation on volumetric efficiency and engine 

power; 

6) thermal efficiency and heat rejection benefits of liner 
insulation in relation to increased tribological challenge and 

reduced volumetric efficiency; 

7) temperature levels in the liner/ring/piston interface; and 

8) benefits of insulation for smaller automotive 01 diesels. 

In the present work we have applied the engine analysis code IRIS, 

descri bed below, to address the above issues, and have out 1 i ned and 
carried out parametric studies to derive insights and answers for the 

posed questions. 

METHODOLOGY 

The methodology employed in this work is driven by the fact that the 

issues involved in low heat rejection engine design are largely coupled 

and require an integrated systems approach. To enable such approach, a 
comprehensive engine systems computer code IRIS has recently been 

developed. Among its unique features are detailed heat transfer models 

representing convective and radiative gas phase heat transfer, steady 

state heat conduction in the engine structure, and cyclic heat transfer 

thermal transients in the surfaces surroundi ng the combusti on chamber. 

These mode 1 s have been descri bed in the Phase I report as we 11 as in 

individual publications dealing with convective heat transfer (Morel and 

Keribar, 1985), cyclic transients (Morel et al, 1985b) and heat radi­
ation (Chapter I of this report) and they are briefly summaried below. 

Convective Heat Transfer Model. The convective heat transfer model is 

based on an i n-cyl i nder flow model whi ch computes swi r 1, squi sh and 

turbulence as a function of crank angle. It has a degree of spatial 

dependence, in that it divides a bowl-in-piston geometry into three flow 
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regions (squish region above piston crown, cup volume, and region above 

the cup), and solves in each differential equations for swirl and turbu-

1 ence. Its mai n features are: (1) the inherent dependence on actual 
flow velocities, which drive the convective heat transfer, and (2) the 

spatiai resolution, which this allows, including the capability to treat 
reentrant piston bowl shapes. 

Radiation Heat Transfer Model. Due to soot formation during diesel 
combustion, thermal radiation from gases to surrounding combustion 
chamber surfaces is a significant component of heat transfer for diesel 
engines. Instantaneous and mean levels of heat radiation are functions 
of the volume and distribution of burning gas, amount of soot present in 

the burning gas, combustion chamber geometry, and also of surface emis­
s i vi ties and temperatures. The heat radi at i on model incorporated in 
IRIS takes into account all of these dependencies. The soot concentra­

tion levels are calculated using a kinetic model, which provides rates 
for soot formation and subsequent burnup as a function of engine para­
meters and crank angle. The spatial distribution of the heat radiation 
can be calculated from the volume and shape of the burned zone. The 
burned zone volume is calculated from the cycle thermodynamic simu­
lation, and its shape and location are obtained from an empirically 

based geometric model. All soot is assumed to be contained within the 

burned gas. The spatial distribution also includes the effects of 

chamber geometry through cal cul at i on of the actual opt i ca 1 thi cknesses 
seen from one surface when viewing another, or when viewing the burned 
zone. This is accomplished through the use of a zonal radiation model, 

which divides the combustion chamber surface into seven individual 

subsurfaces. This model also represents the attenuation of radiation 
from one surface to another, as it passes through the absorbing burned 
zone, and accounts for multiple reflections of incident radiation from 

one surface to another. 

Steady State Conduction. Steady state conduction through the engine 
structure is calculated in all of the present studies via a thermal 

resistance network model which approximates the engine by discretization 

into 158 elements. As shown in Chapter II, this representation provides 
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a realistic representation of the structure at a level of detail suffi­

cient for analysis of general issues such ?s those addressed here. It 
allows for the simulation of laminated structures composed of layers of 
materials with various thermal properties, as is essential in studies of 
different insulation strategies. IRIS also has the capability to 

represent the structure by a finite element model for detailed design 
studies of specific engine geometries, but that option was not exercised 
in this study. 

Cyclic Temperature Transients. The heat flux from the gas to the wall 
is highly transient, with high flux levels occurring during combustion 
fo 11 owed by low heat fl ux peri ods. Thi s pattern produces temperature 

transients in thin layers adjacent to the gas-side surfaces. The 
surface temperature swings are on the order of 20K for iron or aluminum 
surfaces, but for low conductivity coatings it can reach several hundred 

degrees Kelvin. IRIS analyzes the surface temperature dynamics by a 
transient one-dimensional model which interacts, in a spatially resolved 

way, directly with the steady state conduction model. 

Mechanical Friction. The mechanical friction model is used to calculate 

the brake performance quantities and also to provide the frictional heat 
loads at the piston/liner interface. The model simulates the piston­

connecting rod dynamics, which together with gas forces provides the 

total piston-liner contact force. Then, solving for ring hydrodynamic 
1 ubri cat ion, the instantaneous fri ct i on at the ri ng-l i ner interface is 
calculated for hydrodynamic, boundary and mixed conditions. 

Exhaust Heat Recovery Devices 

One of the exhaust recovery devi ces cons i dered in thi s study was the 
power turbine similar to that used by Cummins in their advanced turbo­
compounding work (Hoehne and Werner, 1982). A 16.42 gear ratio was 
assumed between the power turbi ne and the crankshaft, produci ng over 
31,000 turbine rpm at the rated speed. Since the power turbine produces 

a significant back pressure, which affects the operation of the turbo­
charger, the entire engine/turbocharger/power-turbine combination has to 

200 



be treated as a coupled system. An iterative procedure is imbedded in 

IRIS, which accomplishes this coupling and allows a realistic simulation 
of the system. 

The other recovery devi ce cons i dered is an organi c Ranki ne cycle bot­
toming (RCB) machine operating on RC-1 organic fluid. The efficiency 
data descri bi ng the operation of thi s devi ce were taken from the work 
DiNanno et al (1983), dealing with a Thermo Electron Corporation design 

study of RCB for adiabatic diesels. The system selected was an advanced 

but realistic high-pressure system with turbine inlet pressure of 35 bar 
(500 psi) and turbine inlet temperature of 670 K (750 of). This RCB 
machi ne produces shaft work from the exhaust energy wi th an, overall 
enthalpy conversion efficiency (referred to ambient conditions) of 12-17 
percent over the range of typical engine exhaust temperatures of 
600-1050 K. (Higher efficiencies could be obtained with less conserva­

tive RCB designs with turbine inlet pressure up to 70 bar (1000 psi).) 

In calculation of the work produced by the engine-RCB system it was 
assumed that the exhaust pressure drop across the RCB is very small and 
that it does not affect the operation of the basic reciprocator. 

The results presented in the Phase I report and in Morel et a1 (1985a) 

were based on the same methodology as used here, but at an earlier stage 
of development. The recently developed zonal heat radiation model has 

replaced the simple mean-beam length model used previously and this 

changed the overall level of calculated heat transfer, especially at 
lower loads. An important add it i on to the scope of the systems model 

and to the simulations has been the representation of the exhaust heat 

recovery devices as described above. 

DESIGN ANALYSIS MATRIX 

The main emphas is of thi s study was on a state-of-the-art heavy-duty 
highway diesel engine as represented by the Cummins NH engine, which is 

a 14 liter six-cylinder engine. The engine was simulated in the fol­

lowing configurations: 
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o turbocharged, intercooled (TCI) 
o turbocharged (TC) 

Each of these two configurations was run as 
o standard engine 

o with exhaust power turbine 
o with Rankine cycle bottoming 

Each of these in turn was run at the following conditions 
orated (1900 RPM, A/F = 28, compressor pressure ratio = 2.5) 
o peak torque (1400 RPM, A/F = 24.5) 
o part load (1900 RPM, 1/2 fuel rate, A/F = 41) 

Finally, each of the above configurations were run under seven different 
heat rejection strategies: 

o meta 11 i c base 1 i ne with convent i ona 1 1 i qui d coo 1 ant and oil 
cooling; 

o metallic with reduced cooling; no liquid coolant in liner and 
head, enhanced piston cooling with oil gallery; 

o zirconia plasma spray (ZPS) co.ated on all in-cylinder sur­
faces, except on liner below top ring reversal point, with a 
layer 1.5 mm thick and conductivity of 0.6 W/mK, equivalent to 
conductance of 400 W/m 2 K. The liner below top ring reversal 

poi nt was made of stee 1. Convent i ona 1 coo 1 i ng was app 1 i ed to 
the liner. Ports were lined with a 5.5 mm of alumina titanate 
with conductivity of 0.5 W/mK (case ZI); 

o ZPS coated -- same as ZI, but with liner below top ring 
reversal point insulated by monolithic zirconia 5 mm thick and 
conductivity of 2.0 W/mK, equivalent to conductance of 400 
W/m2K (case Z2); 

o superi nsul ated with a thi n coati ng of near zero conductivity 
applied to all in-cylinder and port surfaces, except the liner 
below the top ring reversal point, which was made of steel and 

was conventionally cooled (case SI); 
o superinsulated -- all components, including liner, made of 

solid material with near zero conductivity (case S2); 
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o zero heat transfer -- i n-cyl i nder and port heat transfer set 

to zero. 

In the zirconia cases, coolant side heat transfer coefficients were 

reduced so that the metal substrate temperatures remained below 575K. 

In the superinsulated cases above, the net (time-averaged) heat transfer 
to any of the i nsul ated surfaces, except the 1 i ner, was very close to 
zero. However, on an instantaneous bas is, there were peri ods of hi gh 

heat flux into the surfaces during the combustion and exhaust periods, 

followed by heat flux from the wall to the gas during intake and com­
pression periods. By contrast, in the case of zero heat transfer there 

was no heat flux between the gas and the wall for all of the in-cylinder 
and port surfaces both on the instantaneous and time-average basis. 

In total, 126 different engine data points were run to develop the 
insight's and conclusions to be presented in this study. In addition to 
the above design analysis matrix concerning heavy duty highway 01 diesel 

engines with quiescent combustion systems, a smaller matrix was run with 
a automotive size di ese 1 engi ne. Thi sengi ne was selected to be a 2.8 

liter 5-cylinder in-line configuration, with a direct injection and 
swirl combustion system (swirl ratio of 2.3 at BOC). Turbocharged with 

pressure ratio of 1.8, it delivers 96 HP at the rated speed of 3600 RPM. 

The in-cylinder geometry of this engine differed from the truck diesel 
engine by bowl shape, which was deep as is typical for swirl combustion 

systems, and by a higher compression ratio of 17.5:1. 

