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Abstract

There is increasing scrutiny of the animal welfare impacts of all animal use activities, includ-

ing agriculture, the keeping of companion animals, racing and entertainment, research and

laboratory use, and wildlife management programs. A common objective of animal welfare

monitoring is to quantify the frequency of adverse animal events (e.g., injuries or mortali-

ties). The frequency of such events can be used to provide pass/fail grades for animal use

activities relative to a defined threshold and to identify areas for improvement through

research. A critical question in these situations is how many animals should be sampled?

There are, however, few guidelines available for data collection or analysis, and conse-

quently sample sizes can be highly variable. To address this question, we first evaluated the

effect of sample size on precision and statistical power in reporting the frequency of adverse

animal welfare outcomes. We next used these findings to assess the precision of published

animal welfare investigations for a range of contentious animal use activities, including live-

stock transport, horse racing, and wildlife harvesting and capture. Finally, we evaluated the

sample sizes required for comparing observed outcomes with specified standards through

hypothesis testing. Our simulations revealed that the sample sizes required for reasonable

levels of precision (i.e., proportional distance to the upper confidence interval limit (δ) of�

0.50) are greater than those that have been commonly used for animal welfare assessments

(i.e., >300). Larger sample sizes are required for adverse events with low frequency (i.e.,

<5%). For comparison with a required threshold standard, even larger samples sizes are

required. We present guidelines, and an online calculator, for minimum sample sizes for use

in future animal welfare assessments of animal management and research programs.

Introduction

There is increasing scrutiny of the animal welfare outcomes of animal use activities, including

agriculture, the keeping of companion animals, racing and entertainment, research and labo-

ratory use, and wildlife management programs [1]. Animal welfare is a young science [2] and,
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while containing philosophical elements necessitating qualitative and discussive studies, it

does not have a strong statistical underpinning relative to other life sciences [3]. This weakness

can hinder the robustness of efforts to provide regulatory oversight for aspects of animal wel-

fare that are of societal concern. Research activities have oversight from institutional commit-

tees (e.g., Animal Ethics Committees; AECs), but there is often little monitoring of outcomes

for operational activities [4]. The absence of statistical guidelines for collecting and analysing

animal welfare data has led to intractable contention surrounding efforts to monitor industries

such as sea transport ‘live export’ of livestock [5–8].

Due to the cost and inconvenience of animal-based monitoring and its resultant unpopu-

larity with operational staff, desktop approaches (e.g., expert opinion) have commonly been

used to address societal animal welfare concerns [9]. Desktop animal welfare assessments

often make the assumption that ‘best practice’ inputs are followed, as described by procedural

documents [9], leading to optimal outcomes being uniformly achieved [10]. Many authors

have understandably questioned how often these optimal outcomes are truly achieved in con-

tentious wildlife management programs. For example, a review of management techniques

applied to hyperabundant kangaroos (Macropus spp.) in Australia questioned how often kan-

garoos are rendered immediately insensible via accurate head shots [11], as described in proce-

dural documents [12, 13].

One approach to answering questions about how commonly a desirable animal welfare out-

comes occur is to use animal-based measures to quantify the frequency of adverse animal wel-

fare events [4], as is often used by AECs [14]. Adverse animal welfare events must be those that

are easily identified and whose classification is not controversial. For example, mortalities for

transported livestock [6], injuries in racing animals [15], non-fatal wounding for harvesting

wild game [16], or escapes in wildlife capture programs [17] are straightforward to report.

From an ethics perspective, quantifying the frequency of adverse events gives priority to the

animals that are likely to be worst off [18], not necessarily solely looking at the total aggregated

welfare outcome [19]. This approach has been used for decades in audits of livestock slaughter

through reporting of parameters such as the proportion of cattle that are not rendered imme-

diately insensible via stunning [20–22]. Monitoring of adverse event data is also used in veteri-

nary medicine to assess the safety and efficacy of registered therapeutic chemicals [23] and

anaesthetic procedures [24]. Reporting such data allows identification of techniques that pro-

duce favourable animal welfare outcomes when compared with those that do not and can facil-

itate the development of evidence-based ‘best practice’ guidelines [25].

