204 research outputs found

    Animal welfare outcomes of professional vehicle-based shooting of peri-urban rusa deer in Australia

    Get PDF
    Context: Vehicle-based shooting has been widely used to kill deer, but the animal-welfare outcomes of this technique have not been evaluated in Australasia. Aim: To assess the animal-welfare outcomes of peri-urban deer culling by quantifying the fates of deer seen and shot at, the duration of procedures, and the number and location of bullet wounds in deer. Methods: We assessed vehicle-based night shooting of peri-urban rusa deer (Cervus timorensis) by professional contractors in eastern Australia. Shooters targeted the heads of deer using .223 RemingtonÂź rifles and 55 grain bullets. Independent veterinarians conducted ante-mortem (i.e. from the shooting vehicle) and post-mortem (i.e. inspecting the carcass) observations. The ante-mortem data were used to estimate the proportion of deer seen that were shot at, killed, wounded, and escaped. The influence of variables predicted to affect shooting outcomes was assessed. The numbers and locations of bullet wounds were recorded post-mortem. Key results: Of the 269 deer seen in 21 nights, 48% were shot at and 85% of those shot at were killed by either one (87%), two (10%) or three (3%) shots. The frequency of non-fatal wounding (i.e. escaping wounded) was 3.5% for those shot at and hit, and the median time to insensibility for the deer that were shot multiple times was 289 s. There was variation among shooters in their ability to hit a deer, and also to do so with a killing shot. The number of bullet wounds per deer ranged from 1 to 3 (mean = 1.1), with 83% of shots striking the brain and 17% striking the anterior skull, neck and jaw. Conclusions: The animal welfare outcomes we observed were comparable to those reported from other professional ground-based shooting programs for ungulates, but were poorer than those reported for professional ground-based shooting of peri-urban kangaroos. Implications: Our results suggest that one way to improve the animal welfare outcomes of vehicle-based shooting of peri-urban deer is by improving shooter training. Assessment of shooter performance should be a routine part of ground-based shooting programs

    How many to sample? Statistical guidelines for monitoring animal welfare outcomes

    Get PDF
    There is increasing scrutiny of the animal welfare impacts of all animal use activities, including agriculture, the keeping of companion animals, racing and entertainment, research and laboratory use, and wildlife management programs. A common objective of animal welfare monitoring is to quantify the frequency of adverse animal events (e.g., injuries or mortalities). The frequency of such events can be used to provide pass/fail grades for animal use activities relative to a defined threshold and to identify areas for improvement through research. A critical question in these situations is how many animals should be sampled? There are, however, few guidelines available for data collection or analysis, and consequently sample sizes can be highly variable. To address this question, we first evaluated the effect of sample size on precision and statistical power in reporting the frequency of adverse animal welfare outcomes. We next used these findings to assess the precision of published animal welfare investigations for a range of contentious animal use activities, including livestock transport, horse racing, and wildlife harvesting and capture. Finally, we evaluated the sample sizes required for comparing observed outcomes with specified standards through hypothesis testing. Our simulations revealed that the sample sizes required for reasonable levels of precision (i.e., proportional distance to the upper confidence interval limit (delta) of 300). Larger sample sizes are required for adverse events with low frequency (i.e., <5%). For comparison with a required threshold standard, even larger samples sizes are required. We present guidelines, and an online calculator, for minimum sample sizes for use in future animal welfare assessments of animal management and research programs

    Detection and characterisation of an Endogenous Betaretrovirus in Australian Wild Deer

    Get PDF
    Endogenous retroviruses (ERVs) are the remnants of past retroviral infections that once invaded the host’s germline and were vertically transmitted. ERV sequences have been reported in mammals, but their distribution and diversity in cervids are unclear. Using next-generation sequencing, we identified a nearly complete genome of an endogenous betaretrovirus in fallow deer (Dama dama). Further genomic analysis showed that this provirus, tentatively named cervid endogenous betaretrovirus 1 (CERV ÎČ1), has typical betaretroviral genome features (gag-pro-pol-env) and the betaretrovirus-specific dUTPase domain. In addition, CERV ÎČ1 pol sequences were detected by PCR in the six non-native deer species with wild populations in Australia. Phylogenetic analyses demonstrated that CERV ÎČ1 sequences from subfamily Cervinae clustered as sister taxa to ERV-like sequences in species of subfamily Muntiacinae. These findings, therefore, suggest that CERV ÎČ1 endogenisation occurred after the split of these two subfamilies (between 3.3 and 5 million years ago). Our results provide important insights into the evolution of betaretroviruses in cervids

    Bayesian modelling reveals differences in long-term trends in the harvest of native and introduced species by recreational hunters in Australia

