1,834 research outputs found

    Cardiac structure and function in elite Native Hawaiian and Pacific Islander Rugby Football League athletes: an exploratory study.

    Get PDF
    The aim of this exploratory study was to define the Athletes Heart (AH) phenotype in Native Hawaiian & Pacific Islander (NH&PI) Rugby Football League (RFL) athletes. Specifically, (1) to describe conventional echocardiographic indices of left ventricle (LV) and right ventricle (RV) structure and function in NH&PI RFL players and matched RFL Caucasian controls (CC) and (2) to demonstrate LV and RV mechanics in these populations. Ethnicity is a contributory factor to the phenotypical expression of the AH. There are no data describing the cardiac phenotype in NH&PI athletes. Twenty-one male elite NH&PI RFL athletes were evaluated using conventional echocardiography and myocardial speckle tracking, allowing the assessment of global longitudinal strain (ε) and strain rate (SR); and basal, mid and global radial and circumferential ε and SR. Basal and apical rotation and twist were also assessed. Results were compared with age-matched Caucasian counterparts (CC; n = 21). LV mass [42 ± 9 versus 37 ± 4 g/(m2.7)], mean LV wall thickness (MWT: 9.5 ± 0.7 and 8.7 ± 0.4 mm), relative wall thickness (RWT: 0.35 ± 0.04 and 0.31 ± 0.03) and RV wall thickness (5 ± 1 and 4 ± 1 mm, all p < 0.05) were greater in NH&PI compared with CC. LV and RV cavity dimensions and standard indices of LV and RV systolic and diastolic function were similar between groups. NH&PI demonstrated reduced peak LV mid circumferential ε and early diastolic SR, as well as reduced global radial ε. There was reduced basal rotation at 25-35% systole, reduced apical rotation at 25-40% and 60-100% systole and reduced twist at 85-95% systole in NH&PI athletes. There were no differences between the two groups in RV wall mechanics. When compared to Caucasian controls, NH&PI rugby players have a greater LV mass, MWT and RWT with concomitant reductions in circumferential and twist mechanics. This data acts to prompt further research in NH&PI athletes

    Left ventricular remodeling in elite and sub-elite road cyclists.

    Get PDF
    Marked adaptation of left ventricular (LV) structure in endurance athletes is well established. However, previous investigations of functional and mechanical adaptation have been contradictory. A lack of clarity in subjects' athletic performance level may have contributed to these disparate findings. This study aimed to describe structural, functional, and mechanical characteristics of the cyclists' LV, based on clearly defined performance levels. Male elite cyclists (EC) (n = 69), sub-elite cyclists (SEC) (n = 30), and non-athletes (NA) (n = 46) were comparatively studied using conventional and speckle tracking 2D echocardiography. Dilated eccentric hypertrophy was common in EC (34.7%), but not SEC (3.3%). Chamber concentricity was higher in EC compared to SEC (7.11 ± 1.08 vs 5.85 ± 0.98 g/(mL)2/3 , P < .001). Ejection fraction (EF) was lower in EC compared to NA (57 ± 5% vs 59 ± 4%, P < .05), and reduced EF was observed in a greater proportion of EC (11.6%) compared to SEC (6.7%). Global circumferential strain (GCε) was greater in EC (-18.4 ± 2.4%) and SEC (-19.8 ± 2.7%) compared to NA (-17.2 ± 2.6%) (P < .05 and P < .001). Early diastolic filling was lower in EC compared with SEC (0.72 ± 0.14 vs 0.88 ± 0.12 cm/s, P < .001), as were septal E' (12 ± 2 vs 15 ± 2 cm/s, P < .001) and lateral E' (18 ± 4 vs 20 ± 4 cm/s, P < .05). The magnitude of LV structural adaptation was far greater in EC compared with SEC. Increased GCε may represent a compensatory mechanism to maintain stroke volume in the presence of increased chamber volume. Decreased E and E' velocities may be indicative of a considerable functional reserve in EC

    A Model for the Elasticity of Compressed Emulsions

    Full text link
    We present a new model to describe the unusual elastic properties of compressed emulsions. The response of a single droplet under compression is investigated numerically for different Wigner-Seitz cells. The response is softer than harmonic, and depends on the coordination number of the droplet. Using these results, we propose a new effective inter-droplet potential which is used to determine the elastic response of a monodisperse collection of disordered droplets as a function of volume fraction. Our results are in excellent agreement with recent experiments. This suggests that anharmonicity, together with disorder, are responsible for the quasi-linear increase of GG and Π\Pi observed at φc\varphi_c.Comment: RevTeX with psfig-included figures and a galley macr