Monitoring the frequency of adverse events can also be applied to regulation, with results

providing pass/fail grades for management programs relative to a threshold specified by proce-

dural documents. This approach is referred to as the use of ‘animal welfare standards’ [9, 26].

For example, for sea transport of sheep from Australia, until recently there was a requirement

for the mortality rate to be<2% [5, 27]; for slaughter of cattle in some assurance schemes,

there is a requirement that the frequency of non-immediate insensibility be<5% for captive-

bolt euthanasia [22]. However, there are no published guidelines available for the data collec-

tion necessary to quantify such parameters. Without robust statistical approaches, such impor-

tant questions can only be answered speculatively. As a consequence, sample sizes in animal

welfare audits of operational activities have been highly variable, ranging from 10 animals [28]

to>100,000 animals [6]. This variability has led to uncertainty about the reliability of the con-

clusions of these audits. For example, would an assessment failing to detect non-fatal wound-

ing in 28 of 28 animals exposed to a wildlife shooting program be sufficient to conclude that

100% of animals experience optimal outcomes [29]? On the other hand, would an assessment

detecting desirable outcomes in 27 of 28 (96%) animals be sufficient to conclude that the pro-

gram outcomes exceed an animal welfare standard of 95% [30]?

Sample size and animal welfare studies
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In this study, first, we used statistical theory to calculate the sample size required for deter-

mining the frequency of an adverse event (typical of an animal welfare study) at different levels

of precision. Second, we assessed a broad selection of published animal welfare studies to

examine the confidence intervals of the frequency parameters they reported. Third, we eluci-

dated the relationship between the number of animals sampled and the statistical ability to

determine whether an animal use activity exceeded or failed the required threshold standard

for any designated parameter. Fourth, we tested the statistical power of a variety of published

studies in order to determine whether they exceeded or failed relative to a hypothetical animal

welfare standard.

Materials and methods

Statistical precision of estimates from sample surveys

Aspects of statistical theory may be familiar to readers working in fields such as ecology, epide-

miology and animal production. However, these theoretical considerations may be less famil-

iar to animal welfare scientists. We therefore provide a brief summary of the key elements of

statistical theory related to outcome monitoring.

At the most basic level, animal welfare outcome monitoring constitutes incomplete sam-

pling of a population, because not all individuals are checked to assess their welfare outcome.

Extrapolation to the larger population is attempted from sampled data, but needs to account

for uncertainty due to the incomplete sampling. Multiple metrics can be used to express the

uncertainty in the point estimate of a quantity of interest (e.g., proportion of individuals with

an adverse outcome), including standard error (SE) and coefficient of variation (CV). Alterna-

tively, an interval estimator can be used that expressly incorporates the uncertainty into a cal-

culated estimate (Fig 1). A confidence interval estimate is one such estimate. A confidence

interval estimate can be one-sided or two-sided. For a two-sided interval, the values of the

upper and lower limits are calculated to define the range of the interval estimate [31]. For a

one-sided interval, the value of either the upper or lower limit is calculated, and the other limit

is set at the smallest or largest possible value for the parameter. A one-sided limit is arguably

more appropriate in animal welfare settings in which operational protocols stipulate that the

probability of an adverse event must be less than a threshold value.

The range of a confidence interval estimate is affected by two things: the desired confidence

level and the uncertainty in the quantity of interest (Fig 1). Uncertainty is determined by both

the degree of variation in the observations and the sample size. The confidence level is a theo-

retical property of the interval estimator being used, and it relates to the frequency with which

the interval would encompass the unknown true value of the quantity of interest for the popu-

lation if it were possible to repeatedly resample the population [31]. A higher level of confi-

dence leads to a wider interval (Fig 1), as a wider interval is more likely to encompass the true

(but unknown) value. We stress that the confidence level is a theoretical property of the

method used to calculate an interval estimate, and defines the type of interval estimate being

calculated.

For a given set of data, it is unknowable whether the interval estimate encompasses the true

value or not, and one should not attempt to draw conclusions in this regard (although this is

commonly done). The interval is simply a particular type of estimate of the quantity of interest,

expressed as a range of values rather than a single value (i.e., a point estimate). Typically, it is

desirable to use a high confidence level, and 95% is commonly specified [32].