    Get PDF
    Context: Little is known about wildlife harvesting by licensed recreational hunters in Australia, where both native and introduced species are hunted. It is important to understand harvest trends to assess sustainability for native species and implications for population control of introduced species. Aim: The aim of this study was to analyse trends in hunter participation, activity and efficiency, and wildlife harvest, including effects of climate, in Victoria, Australia, for three game species groups: introduced deer, native waterfowl (ducks) and one native grassland species, stubble quail (Coturnix pectoralis). Methods: Telephone surveys of a random sample of licenced Victorian hunters were performed annually from 2009 to 2019. Hunters were asked to quantify their hunting effort and the number of animals harvested. The respondents’ answers were analysed to estimate measures of hunter success, activity and efficiency. Bayesian modelling was applied to these data, accounting for changes over time, differences between survey periods for all licence types, and random effects for over-dispersion. The effect of climate on game bird hunter activity and harvest was estimated, as measured by the El Niño-Southern Oscillation (ENSO). Results: Over 11 years, annual deer harvest (all species) increased exponentially, at a mean annual rate of 17% (95% credible interval: 14–21%), and the number of deer hunters increased at 8% (5–11%). In contrast, for ducks and stubble quail, hunter numbers remained relatively unchanged, with no evidence of consistent change to total harvests over time, unrelated to changes in environmental conditions or regulations. The annual duck harvest was influenced by ENSO and hunting regulations. The annual stubble quail harvest exhibited ‘boom-and-bust’ dynamics, with an exceptionally large harvest immediately after a La Niña season. Conclusions: Long-term monitoring of harvest trends in south-eastern Australia revealed stark differences between introduced deer and native birds: harvest of deer increased rapidly whereas equivalent rates for game birds were either stable or declining. Seasonal effects had a strong influence on game bird harvest. Environmental and regulatory conditions were influential for harvest outcomes for ducks and stubble quail. Implications: This study filled a key knowledge gap around managing harvesting of game species, but increased scrutiny is warranted in this field

    A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia

    Get PDF
    Deer are among the world's most successful invasive mammals and can have substantial deleterious impacts on natural and agricultural ecosystems. Six species have established wild populations in Australia, and the distributions and abundances of some species are increasing. Approaches to managing wild deer in Australia are diverse and complex, with some populations managed as 'game' and others as 'pests'. Implementation of cost-effective management strategies that account for this complexity is hindered by a lack of knowledge of the nature, extent and severity of deer impacts. To clarify the knowledge base and identify research needs, we conducted a systematic review of the impacts and management of wild deer in Australia. Most wild deer are in south-eastern Australia, but bioclimatic analysis suggested that four species are well suited to the tropical and subtropical climates of northern Australia. Deer could potentially occupy most of the continent, including parts of the arid interior. The most significant impacts are likely to occur through direct effects of herbivory, with potentially cascading indirect effects on fauna and ecosystem processes. However, evidence of impacts in Australia is largely observational, and few studies have experimentally partitioned the impacts of deer from those of sympatric native and other introduced herbivores. Furthermore, there has been little rigorous testing of the efficacy of deer management in Australia, and our understanding of the deer ecology required to guide deer management is limited. We identified the following six priority research areas: (i) identifying long-term changes in plant communities caused by deer; (ii) understanding interactions with other fauna; (iii) measuring impacts on water quality; (iv) assessing economic impacts on agriculture (including as disease vectors); (v) evaluating efficacy of management for mitigating deer impacts; and (vi) quantifying changes in distribution and abundance. Addressing these knowledge gaps will assist the development and prioritisation of cost-effective management strategies and help increase stakeholder support for managing the impacts of deer on Australian ecosystems

    Probabilistic forecasts of storm sudden commencements from interplanetary shocks using machine learning

    Get PDF
    In this study we investigate the ability of several different machine learning models to provide probabilistic predictions as to whether interplanetary shocks observed upstream of the Earth at L1 will lead to immediate (Sudden Commencements, SCs) or longer lasting magnetospheric activity (Storm Sudden Commencements, SSCs). Four models are tested including linear (Logistic Regression), non‐linear (Naive Bayes and Gaussian Process) and ensemble (Random Forest) models, and are shown to provide skillful and reliable forecasts of SCs with Brier Skill Scores (BSSs) of ~ 0:3 and ROC scores > 0:8. The most powerful predictive parameter is found to be the range in the interplanetary magnetic field. The models also produce skillful forecasts of SSCs, though with less reliability than was found for SCs. The BSSs and ROC scores returned are ~0:21 and 0.82 respectively. The most important parameter for these predictions was found to be the minimum observed BZ. The simple parameterization of the shock was tested by including additional features related to magnetospheric indices and their changes during shock impact, resulting in moderate increases in reliability. Several parameters, such as velocity and density, may be able to be more accurately predicted at a longer lead time, e.g. from heliospheric imagery. When the input was limited to the velocity and density the models were found to perform well at forecasting SSCs, though with lower reliability than previously (BSSs ~ 0:16, ROC Scores ~ 0:8), Finally, the models were tested with hypothetical extreme data beyond current observations, showing dramatically different extrapolations

    Evidence for the fourth P11 resonance predicted by the constituent quark model

    Get PDF
    It is pointed out that the third of five low-lying P11 states predicted by a constituent quark model can be identified with the third of four states in a solution from a three-channel analysis by the Zagreb group. This is one of the so-called ``missing'' resonances, predicted at 1880 MeV. The fit of the Zagreb group to the pi N -> eta N data is the crucial element in finding this fourth resonance in the P11 partial wave.Comment: 8 pages, revtex; expanded acknowledgement

    Empirically-grounded development of legal ontologies: a socio-legal perspective

    Get PDF
    This paper shows the multiple relationships between empirical data and semantic content in the legal field. One of the well-known problems of ontology construction is the "knowledge acquisition bottleneck problem" pointed out by Edward Feigenbaum and others, many years ago. In the next generation of Semantic Web developments this problem has not been completely solved. It is our con-tention that an accurate description of the legal environment, and well-grounded previous sociological studies may help to face it in a more satisfactory way. This means adopting a user-centered approach for legal ontologies, in what we will call an "iterative and integrated pragmatic circle" involving legal theorists, socio-legal researchers, professional people (lawyers, magistrates, prosecutors
) and com-puter scientists. We put the example of how the ontology of IURISERVICE was built up

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society
    • 

    corecore