The design analysis matrix for this engine involved only the basic 

turbocharged reciprocator with no exhaust heat recovery, and it 
considered only two operating conditions: 

orated (3600 RPM, A/F = 25.5) 
o part load (3600 RPM, 1/2 fuel rate, A/F = 40) 

At each of these two operating conditions, simulations were run for the 
same seven heat rejection strategi es used for the NH engi ne. These 

operating conditions may not be the most meaningful ones for typical 
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automotive applications, but they were selected to allow comparison with 

the truck engine results, thereby highlighting the effects of speed, 

displacement and combustion system. 

Engine Adjustments at Rated Conditions 

In execution of the design analysis matrix, an effort was made to ensure 

that the comparison of the various heat rejection configurations was as 

realistic as possible, i.e., that none of the configurations is put at 

an advantage or disadvantage with respect to the others. To this end, 

the peak pressure and A/F ratio at rated conditions were kept the same 

for all configurations. This required adjustments in the boost levels 

and in the fuel flow rate; these adjustments were quite small, and did 

not exceed, for the turbocharged i ntercoo 1 ed engi ne, a reduction by 
seven percent in the flow rate and a reduction by 0.13 bar in the boost 

pressure. Another adjustment was the rematchi ng of the turbocharger 

turbine, whose volute volume was increased as exhaust temperature 

increased. Thi s was done to take the full advantage of the increased 

exhaust energy and to reduce the reciprocator backpressure. All of these 

adjustments were made only at the rated conditions, and the follow-up 

runs at peak torque and part load were simulated with the hardware 

unchanged. 

As far as engi ne fri ct ion is concerned, it was assumed that for each 

configuration an appropriate lubricant would be used whose viscosity, at 

the liner temperature levels found in that configuration, would be equal 

to that of current oils at the operating conditions which exist in 

conventional engines. 

RESULTS 

In the presentation of the results, we shall first concentrate on the 

turbocharged i ntercoo 1 ed (TCl) engi ne and di scuss the vari ous heat­

rejection strategies and also the effectiveness of the exhaust heat 

recovery devices. This discussion will then be followed by presentation 

of results for the non-intercooled engine and for the automotive diesel. 
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Most of the plots are presented with in-cylinder heat transfer expressed 

in percent of fuel energy along the abscissa, rather than the usually 

used percentage of basel i ne heat trans fer. We be 1 i eve thi s to be a 

preferable approach, highlighting the level of in-cylinder heat transfer 

which is available for insulation purposes. 

Turbocharged Intercooled Engine 

The thermal effi ci ency of the entire engi ne system is shown in Fi gure 

3-1. This figure, and a number of others that follow, has three parts 

a, band c; these always refer to rated conditions, peak torque and part 

load, respecti vely. The absci ssa shows the i n-cyl i nder heat transfer 

for each of the heat rejection configurations, expressed in percent of 

fue 1 energy. It may be seen that as i n-cyl i nder heat trans fer de­

creases, the thermal effi ci ency increases; as cou 1 d be expected, it 

reaches maximum val ues for zero heat transfer. Expressed in terms of 

percentage fuel efficiency improvement above the baseline turbo­

charged/intercooled engine with conventional cooling, Figure 3-2, one 

finds that reduction in heat rejection, coupled with exhaust heat 

recovery, can produce very significant benefits. 

Exhaust Heat Recovery. The benefits seen in Figure 3-2 may be divided 

between those generated by inSUlation and those produced by exhaust heat 

recovery. It may be seen that even in the absence of heat recovery 

devices, the turbocharged intercooled engine benefits by insulation, its 

effi ci ency ri sing for the ZI confi gurat i on by 5 percent at rated con­

dition, by 5.4 percent at peak torque and by 4 percent at part load. 

The exhaust heat energy, whi ch depends on the engi ne load and on the 

1 eve 1 of i n-cyl i nder heat rejection, may be used to provi de further 

significant benefits when exhaust heat recovery devices are used. This 

energy is characterized in Figure 3-3 by the turbocharger turbine exit 

temperature. These additional benefits are illustrated in Figure 3-4, 

which shows the percentage improvement in thermal efficiency with 

respect to turbocharged/intercooled baselines with the same heat 

rejection configuration. It may be seen for the ZI the additional 
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benefit of turbocompounding is 5.4% at rated conditions, 4.3% at peak 

torque, and 5.2% at part load. The benefits are somewhat lower for the 

baseline cooled engine which has a cooler exhaust, but they still amount 

to 4.5, 3.8 and 3.9%, respectively. Substantially higher benefits are 
realized with the RCB system, providing improvements for the ZI, of 

15.5, 14.7 and 20.0 percent, respectively. The benefits obtained with 
the RCB system for the baseline cooled engine were only modestly lower. 

It is clear from the previous discussion that much of the additional 

benefits of the exhaust heat recovery devices are available even for the 

conventionally cooled baseline case. The reason for this is seen in 

Figure 3-3, which indicates that although the exhaust temperature 

increases downstream of the turbocharger as i n-cyl i nder heat rejection 
is decreased, it does not increase in an overwhelming way, and this is 
reflected in the moderate trends seen in Figure 3-4. 

To examine these observations in a finer detail, one can address the 
question of efficiency with which the energy conserved in the cylinder 
gases by insulation is converted into useful work. This may be measured 

in terms of a ratio of the differential between the thermal efficiency 

(brake) of the lower heat rejection configuration and that of the 
baseline cooled engine, to the differential in in-cylinder heat 

transfer, i.e., 

RHCE = (~t - ~t,cooled)/(h.t·cooled - h.t.) 

where RHCE stands for retained-heat-conversion-efficiency. 

This efficiency includes the effects of 

o direct improvement in indicated work, 

o improvement in pumping loss due to rematched TC turbine, 

o work produced by the heat recovery device, 
o decrease in port heat transfer losses due to insulation done 

parallel to in-cylinder insulation, and 
o decrease in ~elative importance of engine friction with 

increase in BMEP. 
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The conversion efficiency is plotted in Figure 3-5 for the three engine 

ope rat i ng condi t ions. (Note that since the convers ion effi ci ency is 

ca 1 cul ated wi th respect to the cooled basel i ne, the basel i ne engi ne 

conversion efficiency is undefined.) It shows that some 37 percent of 

the conserved heat is converted directly into piston work at all three 

engine operating points. The exception is the reduced-cooling concept 

where the conversion into piston work is substantially lower; this 

aspect will be discussed in a later section. 

Turbocompounding increases the conversion efficiency by about 6 per­

centage points (less at peak torque, more at part load). The Rankine 

cycle machine increases the conversion efficiency by about 22 percentage 

points, raising it to a level approaching 60 percent. A combined 

TCPD/RCB exhaust heat recovery increases the convers i on effi ci ency to 

around 65 percent. Thi sis a very hi gh overa 11 effi ci ency for con­

verting saved thermal energy into work (even though some of it is due to 

extraneous effects such as changes in port heat trans fer and engi ne 

friction). 

Total heat rejection. One of the driving forces behind the insulated 

di ese 1 is the reduction of the total heat rejection to coolant, and 

eventual elimination of the coolant. The total heat rejection to cool­

ant and to the environment is composed of several elements: 

in-cylinder heat transfer, 

port heat transfer, 

friction heat (piston, bearings, pumps), and 

intercooler 

Most of this heat (for a liquid-air intercooler) is rejected to the 

coolant, and only a smaller portion radiated and convected from the 

engine system outer structure goes directly to the environment. As seen 

in Fi gure 3-6, the total heat rejection decreases monotoni ca lly wi th 

decreas i ng i n-cyl i nder heat transfer, and in fact it decreases faster 

than the ; n-cyl; nder heat transfer due to the accompany; ng effects of 

port insulation. 
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The most stri ki ng resul t that can be deduced from Fi gure 3-6 is that 

even with zero in-cylinder and port gas-to-wall heat transfer, the total 

heat rejection is only 56% lower than for the conventionally cooled 

engine (at rated conditions). This is due to heat rejected in the 

intercooler and friction-generated heat, and it indicates that some type 

of cooling will be required even for highly insulated engines. 

Liner insulation. One of the important questions arising in the 

development of insulation strategies concerns the liner insulation. 

Insulating the liner brings some benefits and some problems, which have 

to be assessed and weighed with regard to a particular engine applica­

tion. The most important of these are: 

Benefits 

lower in-cylinder heat transfer 

no liner coolant 

lower total heat rejection 

higher exhaust energy level 

higher thermal efficiency 

Problems 

lower volumetric efficiency 

higher piston/ring/liner temp­

eratures 

engine power 

The degree of reduction of in-cylinder heat transfer by liner insulation 

may be seen in Figure 3-1: 1. 3 percent of fuel energy for a zirconia 

design, and 2.0 percent of fuel energy for a superinsulated design. The 

accompanyi ng increase in thermal effi ci ency is seen to be qui te small 

(Figure 3-2) and it has to do with the lower conversion efficiency of 

conserved i n-cyl i nder heat whi ch occurs when the 1 i ner 'i shot (Fi gure 

3-5). It may be noted by referring to Figure 3-5 that all of the lower 

conversion efficiency points correspond to configurations with uncooled 

liner: i.e., reduced cooling, Z2 and 52. By contrast, the configur­

ations with a cooled liner have more favorable conversion efficiencies. 

The lower conversion efficiency is related to the "pumped heat", i.e., 

heat that is absorbed by the combustion chamber surfaces during 

combust i on and expans i on, and whi ch heats up the fresh charge duri ng 

intake and compression. As seen in Figure 3-7, the pumped heat is 

larger for the configurations with insulated liners, and this negates to 
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a large degree the benefits of the lower net heat transfer. Another way 

of looking at this is that the energy conserved through the use of an 
insulated liner is saved when the available expansion ratio is small and 
thus produces less piston work. 

Liner insulation also has an effect on the volumetric efficiency (Figure 
3-8). Volumetric efficiency values are the highest for the zero heat 
transfer, because there is no heat transfer to the incoming air in the 

ports nor ins i de the cyl i nder. Next hi ghest is the basel i ne cooled 
case. The insulated cases all have lower volumetric efficiency; their 
volumetric efficiency would be even lower if it were not for the 
decrease in exhaust plenum back pressure, which comes about due to the 
possibility of rematching of the turbocharger turbine to take advantage 

of the hi gher exhaust temperature. The vol umetri c effi ci enci es are 
higher for all three cases with cooled liner: baseline, ZI and 51, while 

the insulated designs are 1.5-2 percent lower~ 

Engine power is impacted negatively by liner insulation, as 'may be seen 
in Figure 3-9. This is a result of the lower volumetric efficiency and 
lower heat convers i on effi ci ency, whi ch are only partly offset by the 

increased exhaust temperatures. (Note that the boost pressure and 
fueling rate were being adjusted from configuration to configuration to 
limit the peak pressure and maintain constant air/fuel ratio, as 

described above.) 