In some applications, the precision of an estimate may be expressed as the ‘margin of error’

[32]. The margin of error is a statistic expressing the amount of random sampling error in a

study’s results, and is half of the total range of a symmetric two-sided confidence interval, that

Sample size and animal welfare studies
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is, the distance either side of the point estimate to the upper and lower limits of the confidence

interval. For example, if the estimated frequency of an individual animal being in a capture

program is 30% with a confidence interval estimate of 27–33%, the margin of error is ±3%.

Sample size calculation for estimation of frequency

We assumed that N animals were involved in an operational activity (day-to-day use of ani-

mals, as opposed to research), of which n were sampled and assessed for an adverse welfare

outcome. The case being considered here was for situations in which n was small relative to N,

such that a small percentage of the population of interest was sampled (e.g., <10%). If p is the

probability of an individual suffering an adverse outcome, or the frequency of an adverse out-

come in the population, then the number of adverse outcomes in an operational activity (x)

would be expected to follow a binomial distribution. A variety of methods can be used to

obtain confidence interval estimates for p. Some methods are based on using the properties of

the normal distribution to approximate a binomial distribution, which works well provided n

Fig 1. Examples of one-sided confidence interval estimates of frequency, with a point estimate of 0.04. Confidence levels of 80% (black), 90% (green), 95% (red)

and 99% (blue), and sample sizes (n) of 50 and 400 are presented to illustrate the effect on the resulting interval estimate. The distance from the point estimate to the

upper limit is indicated (d).

https://doi.org/10.1371/journal.pone.0211417.g001
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is large relative to p, and p is not close to 0 or 1 [33]. Alternatively, so-called ‘exact methods’

can be used that are based on the properties of the binomial distribution; these methods are

more accurate when n is smaller or p is close to 0 or 1, as could be expected when estimating

the probability of an animal experiencing an adverse event, which would usually be low [31].

One such ‘exact method’ is the Clopper–Pearson method [34], which can be used to esti-

mate either a one-sided or two-sided confidence interval. Confidence intervals estimated

using the Clopper-Pearson method always has coverage probability of at least 1 –α for every

possible value of p. Some statisticians consider the Clopper-Pearson method to be overly con-

servative, with the actual coverage probability much larger than the nominal confidence inter-

val unless n is large e.g., [35]. Numerous alternative methods have been recommended,

including the Wilson method (‘score confidence interval’) [35]. Following an extensive com-

parison of the Clopper–Pearson exact and the Wilson methods (S1 Appendix) we chose to use

the former here, but we emphasise that the Clopper–Pearson exact is a conservative method

and that multiple other methods could be used e.g., [35, 36].

In the following development, we assume that p will be near 0, but note that the same logic

applies when p is close to 1, because one can simply reverse the estimation problem from esti-

mating the probability of an animal having an adverse outcome (p), to the probability of an ani-

mal not having an adverse outcome (p� = 1 –p). Hence, when p is close to 1, p� will be close to 0.

Lower and upper limits for p� then become the upper and lower bounds, respectively, for p.

For animal welfare outcome monitoring, the question of interest will primarily be what is

the upper bound of the interval estimate. Hence, one-sided intervals are appropriate. The

upper bound (p̂U) can be estimated as:

p̂U ¼ p̂þ d; ð1Þ

where p̂is the estimated probability (= x/n) and d is the distance to the upper bound. For the

purpose of sample size determination, it has been shown that the expected distance to the

upper bound (E(d)) of a (1 –α) × 100% confidence interval estimate can be approximated [37]

as:

E dð Þ ¼ za

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 � pÞ

n

r

þ
z2
a
ð1 � 2pÞ þ 2 � p

3n

where zα is the value that equates to the (1 –α) percentile of the standard normal distribution,

for example, zα = 1.282 for a one-sided 90% confidence interval estimate, and zα = 1.645 for a

one-sided 95% confidence interval estimate.

Eq (2) can be rearranged to determine the sample size required such that the upper limit of

a (1 –α) × 100% confidence interval estimate is distance d from the anticipated probability of

the adverse outcome (S2 Appendix). This allows n to be determined for specific values of p, α
and d. However, d is the absolute distance between the value of the upper limit and p, and the

connotations of a specific value for d differ depending on the value of p. For example, when

p = 0.10, a distance of 0.05 from the upper limit suggests a relatively precise estimate, whereas

a distance of 0.05 suggests a highly imprecise estimate if p = 0.01. It could therefore be more

useful to specify the required distance relative to p; for example, what sample size is required

such that the upper limit is expected to be half as large as the probability of the adverse out-

come? That is, let d = δp, where δ is the proportional distance to the upper limit.