    Improved identification of abdominal aortic aneurysm using the Kernelized Expectation Maximization algorithm

    Get PDF
    Abdominal aortic aneurysm (AAA) monitoring and risk of rupture is currently assumed to be correlated with the aneurysm diameter. Aneurysm growth, however, has been demonstrated to be unpredictable. Using PET to measure uptake of [18F]-NaF in calcified lesions of the abdominal aorta has been shown to be useful for identifying AAA and to predict its growth. The PET low spatial resolution, however, can affect the accuracy of the diagnosis. Advanced edge-preserving reconstruction algorithms can overcome this issue. The kernel method has been demonstrated to provide noise suppression while retaining emission and edge information. Nevertheless, these findings were obtained using simulations, phantoms and a limited amount of patient data. In this study, the authors aim to investigate the usefulness of the anatomically guided kernelized expectation maximization (KEM) and the hybrid KEM (HKEM) methods and to judge the statistical significance of the related improvements. Sixty-one datasets of patients with AAA and 11 from control patients were reconstructed with ordered subsets expectation maximization (OSEM), HKEM and KEM and the analysis was carried out using the target-to-blood-pool ratio, and a series of statistical tests. The results show that all algorithms have similar diagnostic power, but HKEM and KEM can significantly recover uptake of lesions and improve the accuracy of the diagnosis by up to 22% compared to OSEM. The same improvements are likely to be obtained in clinical applications based on the quantification of small lesions, like for example cancer

    Risk Factors for Severe Renal Disease in Bardet-Biedl Syndrome

    Get PDF
    Bardet-Biedl syndrome is a rare autosomal recessive, multisystem disease characterized by retinal dystrophy, renal malformation, obesity, intellectual disability, polydactyly, and hypogonadism. Nineteen disease-causing genes (BBS1-19) have been identified, of which mutations in BBS1 are most common in North America and Europe. A hallmark of the disease, renal malformation is heterogeneous and is a cause of morbidity and mortality through the development of CKD. We studied the prevalence and severity of CKD in 350 patients with Bardet-Biedl syndrome-related renal disease attending the United Kingdom national Bardet-Biedl syndrome clinics to further elucidate the phenotype and identify risk indicators of CKD. Overall, 31% of children and 42% of adults had CKD; 6% of children and 8% of adults had stage 4-5 CKD. In children, renal disease was often detected within the first year of life. Analysis of the most commonly mutated disease-associated genes revealed that, compared with two truncating mutations, two missense mutations associated with less severe CKD in adults. Moreover, compared with mutations in BBS10, mutations in BBS1 associated with less severe CKD or lack of CKD in adults. Finally, 51% of patients with available ultrasounds had structural renal abnormalities, and 35% of adults were hypertensive. The presence of structural abnormalities or antihypertensive medication also correlated statistically with stage 3b-5 CKD. This study describes the largest reported cohort of patients with renal disease in Bardet-Biedl syndrome and identifies risk factors to be considered in genetic counseling

    Seasonal variation of cardiac structure and function in the elite rugby football league athlete.

    Get PDF
    BACKGROUND: Pre-participation cardiac screening (PCS) of "Super-League" rugby football league (RFL) athletes is mandatory but may be completed at any time point. The aim of this study was to assess cardiac electrical, structural and functional variation across the competitive season. METHODS: Elite, male, RFL athletes from a single Super-League club underwent cardiac evaluation using electrocardiography (ECG), 2D echocardiography and speckle tracking echocardiography (STE) at four time points across the RFL season; (1) End pre-season (ENDPRE), (2) mid-season (MIDCOMP), (3) end-season (ENDCOMP) and (4) End off-season (ENDOFF). Training loads for each time point were also determined. One-way ANOVA with post-hoc Bonferroni were used for statistical analyses. RESULTS: Total workload undertaken by athletes was lower at both MIDCOMP and ENDCOMP compared to ENDPRE (P < 0.001). ECG patterns were normal with training-related changes that were largely consistent across assessments. Structural data did not vary across assessment points. Standard functional data was not different across assessment points but apical rotation and twist were higher at ENDPRE (9.83˚ and 16.55˚, respectively compared to all other time points (MIDCOMP, 6.13˚ and 12.62˚; ENDCOMP, 5.84˚ and 12.12˚; ENDOFF 6.60˚ and 12.35˚). CONCLUSIONS: Despite some seasonal variation in training load, the athletes' ECG and cardiac structure were stable across a competitive season. Seasonal variation in left ventricular (LV) apical rotation and twist, associated with higher training loads, should be noted in the context of PCS

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic
    • …
    corecore