The effects of liner insulation on total heat rejection are not large 

(Figure 3-6). They represent only 1.3 percent of fuel energy for the 

ZP5 design (ZP52 vs. ZP51) at rated conditions, which amounts to only 

about 8.5 percent of the total heat rejection. 

In summary, the benefits of liner insulation are only modest: a small 
increase in thermal effi ci ency and a moderate decrease in total heat 
rejection. These have to be balanced against the lower volumetric 

efficiency, lower power, and substantially higher piston/ring/liner 
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temperatures (see below), which adversely affect lubrication, friction 

and wear, and may require exotic lubricants and/or tribological designs. 

Reduced-cooling engine. One of the low heat rejection concepts that has 

been proposed in the literature is the reduced-cooling engine (sometimes 

referred to as lIuncooled engine ll
). This is essentially a conventional 

engine with no coolant (it is simply drained). The main modification is 

an enhanced-cooling piston design (typically with positive cooling 

through an oil gallery). The reason for this modification is that in a 

conventionally cooled engine the liner provides a significant heat path 

for the heat absorbed by the pi ston from the gases and for the heat 

generated at the piston/liner interface. When the coolant is drained, 

thi spath iss i gnifi cant ly restri cted and most of the heat has to be 

channeled through the piston to the oil, and this necessitates enhanced 
pi ston cool i ng to keep the pi ston temperatures low enough to mai ntai n 

material integrity. 

Unfortunately, this simple approach to low heat rejection provides only 

relatively small benefits. Thermal efficiency increases only by about 

1-2 percent (Figure 3-2) and total heat rejection is reduced by 18 

percent (Figure 3-6). On the negative side, the volumetric efficiency 

is reduced, and component temperatures (discussed below) are substan­

tially increased, leading to difficulties with durability and lubrica­

t i on. In addition, engi ne power is reduced as a consequence of the 
lower volumetric efficiency and also due to exceptionally low retained 

heat conversion efficiency (RHCE) of this configuration compared to the 

others (Figure 3-5). 

Liner Temperatures. The level of liner temperatures has very important 

impact on tribological issues covering lubrication, friction and wear. 
It depends strongly on liner insulation and cooling strategy, and varies 

widely from configuration to configuration. This is seen in Figure 3-10 
whi ch presents temperatures at two different 1 i ner 1 ocat ions at peak 

torque operating conditions. Peak torque was chosen because it is near 

this condition that the temperatures reach the highest levels. The two 

locations chosen refer to points located at one-twelfth and one-third of 
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the distance from the head to the piston crown at BOC position. The 

higher of these points lies above the top ring reversal point, i.e., in 

the area which is insulated in the ZPS and superinsulated designs 1 and 

2. The lower one is on the part of the liner which is cooled in designs 

1 and in the baseline configuration, while it is uncooled in designs 2 

and in the reduced cooling configuration. It should be realized that, 

due to the limited resolution of the structural model used, this is not 

the highest temperature on the ring/piston interface. To determine the 

maximum temperature of the ring/liner contact, which lies near the point 

of top ri ng reversal, and in fact the details of the entire thermal 

envi ronment in the interface area, one needs to use a hi gher 1 i ner 

resolution attainable with a finite element calculation. While IRIS can 

carry out a coupled thermodynami cs/heat trans fer/fi ni te element 

calculation, this was not done in the present study, utilizing instead 
the simpler network approach. Thus, we simply use the temperature at 

the lower of the two locations to represent the temperatures of surfaces 

in sliding contact for the purposes of comparison of the various 

configurations and elucidation of the more global trends. 

The temperatures shown in Figure 3-10 are the time average values; the 

peak cycl i c temperatures are even hi gher due to surface temperature 

swings, particularly so for the upper liner location. The results show 

that liner insulation, and/or coolant removal, both increase the liner 

temperatures very significantly, well above the range of current 

lubricant capabilities. A subtle point not elucidated in Figure 3-10 is 

that the temperature of uncoo 1 ed 1 i ners depends strongly on pi ston 

cooling. Removal of oil cooling, or substantial reduction in oil 

cooling effectiveness, can substantially increase the liner temperature 

above the levels shown. 

Effects of Intercooling 

The non-intercooled engine was studied in the same detail as the 

i ntercoo 1 ed engi ne di scussed above, and the same type of plots were 

generated to di sp 1 ay the trends wi th i nsul at ion confi gurat ions, 

operating conditions and heat recovery devices. The results obtained 
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are similar in trends and in magnitude to those obtained for the 

intercooled engine. Thus, only an abbreviated discussion of these 

results is presented, which concentrates on the differences between the 

two data sets, all of which may be ascribed to intercooling. 

The removal of the intercooler raised the intake plenum temperature by 

80, 70 and 45 K, for the rated, peak torque and part load conditions, 

respect i ve ly. The basel i ne non- i ntercoo 1 ed engi ne was found to have a 

substantially larger in-cylinder heat transfer (by 20-32 percent 

depending on operating conditions), which was due to the higher intake 

temperatures. At the same time, the thermal efficiency of the non­

intercooled baseline engine was lower, by 1.6 absolute percentage points 

at the high load conditions, and by 0.6 absolute percentage points at 

the part load condition. Thus the non-intercooled engine was starting 

at a worse baseline, but, it had an advantage in that its larger initial 

heat transfer promised greater benefits obtainable from combustion 

chamber insulation. 

Simulating the same insulation configurations as for the intercooled 

engine confirmed that the non-intercooled engine does indeed derive 

greater incremental improvement in efficiency as a result of insulation, 
catching up with the intercooled engine at high levels of insulation and 

RCB heat recovery (Figure 3-11). This is further reinforced by Figure 

3-12 which displays the percentage increase in thermal efficiency with 

insulation and heat recovery, which is higher than for the intercooled 

engi ne. Compari ng the effecti veness of exhaust heat recovery alone 

(Figure 3-13), one observes that it is higher_ than for the intercooled 

engi ne, and thi sis due to the hi gher energy content of the exhaust 

stream (Figure 3-14). The efficiency of conversion of the conserved 

in-cylinder heat to work is about the same as for the intercooled engine 

(Figure 3-15), but since the in-cylinder heat transfer levels are higher 

to begin with, the incremental improvement in thermal efficiency is 

greater. 

The total heat rejection from the engine to the coolant and to the 

environment starts at a level close to that of the intercooled engine 
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(Figure 3-16). However, it decreases faster with insulation, reaching 
levels of only 28 percent of the baseline value for the superinsulated 
case at rated conditions. This is still short of the zero heat rejec­
tion goal, but some of this level is likely to be rejected to the 
environment directly by the hot engine structure rather than through a 
cooling system. 

The pumped heat is lower for the baseline case as a result of the higher 

gas temper'atures, but is about the same for the insulated configurations 

(Figure 3-17). The volumetric efficiency (relative to plenum condi­
tions) is slightly higher (Figure 3-18) due to the higher intake air 
temperature, which is closer to the wall temperatures than in the 
i ntercoo 1 ed case and so 1 ess heat is transferred from walls to fresh 
charge. However, the total air flow is substantially lower than in the 
i ntercoo 1 ed case. A separate reason is the lower Mach number of the 

incoming air, which is due to the higher speed of sound of warmer air. 
The brake horsepower of the non- i ntercoo 1 ed engi ne was substantially 

below the intercooled levels for all insulation configurations (Figure 
3-19), and so intercooling has a lot to offer in this area even under 
insulated conditions. 

In summary, non-intercooled engines show larger incremental improvements 
in effi ci ency when i nsul ated than i ntercoo 1 ed ones, and thi s fi ndi ng 

agrees with the conclusions drawn by Bailey (1985). The reason for the 
greater improvement lies in the substantially larger heat transfer 
levels in the baseline non-intercooled engines, i.e., a greater 
potential that one can draw on. Starting at an initial disadvantage in 

thermal efficiency the non-intercooled engines, as they are insulated, 
narrow down the gap and at very high insulation levels and efficient 

exhaust heat recovery typical of RCB machines they match the intercooled 
engi nes. An advantage of non- i ntercoo 1 ed engi nes is a lower overall 
heat rejection to coolant, especially at high insulation levels. The 
di sadvantages are the lower power 1 eve 1 of non- i ntercoo 1 ed engi nes, 

which persists under insulated conditions, and expected higher NOx 
emissions. 
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Summary of benefits for an Optimum Insulated Truck Engine 

Based on the results presented above, one can make some observations on 

the optimum total package for a low heat rejection version of the 

baseline engine considered in this study. The zirconia coatings used 

here provide reductions in heat rejection (55%) which are typical of 
what is considered achievable in insulated diesels. The simulated port 
insulation, intake and exhaust, is achievable with cast-in-place ceramic 

components. The main remaining issues in choosing the engine system 
strategy are then 

liner insulation, 
intercooling, and 

heat recovery devices. 

I n the case of the fi rst two items, the choi ce revolves around the 

issues of thermal efficiency, engine power, total heat rejection, 

tribology and emissions. These are graphically shown in Table I. The 

tab 1 e shows that 1 i ner i nsul at ion bri ngs small benefi ts in thermal 

efficiency and lower heat rejection, at a cost in lower power, possibly 
higher NOx emissions; however the main penalty is in increased tribology 

problems due to high liner/piston temperatures. Intercooling provides 

much higher engine power and much lower NOx emissions. It also lowers 

the liner temperature, thus alleviating the tribology problems. On the 

negative side, intercooling increases the total heat rejection, but the 

increase is quite small. As far as thermal efficiency is concerned, a 

well insulated engine with exhaust heat recovery has about the same 

thermal efficiency both with and without an intercooler. 