Assessment of confidence intervals in past animal welfare studies

We assessed the precision of six published animal welfare studies that reported the frequency

of adverse events in operational activities (Table 1). We also assessed the precision of six

Sample size and animal welfare studies
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published animal welfare studies that reported the frequency of adverse events in research tri-

als (Table 2). These studies were subjectively selected to represent a broad range of animal use

activities, countries, species, and sample sizes. The datasets estimated the following frequency

parameters: (i) mortality, (ii) injury, (iii) non-immediate insensibility, (iv) hyperthermia, and

(v) escape. Exact one-sided confidence interval estimates were calculated for the frequencies of

each of these adverse outcomes. Confidence levels of 80%, 90%, 95% and 99% were used to

illustrate the methods, although in practice we recommend only one confidence level be used

(and defined a priori).

Hypothesis tests

An alternative to estimating the magnitude of the adverse outcome probability with a specified

precision is to conduct a statistical hypothesis test for whether the probability is less than a

specified value of interest (pS). That is, define the null hypothesis (H0) and alternative hypothe-

sis (HA) as:

H0 : p � pS; and

HA : p < pS

The amount of evidence against the null hypothesis can then be evaluated using an exact

(one-sided) test for a binomial proportion [47]. Note that the hypotheses are defined such that

the ‘burden of proof’ is on demonstrating that the frequency of an adverse outcome is less than

the specified value.

In a hypothesis-testing framework, there are two types of ‘errors’ that can be made from the

testing procedure: (1) rejecting H0 when H0 is true; and (2) accepting H0 when HA is true.

These are termed Type I and Type II errors, respectively. The probability of a Type I error

Table 1. Selected published studies reporting the frequency of adverse animal welfare events from operational activities (not research trials).

Animal species Operational activity Adverse event type Number of adverse events n (sample size) Source

Domestic horse (Equus caballus) Racing Injury 2,358 222,993 [15]

Badger (Meles meles) Trapping Injury 3,015 18,596 [38]

Domestic cattle (Bos taurus) Dairy calf transport Weak or recumbent animals 27 7,169 [39]

White-tailed deer (Odocoileus virginianus) Helicopter net gunning Injury 281 3,350 [40]

Impala (Aepyceros melampus) Night shooting Non-immediate insensibility 54 856 [41]

Caribou (Rangifer tarandus) Helicopter darting Mortality 12 296 [42]

Animal species, point estimates of frequency, sample sizes, and citations are listed. Studies are listed in descending order of sample size.

https://doi.org/10.1371/journal.pone.0211417.t001

Table 2. Selected published studies reporting the frequency of adverse animal welfare events from research trials (not operational activities).

Animal species Research activity Adverse event type Number of adverse events n (sample size) Source

New Zealand fur seal (Arctocephalus forsteri) Ground darting Escape 16 120 [17]

White-tailed deer (Odocoileus virginianus) Ground darting Escape 11 23 [43]

Vicuña (Vicugna vicugna) Mustering and transport Laceration injury 2 19 [44]

Wild horse (Equus caballus) Helicopter darting Hyperthermia 2 11 [28]

Domestic chicken (Gallus gallus domesticus) Captive bolt Non-immediate insensibility 0 10 [45]

Green sea turtle (Chelonia mydas) Euthanasia Non-immediate insensibility 0 2 [46]

Animal species, point estimates of frequency, sample sizes and citations are listed. Studies are listed in descending order of sample size.

https://doi.org/10.1371/journal.pone.0211417.t002
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(also known as the α-level) is controlled by the point at which the p-value from a testing proce-

dure is declared ‘significant’ and H0 is rejected. The statistical ‘power’ of the testing procedure

is the probability that H0 is rejected when HA is true, that is, the opposite of the probability of a

Type II error, which is affected by the α-level that is used. In other words, a test’s power is

greater when a higher α-level is used, but the cost is an increased chance of a Type I error. Ide-

ally, a study should be designed and a hypothesis test used such that there is a low probability

of a Type I error and relatively high power (i.e.,�80%).