In view of these trends, one concludes that if thermal efficiency, 
engine power and emissions are the main objectives, as they would be for 

a highway truck engine, the best configuration should have a cooled 
metal liner below the top ring reversal point, and it should be 

intercooled. If the main objectives are thermal efficiency and low 
total heat rejection and fuel flexibility, as it may be for a military 
engine, it may be advantageous to follow the opposite strategy of liner 

insulation and no intercooling. 
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Si nce the mai n focus of thi s work is the hi ghway truck engi ne, 1 et us 

consider in more detail the cooled liner/intercooling strategy, and 

explore the benefits of heat recovery. These are summarized in Table II 

for a turbocompound engine, Rankine cycle bottoming, and for a combi­

nation of both. The TCPD+RCB combination provides the highest thermal 

efficiency, with BSFC levels as low as 0.260 lbm/bhp-hr at peak torque 

conditions. The maximum improvements over a turbocharged/intercooled 

baseline are 26.5% at rated conditions, 24.6% at peak torque and 28.6% 

at part load (these relative improvements would be greater for a non­

intercooled engine which starts with a lower efficiency in the baseline 

confi gurat ion). Of the four increments between the base 1 i ne and the 

TCPD+RCB, the first, second and third are fairly equal each accounting 

for less than 20 percent of the total improvement. The largest single 

improvement is that of RCB alone over TCPD alone, accounting for over 40 

percent of the total. The addition of RCB to TCPD-equipped engine 

generates somewhat lower benefi ts· than when added to an engi ne alone, 

which is not surprising since the exhaust gas temperatures of the TCPD 

engi ne are lower due to temperature drop across the power turbi ne; the 

benefits of the two devices are thus somewhat less than fully additive. 

The separate benefits of insulation and heat recovery are highlighted in 

Table III. It is seen that the thermal efficiency improvements due to 

insulation start with 5.1 percent for the TCI, and they increase up to 

7.9 for the same engine equipped with TCPD & RCB. This means that even 

though heat recovery does reinforce the thermal efficiency benefit of 

insulation, insulation alone brings respectable efficiency increases. 

If no heat i nsul at i on were used, the cal cul at ions show that at rated 

condi t ions TCPD alone bri ngs 4.5 percent improvement, RCB bri ngs 13.3 

percent and TCPD & RCB bri ngs 17.2 percent. If the base engi ne were 

insulated the benefits should be greater: 5.4, 15.4 and 20.4 percent, 

respect i ve ly. The 1 ast column shows the combi ned thermal effi ci ency 

benefits of insulation and heat recovery already discussed in the 

previous paragraph. 
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thermal 
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engine 
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tribology 

+ 

emissions 

+++ 

Table I. Relative merits of liner insulation and of intercooling 

Rated Conditions Peak Torque Part Load 

Configuration BHP BSFC ~t 
(lb/bhp-hr) 

BSFC ~t BSFC 

Baseline 411 0.339 40.8 0.325 42.6 0.408 33.9 

Insulated 411 0.323 42.9 0.308 44.9 0.393 35.2 

Ins. + TCPD 437 0.306 45.2 0.295 46.9 0.373 37.1 

Ins. + RCB 477 0.279 49.5 0.269 51. 5 0.327 42.3 

Ins. + TCPD 499 0.268 51. 6 0.260 53.1 0.318 43.6 
+ RCB 

Tabl e II. Thermal efficiency of an insulated engine 
with heat recovery devices, at three operating 
conditions. Zirconia plasma spray on all components 
except liner below top ring reversal point. 

NASA6-C(9/85) 
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Percentage Gain due to Heat Recovery** Percentage Gain due 
Percentage Gain* to Insulation 
due to Insulation Cooled Engine Insulated Engine and Heat Recovery*** 

TCI 5.1 -- -- 5.1 

TCPD 6.0 4.5 5.4 10.8 

RCB 7.1 13.3 15.4 21. 3 

TCPD + RCB 7.9 17.2 20.4 26.5 

* With respect to same engine/heat recovery system with no insulation 

N ** With respect to turbocharged/intercooled baseline conventionally cooled 
~ and insulated, respectively 

*** With respect to conventionally cooled turbocharged/intercooled baseline 

Table III Percentage gains in brake efficiency in a turbocharged/intercooled truck engine 
due to insulation and heat recovery devices at rated conditions. 
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Turbocharged Automotive 01 Diesel with Swirl Combustion 

In addition to the studies involving the heavy-duty highway truck 
engines, a shorter study was made of the benefits that insulation can 
provide for turbocharged automotive 01 diesels. These smaller 01 

diesels are currently among the most intensely researched and developed 
automotive powerplants, promising high fuel efficiency even in the 
conventional cooled form. Therefore, the benefits that insulation could 
provi de to these engi nes are of interest, and are addressed in thi s 
section. 

The engine simulated here is meant to represent an advanced powerplant 
wi th hi gh pressure injection and a we ll-deve loped combustion system. 
Even so the engi ne thermal effi ci ency 1 ags behi nd that of the 1 arger 
engines (Figure 3-20). This is partly due to the higher heat transfer, 
augmented by the swi rl and 1 arger i n-cyl i nder surface-to-vo 1 ume ratio, 
which is about twice as large as that in the intercooled highway diesel. 
By the same token, the high baseline heat transfer indicates that this 

engine may benefit greatly from insulation. Indeed, the results shown 
in Figures 3-20 and 3-21 show that the relative benefits of insulation 
are about twi ce as 1 arge as those for the qui escent hi ghway di ese 1. 

The i nsul ati on increases the exhaust temperatures, shown in terms of 
turbine inlet temperature in Figure 3-22. Part of the conserved 
in-cylinder heat goes, as desired, into the piston work. The value of 
RHCE (Figure 3-23) is around 30 percent, except for the reduced-cooling 

confi gurat i on where it is much lower than that. It may be noti ced that 
the convers i on effi ci enci es are somewhat lower than for the hi ghway 

truck diesels. This is due to the different crank angle distribution of 
the i n-cyl i nder heat transfer: the swi rl engi ne has a 1 arger heat 
transfer during the latter portions of the expansion stroke, which, when 
conserved by insulation, produces less work because of limited expan­
sion. 

Volumetric efficiency of this engine is affected strongly by the 
insulation, as may be seen in Figure 3-24, decreasing by up to nine 
percentage points for the superinsulated design 2, and by about six 
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poi nts for the ZI. The pumped heat 1 eve 1 s of all des i gns are about the 
same as for the truck engines (Figure 3-25), which appears surprlslng in 
view of the higher overall heat transfer, but this is again due to the 

differences in the crank angle distribution of the heat transfer. The 
engi ne power shows no benefits of i nsu1 at ion, Fi gure 3-26, in conse­
quence of the lower volumetric efficiency and due to imposed constraints 
on peak cylinder pressure. 

The total heat rejection, Figure 3-27, starts with quite high levels of 
around 30 percent of fuel energy for the baseline cooled configuration. 
The heat rejection drops very sharply with insulation, reducing to one 
half with ZPS insulation. 

In summary, there are very significant benefits in brake efficiency, on 
the order of 10 percent for rated and 12 for part load conditions, 

achievable with practical ZPS coatings. These benefits are the direct 
result of the high heat transfer of the baseline cooled engine. 
Associated with the insulation are large penalties in volumetric 
effi ci ency, whi ch offset the thermal effi ci ency gai ns and as a resu1 t 
the engine power is not increased. Liner insulation does not provide 
any advantages, and in fact it decreases thermal efficiency and engine 
power. 

COMPARISON TO PREVIOUS PREDICTIONS 

In a number of earlier publications, engine simulation codes were used 
to address some of the same issues studied here. The results of'severa1 
re 1 evant papers wi 11 be bri ef1y revi ewed below, compari ng thei r pre­
dictions to the present ones. It will be seen that there are 
5 i gni fi cant differences between the previ ous and the present results. 
The main differences lie in the predicted RHCE with which the conserved 
in-cylinder heat is converted into piston work, which our results show 
to be higher than shown by any of the previous studies. An important" 

difference is also in the predicted effect of insulation on volumetric 
effi ci ency, whi ch our resu1 ts show to be 1 ess pronounced than some of 
the previous studies have indicated. 
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In order to understand these differences, our methodology was modified 
to permit incorporation of some of the assumptions used in other codes, 
and cal cul at ions were made to determi ne the effects of these assump­
tions. It was found that the reasons for the differences in predictions 
were due to: 

differences in gas-phase heat transfer models, specifi ca lly 
the relative magnitudes of heat transfer during the four 
strokes of the engine cycle, 

methods used to determine temperatures in the engine structure 
and the resulting predicted surface-to-surface temperature 
variations in the combustion chamber, and 
surface temperature swings, which were neglected in all 
previous simulations. 

The previously used gas-phase heat transfer models had much less 

variation in heat fluxes with crank angle than the present model, which 
is flow based and accounts for variations in gas velocities. This 
particular difference, discussed in Morel and Keribar (1985), was 
analyzed in more detail and the results are presented below. The 
structure temperatures used in previous studies were either guesses or 
estimates, or were obtained by a simplified conduction scheme decoupled 
from the cycle calculation. However, the use of correct wall tempera­
tures obtained by proper balancing of all heat loads and heat paths is 
quite important, and has an effect on the calculated trends of RHCE and 
especially on the volumetric efficiency. 

To study the effect of gas-phase heat transfer models as used in some of 
the previous papers discussed below, the flow-based convection model was 
replaced by Annand1s model (Annand, 1963), and the heat radiation model 
was deactivated. On the conduction side, the use of the network model 
was continued, but the surface temperature swi ng cal cul at i on was sup­
pressed. Simulation was run for the turbocharged intercooled engine at 
rated conditions over six configurations: baseline, reduced cooling, ZI, 
Z2, 51 and 52. The constant of the Annand l s model was adjusted to 
produce the same cycle averaged heat transfer as obtained with the flow 
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mode 1 at the rated conditions in the base 1 i ne engi ne. All other cases 

were then run with the same constant. The results for the baseline case 
showed a heat sp 1 it between the pi stan, head and 1 i ner of 38/24/38, 

compared to a very different split obtained with the flow model 
48/32/20, and this difference is directly attributable to the very 

different temporal and spatial variation of the heat transfer during the 
720 crank angle degrees. 

Whil e the heat rejection was matched at the basel i ne conditions, the 

heat rejections cal cul ated for the other confi gurat ions were different 

than calculated with the flow model. This is shown in Figure 3-28, 

which shows the difference between the Annand-based and flow-based model 
predictions. It may be seen that the maximum differences are quite 
significant and that for configurations with the cooled liner the points 
tend ·to lie higher than for the uncooled liner cases; this is again due 

to the differences in temporal and spatial variation of the heat trans­
fer. 

One of the major differences lies in the RHCE (Figure 3-29), which is 
much higher for the present model than for Annand1s model. This 
translates into differences in predicted thermal efficiency improvements 
(Figure 3-30) obtained with no exhaust heat recovery. The present model 
indicates that the direct efficiency benefits obtained in a turbocharged 

engine are quite significant. One of the reasons for the poorer bene­
fi ts predi cted wi th the Annand I s mode 1 is that the pumped heat it 
calculates (Figure 3-31) is higher, and this pumped heat increases the 

proport i on of conserved i n-cyl i nder heat that 1 eaves in the exhaust 
stream. It is interesting, in view of the differences observed in the 
engine work increments, that the differences in the exhaust temperature 

are quite minor, being of the order of lO-25°K. 

Since the gas-phase heat transfer provides boundary conditions for 
structure temperature calculations, it is not surprising that the large 

differences in heat transfer distribution, produced by the two models, 
a 1 so have a strong effect on the cal cul ated component temperatures, 
reaching up to 1000K difference on the top of the liner, with Annand1s 
model giving the higher value. Volumetric efficiency decreases due to 
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insulation predicted by the Annand-based model, are larger than for the 
present mode 1, and the di fferences can become even much greater if 

instead of us i ng the conduction network one uses cer·ta in prescri bed wall 

temperatures used by previous investigators, e.g., Zapf (1975), as 
discussed below. 

In the following brief summaries of the results obtained by the other 
investigators, description is given of the engine and insulation 

strategy studied, and then some seiected results are presented. No 

direct comparisons could be made with the present results as the engines 

studied and insulation methods used were not the same as those used 

here. Nevertheless, the general trends in RHCE, heat rejection split 
and volumetric efficiency should be noted. They differ substantially 

from the present results, mainly due to differences in heat transfer 
models employed, in particular the use of Annand-like heat transfer 

correlations and the use of guessed wall temperatures. 

One of the first papers dealing with insulated diesels was due to Zapf 

(1975). He looked at a naturally aspirated diesel, and simulated the 

effects of increasing wall temperatures. These were raised from 521 and 

593°K on piston and head to 1523°K, and from 433°K on liner to 1103°K. 

This reduced in-cylinder heat transfer from 20.6 percent of fuel energy 

to zero, but indicated SFl decreased only by 4 percent. RHCE of the 

conserved heat was only 9 p:rcent, far below the results obtained in the 

present work. Simultaneously, the volumetric efficiency decreased by 27 

percent, which is a much 1drger decrease than we predict with our heat 

transfer models and calculated wall temperatures. 

Griffiths (1976) analysed a turbocharged intercooled diesel, specifi­

cally the effect of raising piston and head surface temperature from 
555°K to 889°K. The liner temperature was kept unchanged at 416°K. The 

heat rejection decreased from 13 to 8 percent of fuel energy, increasing 
thermal efficiency by 1.2 percentage points, giving RHCE of 24 percent. 

Heat rejection split between piston, head and liner for the cooled 

baseline was 39:30:31. 
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Kamo and Bryzik (1978) made calculations for a naturally aspirated and 
turbocharged engines. Their results showed very small benefits for the 
natura lly aspi rated case, reach; ng 0.5% BSFC improvement for zero heat 
rejection. In the turbocharged case they simulated zirconia insulated 
engine; the procedure used to calculate the resulting wall temperatures 

was not described. In one of the cases, they insulated piston and head 
and kept the liner cooled. This reduced the heat rejection by 41 per­
cent and increased '1 t by 1. 4 percentage poi nts , for RHCE of about 26 

percent. When the liner was insulated as well, the heat rejection 

decreased by a total of 55 percent, but '1 t went up only by 1.2 percent­
age points, for RHCE of only 17 percent. 

Yoshimitsu et al (1982) simulated a turbocharged and turbocompound 
engi nes. They found that the turbocharged engi ne effi ci ency increased 
essentially linearly with insulation, reaching 4.3 percent improvement 

in BSFC with 60 percent reduction in heat rejection. The turbocompound 
engine efficiency increased faster, reaching 7.8 percent improvement in 
BSFC for the same level of heat rejection. Since the baseline heat 
rejection level was not given it is not possible to deduce their pre­
dicted RHCE. The piston/head/liner heat rejection split of the base 
cooled engine was 31:23:46. The high proportion of heat transfer going 
to the 1 i ner 1 ed them to the suggestion that the 1 i ner is the mai n 

component that should be insulated -- this is exactly contrary to the 

conclusions derived in this study. 

Tovell (1983) studied a turbocharged high swirl diesel which had 

in-cylinder heat rejection of about 19 percent of fuel energy. Fully 
insulated with superinsulating material (zero conductivity) having no 
surface temperature swings, the heat rejection went to zero and BSFC was 

reduced by 7.5%. Thi s i ndi cates RHCE of about 17 percent. A more 

"practical" design of an insulated engine, utilizing high temperature 
alloys and zirconia, provided heat rejection reductions of 29%, reducing 
ISFC by 2.5 percent, i.e., with RHCE similar to the above. 

Sudhakar (1984) calculated the performance of an insulated turbocompound 
engine, and found that insulation improved its BSFC by 4.8 percent at 60 

270 



percent reduction of heat transfer. This translates into RHCE of about 
32 percent. 

Hoag et al (1985) analyzed both a turbocharged and a turbocompound 
engines insulated with zirconia on all surfaces including the liner. 
They used a simplified heat conduction model to provide them with wall 
temperatures, and plotted improvements in BSFC against heat rejection. 
Their simulation for a case with heat rejection reduced to 50 percent 

indicated a 1.5 percent reduction in BSFC for a turbocharged engine and 
3.7 percent for a turbocompound engine. This translates into RHCE of 11 
and 30 percent, respectively. It may be noted that the turbocompound 
result agrees well with that obtained earlier by Sudhakar. 

In summary, the previous investigations have produced results that 
cons i stent ly differ from the present ones in thei r predi ct ions of the 
effects of insulation on RHCE, heat transfer split between engine 

components, and volumetric efficiency. These differences have been 
shown to be due to the differences in the gas-phase and structural heat 
transfer models used. The most significant impact of these differences 
is that the present model shows greater benefits of insulation than 
previously thought. 

CONCLUSIONS 

1. Thermal efficiency improvements due to combustion chamber insula­
tion are proportional to retained-heat-conversion-efficiency, RHCE, 

i.e. the efficiency with which the in-cylinder heat retained in the 
gases by insulation is converted directly into work. It is also 
proportional to the in-cylinder heat transfer level of the baseline 

engine prior to insulation. 

2. For a typical highway truck diesel engine at rated conditions RHCE 
is around 35-40 percent. These levels of RHCE are higher than 

those predi cted by previ ous models, and thi sis due to the dif­
ferences between the present gas-phase and structural heat transfer 
models, and those used in previous simulations. As a result, the 
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predi cted thermal effi ci ency benefits of i nsul at i on are greater 

than previously reported by other investigators. 

3. Insulation of the cylinder liner brings only small benefits in 
thermal efficiency and a moderate decrease in total heat rejection. 

These are offset by lower volumetric efficiency, lower power and 

substantially higher piston/ring/liner temperatures which adversely 
affect engine tribology. 

4. A practical configuration, consisting of zirconia coatings on 

piston and head, and a cooled metal liner, provides an improvement 
of 5.1% in thermal efficiency for an intercooled turbocharged 
engi ne at rated condi t ions. Exhaust energy recovery by turbocom­

pounding (TCPD) brings additional improvement of 5.4%, while Ran­
kine cycle bottoming (RCB) adds 15.4%, and combined TCPD/RCB adds 

20.3% (for a total of 26.5% over the baseline). The resulting BSFC 

for this insulated turbocharged intercooled engine with TCPD/RCB is 

as low as 0.260 lbm/bhp-hr at peak torque. 

5. The percentage gains in thermal effi ci ency over the basel i ne are 

even greater for a non-intercooled engine. On an absolute basis, 
thi sengi ne starts at a lower thermal effi ci ency in the basel i ne 
configuration, but due to increased benefits it catches up with the 

intercooled one, and for the super insulated case and high exhaust 
heat recovery discussed above it achieves similar levels of BSFC. 

However, as in conventional engines, the engine power is sUbstan­

tially lower due to reduced charge density and NOx,emissions would 

most probably be higher. 

6. II Reduced- coo 1 i ngll engi nes (i. e. , convent i ona 1 engi nes wi th 

coolant-drained) provide only small BSFC benefits due to very low 
RHCE. There is a moderate reduction in total heat rejection, but 
these benefits must be weighed against durability and lubrication 

problems and lower engine power. 
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7. Contrary to results obtained previously by others, the thermal 

efficiency of a turbocharged engine benefits meaningfully from 

insulation even without heat recovery due to the RHCE values in the 

35-40% range. In fact, the effects of exhaust energy recovery and 

insulation are to a large degree additive. This is an important 

conclusion which offers an additional choice in engine system 
selection i.e. an insulated engine without heat recovery. (A 
separate study, not di scussed here, showed that even naturally 

aspirated engines can benefit from application of a well designed 

insulation package.) 

8. A high-speed turbocharged automotive diesel with a swirl type 
combustion system shows very significant improvements in BSFC, on 
the order of 10% at rated and 12% at part load conditions, achiev­
able with practical zirconia coatings. These high percentage 

improvements are the result of the hi gh heat transfer of the 

base 1 i ne cooled engi ne caused by hi gh swi rl 1 eve 1 s, provi di ng a 

larger potential to draw on. 
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IV. ENGINE INSTALLATION 

At the end of the program's first year a Cummins NH single cylinder test 

engi ne had been i nsta 11 ed on a dynamometer in Purdue IS engi ne 1 abor­

atory. Necessary supporting equipment such as a cooling system, a lubri­

cating system and a fuel supply system also had been installed. One 
except i on was the air superchargi ng and heating system requi red to 

simulate the charging conditions of a highly boosted truck diesel under 

normal highly loaded operation. System components had been ordered but 

not received. 

Ouri ng the early part of the program l s second year components for the 

supercharging system were received and installed. In its designed con­
figuration, ambient air is compressed and stored in two large high­

pressure vessels located in a courtyard outside of the laboratory. This 

air is brought through high pressure piping into the engine test cell, 

where it is throttled, dried to near-zero absolute humidity, metered and 

heated (i f requi red) before enteri ng the eng; ne intake plenum tank. 

With this arrangement, the single cylinder engine rig can duplicate 

intake air pressures and temperatures that exist at any full-scale 

engine operating condition. 

Engine Modification for Test Purposes 

In order to provide combustion chamber access ports for incorporating a 

pressure transducer, a fast response thermocouple probe and a radiation 

probe, several modifications to the engine cylinder head were necessary. 