The power of the exact test, assuming a binomial distribution, can be calculated for a given

α-level and sample size, with a true adverse outcome probability, pT, and a specified probability

of interest, pS. However, because of the discrete nature of the binomial distribution, it might

not be possible to design a study such that it will have the exact α-level required. Therefore,

often a study will need to be designed so that the actual α-level for the exact test will be less

than the required value. It is also possible to reverse the design problem: to determine the sam-

ple size required to achieve a desired power for a given α-level (and values for pT and pS), by

iteratively testing different sample sizes until a value is found that satisfies the specified design

criteria.

To conduct the hypothesis test, a value for pS (an animal welfare standard) must be speci-

fied. This value could be defined as part of procedural documents for that activity, and could

involve regulatory and ethical considerations [26]. For example, it could be required that the

frequency of mortality in a livestock transport operation be�2% [27], that is pS = 0.02. Alter-

natively, pS could be defined relative to the assumed value for the true probability of an adverse

outcome (similar to defining the upper limit of the one-sided confidence interval above). For

example, it could be required that if the mortality probability is thought to be 0.02 (pT), then

there needs to be evidence that the probability is no greater than 50% above this value, that is,

pS = pT(1 + τ) = 0.02(1 + 0.5) = 0.03, where τ is the desired scaling factor to define the specified

hypothesised value.

Hypothesis testing for published animal welfare studies

Sample sizes for the 10 studies ranged from 11–194,216 (Table 3). We imposed a pass/fail

threshold standard for the frequency of the adverse event in question, as proposed by the

author of the study or as applied in similar studies (e.g., a non-immediate insensibility thresh-

old standard of 0.05 for captive bolt studies) [22]. We applied a hypothesis-testing approach

using an exact test for a binomial proportion.

Results and discussion

Sample size calculation for estimation of frequency

Tables 4 and 5 indicate the sample sizes required for the case in which the true probability of

an adverse outcome is 0.05 and 0.01, respectively.

Panels a–d in Fig 2 represent the required sample size for different combinations of the pro-

portional distance to the upper limit and the anticipated probability for exact one-sided 80%,

90%, 95% and 99% confidence interval estimates. The sample size is given up to a maximum of

10,240; larger sample sizes are required for the grey-coloured zone. The required sample size

increases in order to obtain a more precise confidence interval estimate (i.e., as δ decreases),

and also when the probability of an adverse outcome decreases. The sample size also increases

when a higher level of confidence for the confidence interval estimate is specified (Fig 2D).

For a given probability of an adverse event, larger sample sizes are required at smaller pro-

portional distances and higher confidence levels. Large samples sizes are required at very low

probabilities (<0.02 or 2%). Grey shading indicates sample sizes>10,240.

Sample size and animal welfare studies
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Our calculations can be used to determine the number of animals that need to be sampled

in order to estimate the proportion of adverse animal events with a desired level of precision.

An online calculator is provided to enable readers to do this (S2 Appendix).

Assessment of confidence intervals in published animal welfare studies

Details for published studies selected are shown in Table 1 (operational activities) and Table 2

(research trials). Confidence intervals for the frequency of adverse animal welfare events are

shown in Fig 3 (operational activities) and Fig 4 (research trials). It is evident that the confi-

dence intervals for research trials that used relatively small sample sizes (<100; Fig 4) were

much larger when compared with those obtained from monitoring of operational activities

that used larger sample sizes (>1000; Fig 3). Indeed, with small sample sizes in research trials,

confidence limit intervals can be larger than point estimates of frequency when they are in the

range of 0.1–0.2 (Fig 4). The smallest sample sizes in Fig 4 (n = 2 and n = 10) demonstrate that,

even if adverse events are not observed, their probability of occurring could still be consider-

able when the sample size is small.

Table 3. The frequency of given adverse events (pADV) as assessed in 10 published studies of operational animal use activities, and the p-values from an exact

hypothesis–testing procedure using the alternative hypothesis HA: pADV< pS.