Early in the program, Cummins had agreed to supply a special test head 

with a pressure transducer adapter sleeve installed. This head then 

would be modified in Purdue ' s shop to accept special mounting sleeves 

for the other two probes. Specific locations for the pressure/ 
temperature/radiation probes were selected, following careful study of 

sectioned castings and prints, to present the best possible resolution 

of the normal conflict between adequate data requirements and practical 

access positions. All suitable locations were determined to lie in the 

cylinder head area. 
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For useful radiation measurements, the probe should view the main com­
bustion zone. Also, since the probe is a line-of-sight instrument 
contained in a rigid sheath, its installed position must not interfere 
with valve gear, injector linkages or other head/rocker box components. 
In addition, there must be room to insert the protective window. Simi­
larly, the surface thermocouple should be located in a position on the 
combustion chamber wall where the surface is flat, where there is cool­
ant flow adjacent to that wall, and where the area is relatively free 
from interior support ribs that would interfere with one-dimensional 
heat flow. Pressure transducer installation requirements are less 
stringent, but its position should avoid direct flame impingement on the 
sensing diaphragm. 

Locations finally selected took all of the above requirements into 
account. The radiation probe views the piston cup near the imaginary 
circle where its depth is greatest. By contrast, the surface thermo­
couple and pressure transducer are positioned on larger radii where 
flames do not impinge directly on their faces. The only significant 
engi ne modifi cat i on that was requi red to mount the i nstrumentat i on at 
the selected points was the deactivation of one intake valve so that the 
radiation probe passes in a straight line down the center of the valve 
gui de boss. Since the eng; ne has two intake valves and breathes very 
free 1y, the lost ai r flow can be returned to normal 1 eve 1 s through 
increased supercharger boost that is withi n the capaci ty of the air 
system. With the instrumentation mounted in the selected locations, data 
obtained should be adequate for model validation. Also, with all three 
transducers placed in non-interfering areas, it is possible to obtain 
data on heat radiation, heat conduction and cylinder pressure simul­
taneously at each engine test condition. In addition, the adapter 

sleeves for each probe have identical internal dimensions. This feature 
allows the probes to be interchanged for additional data verifications. 

Although some delays were experienced in obtaining the test head from 
Cummins and in locating suitable materials for the modified components, 
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all of the probe mounting hardware has been fabricated and installed in 

the test head. New rocker arm components, including a special crosshead 

which slides freely along the radiation probe sleeve and which preserves 

the normal cam 1 i ft/va 1 ve 1 i ft re 1 at i onshi pal so have been fabri cated 

and i nsta 11 ed. 

When the cyl i nder head supp 1 i ed wi th the s i ngl e cyl i nder engi ne was 

removed, prior to installing the test head, the piston was found to be 

of a design not intended for use with the test head configuration. The 

test head that Cummins chose to supply (due to considerations of most 

readily available hardware) had recessed valves while the piston had 

cutouts in its crown to accommodate protruding valves. This type of 

piston was unsuitable for two reasons: 1) the cutouts were located in 
the area where the optical proximeter was focused and thus would 

interfere with TDC determi nat ion, and 2) the comb i nat i on of reces sed 

va 1 ves and pi ston crown cutouts increased c1 earance volume enough to 

lower compression ratio below an acceptable value. Since the test head 

with recessed valves already had been extensively modified, the most 

practical correcting alternative was to obtain a flat-crown piston that 

was compatible with the engine. As a result, Cummins was asked to try 

to locate a sui tab 1 e pi ston and was able to supply two useable types. 

Both had flat crowns but one produced a 17:1 compression ratio while the 

other showed 15.8:1. The 15.8 variant was judged to be the most suit­

able for program test purposes and consequently it was installed in the 

engine along with the modified test head. 

During the installation sequence, compression ratio and valve lift 

characteristics were measured. In addition, a strain gaged fuel injec­

tor push rod for locating the start of injection was installed and the 

valve cover was modified to allow wiring from the test probes to exit 

without excessive oil leakage. 

Towards the latter part of the second year the engine was run in test 

configuration with instrumentation installed to check out general oper­

at i on and look for potential problem areas. Ouri ng these runs the 
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sleeve that mounts the radiation probe became loose and required some 

additional modifications in order to hold it in place. Otherwise all 

checkout operation indicated satisfactory installation and modifi­

cations. 
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V. EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION 

During the Phase I of this program, a considerable effort was mounted at 

Purdue University to develop specialized instrumentation that could be 

used in the engi ne experiments. Thi s i nstrumentat i on covered three 

areas: 
1) heat radiation measurement, 
2) total heat flux and wall temperature measurement, and 

3) cylinder pressure measurement. 

For the fi rst of these measurements the plans call ed for the use of 

detector system placed behind a recessed window. For the total heat 
flux a fast response surface thermocouple is to be used. The cylinder 
pressure will be measured using a standard AVL pressure transducer, but 

the requisite accurate pressure-crank angle phasing will be assured by 

use of a unique TDC detector -- an optical proximeter. 

The initial work done on these instruments in the first year of this 
program was described in the Phase I Report, and the reader is directed 

to that report for background information and for some of the technical 
details. In this report we summarize our additional experiences with 

the instrumentation. 

Radiation Measurements 

Methodology. There are two proved methods commonly employed for deter­

mining the temperature of a radiating gas: 1) the emissions absorption 

method, and 2) the multicolor method. The emissions absorption method 

involves measurement of a beam that passes through the gas in a direct 
line and thus requires two access ports. This constraint makes the 
absorption method impractical for use in the test engine. The multi­
co lor method i nvo 1 ves extracting a signal from the radi at i ng gases 

through only one access port and therefore is a practical method for use 

in the test engine, as shown by the work of Flynn et al (1972). Thus, 

it is the method chosen for radiation measurements in this program. 
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In application, the multicolor method uses the measured radiation inten­

sity at two or more wavelengths to determine an equivalent black body 
temperature. The actua'l temperature is obtai ned from an i terat i ve 
solution based on three assumptions: 

(1) the temperature of the gas is homogeneous over the area 
measured, 

(2) gas concentration is homogeneous over the area, and 

(3) radiation from the walls is small compared to that from the 
gas. 

When this method is applied to engine combustion, two additional assump­

tions are made: 

(1) soot is the dominant emitter (spectral peaks from gases can 

be neglected), and 
(2) thE intensity is independent of direction, which implies 

that the emission (E,.) is directly related to the intensity 

(1,): 

(5-1) 

The radiation intensity data obtained at two wavelengths (IA1 and IA2 ) 
are related to black body emission at the same temperature through the 

following relationship: 

(5-2) 

The emissivity (~A) for soot particles is shown by Flynn et al and other 

to be well represented by: 

(5-3) 
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where a is nearly unity in the near infrared wavelength region found in 

diesel combustion, and the product kL must be obtained by solution. 

The measured emission can be described by an equivalent black body 

source at an apparent temperature (Ta ). Thus: 

(5-4) 

By combi ni ng the above three equations and sol vi ng for the product of 

absorptivity coefficient and thickness (kL) at each wavelength, and 

setting them equal, the following relation can be iteratively solved for 

the actual temperature (T). 

~ 
[1 - exp( A (liT 

I 

~ }.ot.. 
= [1 - exp( Az (liT -- 1/Ta2))] 2 

With the actual temperature known, the relation for the monochromatic 

emissivity can be generated by fitting the relationship (5-3) for soot 

to the measured points. Then, based on the emissivity relationship 

developed along with the temperature that has been calculated, the 

emissive power along a line of sight can be found by the integration: 

(5-6) 

where: EbA is Planck1s function for a black body, £A is monochromatit 

emissivity, T is temperature and A is wavelength of radiation. 

From this expression it is apparent that the emissivity (£A)' 

temperature (T), and the important wavelengths must be established 

before emi ss i ve power can be determi ned. The wavelength range can be 

determi ned from the expected temperature and the shape of Pl anck IS 

function. The temperature of the gas when radiative heat transfer is 
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most important is we 11 over 2000 K. Based on thi s temperature 1 eve 1 , 

the wavelength range should extend from 0.5 to 3.0 microns. 

Radiation probe. The initial design for the radiation probe to be used 

in conjunction with the heated sapphire optical access port developed 
during year one, was originally based on a commercial six-color 
radiation photodetector manufactured by Judson Infrared. In this 

design, radiation from a point source in the engine combustion chamber 

would be transmitted to the Judson detector by an optical train that 

splits the signal into pertinent wavelengths and then focuses the 
resulting pattern onto the detector window. Figure 5-1 shows a system 

schematic drawing. Calibration would be carried out with the complete 

system, including the sapphire optical port. 

In practical application, this proposed design proved unworkable. The 

detector never coul d be made to perform properly duri ng bench experi­

ments and contacts at Judson Infrared were not abl e to offer workabl e 
modifications. After several bench trials, it finally was decided that 
the instrument was much too sensitive to light intensity and to handling 

shocks to be used for engine test stand measurements. In addition, the 
design of a practical focusing and dispersion system for use around a 
vi brat i ng engi ne proved to be much more di ffi cul t than anti ci pated. 

Bench experiments with a more rugged commercial detector manufactured by 

Spiricon, Inc. also proved to be unsuccessful, in that the detector was 
not able to respond in a predictable manner to the signal intensity 

expected from the engine sample train output. 

As a result of the difficulties encountered with these two commercial 
photo detectors and their associated sample trains, development work was 

undertaken on an alternative radiation probe system. In this system a 

commercial paired fiber optics bundle, similar to the one used in the 
optical proximeter, gathers radiation which passes through the optical 
access port, and splits it into two beams. Each beam is filtered to 

pass only a specific wavelength on to photo detectors which then respond 

only to that wavelength. Figure 5-2 shows a schematic drawing of this 
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alternative sampling system. As described earlier in this section, the 

intensity observed at two properly chosen wavelengths can be used to 

deduce source temperature and radiative heat transfer. 

Two factors were determined to be of key importance in the practicality 

of this alternative system for engine radiation measurements: 1) the 
fiber-optic bundle and associated filters/detectors must operate at 

wavelengths that are useful and 2) the response time of the components 

must be fast enough to track combustion radiation in time. From con­

sideration of the engine radiation spectrum observed by Flynn, shown in 

Figure 5-3, measurement at wavelengths of 0.9 and 1.5 ~m was selected as 

most desirable for calculation accuracy. The proposed system was found 

to satisfy both of the above requirements for wavelengths of 0.9 and 1.5 
~m. I n the case of wavelength compat i bi 1 i ty, manufacturers data for 

the proposed optical bundle showed satisfactory operation up to wave­

lengths of 2 ~m. Also, Germanium (1.5 ~m) and Silicon (0.9 ~m) photo­

diodes with appropriate filters for the wavelengths of interest were 

determined to be commercially available. With respect to response time, 
bench tests of a bread-board circuit showed a response of about 4 ~s. 

This time corresponds to about 0.05 crank angle degree at 2100 rpm and 

therefore is satisfactory for time resolved combustion radiation 

measurements. Thus, work during the remainder of the second year con­

centrated on developing a practical system based on the alternative 

concept just described. 

In the initial design stage for this concept, radiation was to be col-

1 ected from a nearby poi nt source in the combustion chamber by an op­

tical system that would focus the energy from this point onto the fiber­

opt i c bundl e receptor. However, expected engi ne vi brat i on and space 

restri ct ions imposed by the di ameter of the sleeve i nsta 11 ed in the 
cylinder head, along with a need for cooling to counter thermal inter­

ference effects, presented nearly insoluble problems in the design of 

any pract i ca 1 confi gurat ion. Consequently, a des i gn whi ch wou 1 d i ncor­

porate signal co 11 ect i on from a sma 11 coni ca 1 volume rather than a 

single point was considered. With this approach the fiber optic bundle 
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receptor end could be placed directly in back of the access window and 

all of the other optical focusing elements of the sample train as well 

as cooling would be unnecessary. After a detailed study of the effects 
of such a design configuration on radiation measurements, it was con­

cluded that the advantages of simplicity of construction, ruggedness and 

speed with which working hardware could be assembled far outweighed the· 

disadvantage of having to correct for small amounts of unwanted radia­

tion from the access port walls. 

Following this decision, hardware ~as designed and fabricated. In 

implementation it was found that detector stability could be improved 

markedly by mounting them ina constant temperature heat sink. As a 

result, a cooled heat sink was made a part of the final design config­

uration. 

After assembly, the time response of the system was checked by moni­

toring the flash from a xenon flash lamp with a pulse time of about 20 

J,ls. The pul se was vi ewed by both photodi ode detectors and a photo­
multiplier tube. The xenon flash lamp provides a good radiation source 

since it produces a fast, wide spectrum flash. A photomultiplier tube 

was used as a reference, since the response of this photomultiplier is 

over 100 times faster than the expected response of the photodi ode 

detectors. The results of this test were satisfactory in that the 

Silicon and Germanium photodiode detectors lag the photomultiplier 

response by only 6 J,ls and 2 J,lS respectively. 

Preliminary engine measurements. Toward the end of the second year the 

complete radiation probe assembly, including the sapphire viewing 

window, was installed in the single cylinder test engine head for 

initial performance evaluation in a realistic environment. The engine 
was fired, naturally aspirated, at 500 rpm and the minimum fuel rate for 

steady operation. This condition approximates a "curb idle" during 

which relatively low pressures are produced and thus the probe was not 

overly stressed. This also is a condition which should produce a low 

signal level and thus serve to evaluate the probe sensitivity and re-
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sponse in thi s mi nimum regi on. Based on the resul ts of thi s test at 

minimum expected signal level, the response and sensitivity of the 

photodiode detectors were found to be more than adequate for radiation 

measurement at any useful speed or load. The data collected in this low 

load case was processed to determine the temperature, emittance and soot 

volume fraction by the technique described below. 

Since the detector output is linear with intensity, the measured actual 

intensity can be equated to an apparent black body intensity: 

where: 

soot temperature 

apparent black body temperature 

calibration constant 

Planck's blackbody intensity 

emittance of soot 

Planck ' s black body function for intensity and the emittance of soot 

follows the relationships: 

C ITt 
1 
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Ai 

AA 
1 

where: 

(f L) 
v 

soot volume fraction and characteristic length 

constant dependent on complex index of refraction 

Combining the above equations and solving for the soot volume fraction 

times the characteristic length, yields: 

(f L) - A In 1. -
v AA 

Since (f vL) is independent of wavelength, the 1 atter equation can be 

equated for the two different wavelengths. This yields one equation 

with one unknown (T): 

C
2 C

2 exp(--) - 1 exp(r-T) - 1 Ai T A2 
In 1. - .. In 1 • 2 

C2 
--- -

~ AA 
exp (A ) - 1 2 exp(A --) 1 T

1a 
-

1 2 T2a 

C
2 

Ai 
• C2 

A2 ---exp(r-T) - 1 AA exp(~) - 1 AA 
1 • 

1 1 
1. 

2 2 - - -
exp(A 

C2 ) 1 exp (A 
C2 ) 1 - -

1 T1a 2 T2a 

The above equation must be solved iteratively for temperature. For this 

purpose, an objective function, below, is defined, where the solution 
exists at the zero crossing. 

f - 1. - C2 
exp (A T ) - 1 

1 1a 
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For a theoret i ca 1 case where the actual temperature (T) is 2000° K and 

the emittance (EO.g) is 0.5, this equation produces the curves shown in 

Figures 5-4 and 5-5, for a range of temperatures around the correct 

temperature. It should be noticed that the slope approaches infinity at 

the highest apparent black body temperature (T ), and approaches zero at a 
temperatures just sl ight1y above the actual temperature. These char-
acteristics require that the first guess for temperature be fairly 

close. In the solution used, the temperature for the first iteration is 

chosen slightly higher than the highest black body temperature (Ta). 

The second method is then used to close in on the actual temperature. 

To test the method outlined above, voltages were predicted for various 

combinations of (T) and (EO.g). This test required that a calibration 
of the detectors be performed and that an iteration program be written. 

Since a high-temperature calibration source was not readily available at 

the time, a low temperature calibration was performed with a black body, 

over a range of temperatures between 10000K and 14000K. When the iter­

ation program was fed the theoretically predicted voltages, correspond­

i ng temperatures and emi ttances were reproduced wi th no appreci ab 1 e 

error. This test provides confidence in the accuracy of the data reduc­

tion method. 

Next, this data reduction method was applied to the 500 rpm, light load 

engine data described earlier in this section. Plots of detector output 

for one cycle are shown in Figures 5-6 and 5-7. Calibration data were 

extrapo 1 ated to temperatures of interest. For these engi ne data the 

resulting emittance at the wavelength of each detector, temperature and 

soot volume fraction times the characteristic length are displayed in 

Figures 5-8 through 5-11. The high fluctuations in apparent temperature 

beyond 60 degrees after TOC represent effects from operation near the 

low temperature resolution limit of the detector system. On first 
inspect ion, the temperatures and emi ttance values appeared low. In 

order to investigate this possibility further, a soot volume fraction 

was calculated for two cases. The characteristic length was defined as 

the di stance from the engi ne head surface to the bottom of the pi ston 
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~ _6 ~_8 
CUp. Based on this, f v(100

) ~ 1.5 x 10 and f v(600
) ~ 4 x 10 These 

values seemed reasonable, based on literature data. 

Calibration of the detectors over the temperature range of interest in 

diesel combustion still is required, extending to 2700o K. An NBS­

traceable black body which can achieve temperatures up to 27000 K has 
been located at a commercial facility and will be used for initial 

calibration. Later, in the third year of the program, a high-temperature 

furnace, to be made available by NASA-LeRC, will be installed at Purdue 
and be used for subsequent calibrations. 

Fast Response Thermocouple 

During the program's second year the fast-response-thermocouple design, 

tested in a low-temperature bomb experiment and described in the first 
year report, was applied to combustion surface temperature measurement 

in the single cylinder engine. A drawing of the design adapted for 

engine tests is shown in Figure 5-12. This design fits into any of the 

three access ports in the engine head, being interchangeable with either 

the pressure transducer or the radiation probe window assembly. During 

fabrication, a number of problems arose. Most were associated with lack 

of adhesion of the thin nickel plating that forms one leg of the iron­

nickel junction. Others involved contamination of the film by impuri­
ties present in the plating system and delays due to breakdowns in the 
plat i ng equi pment whi ch is not under the control of the automotive 

1 aboratory research group. Toward the end of the second year, three 

thermocouples with films that appeared quite sound at room conditions 

were fabricated and tested in the single cylinder engine. Two failed 

under motoring conditions due to the nickel film peeling off, very soon 

after bei ng 
firing run. 
nickel fi 1m 

exposed to 
Critical 

had failed 

motoring operation. Another failed early in a 
reappra i sa 1 of the des i gn i ndi cated that the 
to adhere properly to the mi ca i nsul ator that 

separates the nickel tape from the iron body and, with this failure as a 

starting point, rapidly peeled from all surfaces. The principal cause 
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of the 1 ack of fi 1 m adherence appeared to be crumb 1 i ng of the mi ca 

around the nickel tape, which resulted in surface gaps that the nickel 

film could not bridge successfully. This crumbling probably occurred 

during the polishing step prior to plating, possibly due to failure of 

the split taper pin in the body to clamp the mica tightly and prevent 

movement. Alternatively, the mica may have crumbled due to its brittle 
structure. 

As a result of these failures, the thermocouple unit was redesigned to 

incorporate a round nickel center wire encased in a ceramic sleeve that, 

insulates it from the iron body, instead of using a nickel tape insu­

lated by mica layers. A drawing of this new design is shown in Figure 

5-13. The new design is believed to be more suitable than the original 

one in that the ceramic insulator should not crumble and thus should 

provide a solid surface to support the nickel plating. Fabrication of 

these units was begun during the last month of year two. 

Because of the difficulties encountered at Purdue in developing a fast­

response thermocouple that is durable in engine tests, commercial 

sources were investigated as part of a back-up plan. The only commer­

cial source, located to date, that appears to have the expertise re­

quired is Medtherm Corporation of Huntsville, Alabama. Medtherm makes a 

comprehensive line of fast-response thermocouples, largely for military 

ordinance testing, but has supplied engine test units, that have worked 

successfully, to Cummins and Detroit Diese1. After discussions with 

Medtherm, an iron plug which fits the engine access ports and that will 

accept a standard Medtherm thermocouple was designed and submitted for 

quotation on the complete assembly. We plan to buy six of these 

thermocouple assemblies for metallic engine test work in the event that 

the revised Purdue design fails to satisfy program needs. 

Optical Proximeter for Determination of TDC Location 

During the first year of the experimental program, an optical proximity 

probe was des i gned and constructed for use in dynami ca lly determi ni ng 

engine TDC. For proper phasing of acquired pressure data it is neces-
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sary to determine the location of TDC within 0.1 degrees of crank 

rotation. This requirement was established by analytical studies of the 

dependence of heat transfer cal cul ated from engi ne pressure data on 

pressure-crank angle phasing. From initial tests performed with the 

proximity probe, it appeared the desired accuracy could be achieved 

usi ng thi s devi ce, and based on thi s a detai 1 ed research effort was 

mounted to develop it into a reliable instrument. 

A detailed explanation of the design and operation of the proximity 

probe was presented in the Phase I Report, hence only a brief review 

will be given here. Figure 5-14 presents a schematic of the probe, 

illustrating the essential features of the device. The proximeter 

consists of two fiber optics bundles joined together at one end. Light 

is directed through the transmitting bundle and reflected off the work 

surface. The reflected light is collected by the receiving bundle and 

sensed by a photodetector. The i ntens i ty of the 1 i ght sensed by the 

detector is a nonl i near functi on of the di stance between the work 

surface and the probe face. Insertion of the probe into an engine in 

such a way that the pi ston crown becomes the work surface, results in 

the output signal near engine TDC shown in Figure 5-15. From this 

signa 1, the 1 ocat i on of TDC can be determi ned, in pri nci p 1 e, as the 

location of the signal minimum or the location of the midpoint between 

the two signal peaks (average of the peaks location). During the second 

year of the experi menta 1 program, the proxi meter probe was exerci sed 

thoroughly over a wide range of engine speed in order to assess the 

accuracy of the technique. The experiences gained during that process, 

and the results obtained, are reviewed below. 

Preliminary Proximeter Measurements and Data Analysis. During the 

preliminary use of the proximeter probe in the Cummins' single cylinder 

test engine, significant improvements were made to the probe hardware. 

Refi nement of the probe ci rcui try reduced time delays associ ated with 

the use of the proximeter to an acceptable level. Problems with signal 

noise levels were eliminated by effective shielding of the probe cir­

cuitry and the use of a more powerful light source. 
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Us i ng the proxi meter data sets acqui red duri ng the i ni t i a 1 peri od of 

proximeter use, computer data reduction techniques were developed and 

refined for determing the location of engine TOC from the probe signal. 

In all of the tests data were acquired at 0.20 intervals. The analysis 

of the data involved the following steps: 

smoothing of the probe signal near TOC, and 

locating the smoothed signal maximums and minimums. 

Signal smoothing was accomplished by averaging the proximeter signals 

over a number of crankshaft revo 1 ut ions and app lyi ng a s 1 i di ng 1 east 

squares curve fi t to the resul t. The s 1 i di ng 1 east squares curve fi t 

technique is a procedure which fits each data point to a polynomial of a 
specified degree using only the data points in the vicinity of the point 

being fit. The parameters involved in the application of the technique 

are the order of the polynomial and number of points used in the local 

fit and the number of times the data is curve fit. Single and double 

smoothing of the data is accomplished by curve fitting the data once and 

twice, respectively, after averaging is performed. 

Signal minimum and maximum locations were determined by locating points 
of zero slope. The zero slope 1 ocat ions were fi rst determi ned to the 

nearest data point using an exhaustive search. The coefficients of the 

polynomial associated with the curve fit through this point were then 

used to calculate a more exact location of the zero slope point. 

A parametric study was performed on the smoothing procedure to determine 

the variation of the signal minimum and midpoint of the peaks (average 

of the peaks) 1 ocat ions at a gi ven engi ne speed wi th the order of the 

polynomial and number of points used in the local fit and the level of 

smoothing applied to the data (single or double). The order of fit was 

vari ed from 2 to 5 and the number of poi nts was vari ed from 35 to 75 

(7.0 to 15.0 degrees of crank rotation) in increments of 10 points. A 

proximeter data set consisting of engine speeds of 500, 750, 1000, 1250 

and 1500 RPM was used in the study. The results of the analysis indi-
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cated that the tota 1 vari at ion in the TOe 1 ocat i on with number po i nts 
fitted and order of fit was less than 0.06° at any given engine speed 
for both the compression-expansion and valve open periods, and both the 

mi nimum and average-of-the-peaks. A fourth order fi t over 55 poi nts 

using single smoothing was chosen for all future analysis. These 
particular parameters gave proximeter results which were close to the 

mean of the results obtained from the parametric study at all engine 

speeds. 

Final Proximeter Data Analysis -- General Results. After several 

iterations on the development of the proximeter hardware and data 
analysis techniques, an updated set of proximeter data was collected at 

engine speeds between 1000 and 2100 RPM at 100 RPM increments. Data was 
acquired over 35 crankshaft revolutions at each speed. The proximeter 

signal minimum and average of the peaks locations were determined in the 
manner described above and the results are plotted in Figure 5-16 as a 
function of engine speed. The figure shows a sudden shift in the 

proximeter results during the compression-expansion period at 1600 RPM. 
This shift was apparent in all of the preliminary proximeter data sets 

co 11 ected. The magnitude of the shift is gradually reduced as engi ne 

speed increases to 2100 RPM. The valve-open peri od results are smooth 

over the range of engine speeds and do not show any shift. 

A great deal of effort was spent in determining whether the shift in the 
proximeter results shown in Figure 5-16 was truly indicative of the 

actual TOe location. The basic assumption inherent in determining TOe 
from the proximeter signals is that the signals are symmetric about 

engine TOe. Given the nature of the proximeter operation and an 

entirely symmetric proximeter signal from an engine, the point of 

symmetry is the point at which the piston is closest to the probe face. 
Under these conditions, the minimum, average-of -the-peaks and TOe 
locations are all the same. An unsymmetric proximeter trace can be 

generated by a change in the orientation of the piston crown with 
respect to the probe face through a rocki ng or sideways motion of the 

piston near TOe. The result is a change in the amount of light col-
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lected by the proximeter receiving bundle at a given position of the 
pi ston in the engi ne cycl e. Hence, different output 1 eve 1 s from the 

proximeter can be obtained at the same piston position, and the slope of 

the proximeter signal can be different on opposite sides of engine TDC. 

Due to the change in output 1 eve 1, the signal mi ni mum is no longer 

assured to correspond to TDC and due to the change in slope the midpoint 
between the signal peaks is no longer assured to correspond to TDC. 

Thus, given a nonsymmetric proximeter signal from an engine, the mini­
mum, the average-of-the-peaks and the TDC locations are not necessarily 

the same. 

An exami nat i on of the symmetry of the proxi meter signals near TDC is 

useful in assessing the validity of the results obtained after 1600 RPM 
during the compression-expansion period. Figures 5-17 and 5-18 show 

plots of the a~erage probe signals at speeds of 1000, 1200, 1400, 1600, 

1800 and 2000 RPM for the valve-open and compression-expansion periods, 

respectively. The signals are reasonably symmetric during the valve 

open peri od over the entire range of engi ne speeds. Duri ng the com­
pression-expansion period, however, the proximeter signals become 

noticeably unsymmetric at engine speeds of 1600 RPM. and above. As a 

result, the signal minimum and average-of-the-peaks locations for these 

speeds cannot be used as a reliable indication of engine TDC location. 

Analysis of a companion set of motoring pressure data taken at the same 
engine speeds as the proximeter data provided further support for the 

rejection of compression-expansion results past 1600 RPM. The analysis 

showed that peak pressure location shifted smoothly and gradually with 

engine speed towards TDC and it did not change significantly past 1600 

RPM. Thus, given this result, the unsymmetric shape of the proximeter 
signals, and the lack of a suitable physical explanation for the move­
ment of engine TDC during the compression-expansion period in the manner 
shown in Figure 5-16, the proximeter results for the compression-expan­

s i on peri od were judged not to be i ndi cat i ve of the actual engi ne TDC 

location at 1600 RPM and above. 
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Error Analysis. Using the updated set of proximeter data an assessment 

of the accuracy of the probe measurements was made. To address the 

quest i on of accuracy, an eva 1 uat i on of the errors associ ated wi th the 

use of the probe must be made. These errors can be grouped according to 

the following classifications: 

error due to cycle to cycle variation of the measurements, and 

error due to the assumed relation between engine TOC and the 

probe signal minimum and average-of-the-peaks locations. 

The error associated with the repeatability of the measurements can be 

quantified in a straightforward manner using statistical analysis. The 

signal minimum and average of the peaks locations for each individual 

crank revolution from the proximeter data were determined for all engine 

speeds. From these results the 95% confidence intervals for the minimum 

and average-of-the-peaks locations were computed. The confidence 

intervals represent the error due to cycle to cycle variation resulting 

from use of the proximeter and the chosen techniques for smoothing the 

data and locating signal maximums and minimums. For the compression­

expansion period this error is less than 0.05°, while for the valve open 

period it is less than 0.02°. The narrower confidence interval for the 

valve open results is attributable to less cycle to cycle variation in 

the secondary motions of the piston during this period in the absence of 

significant pressure forces. These error estimates are well below the 

desired 0.1 degree accuracy for locating engine TOC. 

The error due to the assumed relation between engine TOC and the prox­

imeter signal maximum and minimum locations is difficult to quantify. 

As discussed above, the relation is assumed to be valid only when the 

proximeter signal is symmetric. Thus, one way to quantify the error in 

the aSsumed TOC proximeter signal relation is to quantify the degree to 

which a given proximeter trace differs from an entirely symmetric trace. 

One global measure of this difference is the magnitude of the difference 

between the minimum location and average-of-the-peaks location for each 

proximeter signal. As can be seen in Figure 5-16, a maximum 0.19° and 
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0.10° difference exists for the compression-expansion and valve open 

periods, respectively. These numbers give some indication of the error 

in the assumption that the TOC location is related to the minimum and 

average-of-the-peaks locations. 

The error values determined by the above analysis, give an' indication of 

the total error associated with the use of the proximeter. Concentrat­

ing only on the valve open period data which are more consistent, a 

second order curve was fit to all the data for the valve open period 

between 1000 and 2100 RPM, including both the minimum and average-,of­

the-peaks data. This curve is shown in Figure 5-16 by a bold solid 

line. It displays a mild variation with engine speed, which amounts to 

0.25° over the range of interest. This variation is most likely due to 

dynamic structural flexing, and it would not be detected with standard 

methods of TOC determination, which are essentially static. 

In summary, a data reduction procedure was developed for the optical 

proximeter, which reduces and enhances the acquired data, and provides a 

consistent method for TOC determination very close to the desired + 0.1° 

accuracy. 
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