Animal species Operational activity Adverse event type Source xADV nADV pADV pS p-value

Domestic cattle (Bos taurus) Ship transport Mortality [6] 742 194,216 0.0038 0.01 0.000

Domestic sheep (Ovis aries) Ship transport Mortality [48] 167 9,540 0.018 0.02 0.042

Moose (Alces alces) Helicopter darting Mortality [49] 20 2,816 0.0071 0.02 0.000

Domestic cattle (Bos taurus) Captive bolt stunning Non-immediate insensibility [21] 31 304 0.10 0.05 1.000

Gray wolf (Canis lupus) Helicopter darting Mortality [49] 3 89 0.034 0.02 0.896

Western grey kangaroo (Macropus fuliginosus) Captive bolt euthanasia Non-immediate insensibility [30] 1 28 0.036 0.05 0.588

Eastern grey kangaroo (Macropus giganteus) Captive bolt euthanasia Non-immediate insensibility [50] 8 21 0.38 0.05 1.000

Brushtail possum (Trichosurus vulpecula) Kill trapping Sensible after 3 minutes [51] 1 19 0.053 0.2 0.083

Brushtail possum Kill trapping Sensible after 3 minutes [51] 1 15 0.067 0.2 0.167

Brushtail possum Kill trapping Sensible after 3 minutes [51] 4 11 0.36 0.2 0.950

The number of animals assessed as experiencing adverse events (xADV) and the total number sampled (nADV) in each study, are given.

https://doi.org/10.1371/journal.pone.0211417.t003

Table 4. Sample size required in order to obtain an expected upper limit of a one-sided exact confidence interval

estimate equal to the given values, for a range of confidence levels, assuming the true probability of an adverse

outcome = 0.05 (i.e., 5%).

δ Upper limit Level of confidence

80% 90% 95% 99%

0.05 5.25% 6,054 13,381 21,716 42,930

0.10 5.50% 1,674 3,563 5,711 11,174

0.15 5.75% 812 1,678 2,661 5,159

0.20 6.00% 494 996 1,564 3,009

0.25 6.25% 340 670 1,044 1,993

0.30 6.50% 252 488 754 1,430

0.35 6.75% 197 374 575 1,084

0.40 7.00% 159 299 456 855

0.45 7.25% 132 246 373 696

0.50 7.50% 113 207 312 579

The expected proportional distance to the upper limit (δ) and the corresponding expected upper limit are given.

https://doi.org/10.1371/journal.pone.0211417.t004

Sample size and animal welfare studies
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More generally, our results have two important implications. First, most animal welfare

studies reporting frequency data have not used sample sizes large enough to achieve desirable

precision. For example, the study of Hampton and Forsyth [52] attempted to quantify the fre-

quency of non-immediate insensibility in kangaroo shooting and reported a frequency of 0.02

(i.e., 2%) from a sample of 134 animals. According to our results, the minimum sample size

should have been ~640 to achieve the minimum levels of precision we considered necessary.

The second most important finding of this analysis is that many more animals need to be sam-

pled if the frequency of the adverse event is low (~1%), as is typical in long-running opera-

tional activities for which procedures have previously been refined, when compared with more

recently developed operational activities, for which the frequency of adverse events is likely to

be much higher (often >10%) [28, 53]

Hypothesis tests

Tables 6 and 7 show the sample sizes required for a range of Type I error rates when the true

probability of an adverse outcome is 0.05 and 0.01, respectively.

Tables 6 and 7 indicate the sample sizes required in order for a study to have 80% power to

detect that the observed probability is less than pS for a range of Type I error rates when the

true probability of an adverse outcome is 0.05 and 0.01, respectively. Significance is declared if

the p-value is less than the Type I error rate. An online calculator was developed to allow read-

ers to determine sample sizes for their own hypothesis tests using the Clopper–Pearson

method (S2 Appendix).

The plots in Fig 5A–5D represent the sample sizes required in order to estimate, with 80%

power for the stated Type I error rate, that the observed probability is less than pS for a range

of Type I error rates. In this instance, the contour lines are not smooth because of the discrete

nature of the binomial distribution. There was a similar pattern in the sample size required for

hypothesis testing, as was observed for confidence interval estimation (Fig 5). The required

sample size increases when the hypothesised value of interest is closer to the true probability of

an adverse outcome (i.e., as τ decreases), and when the probability of an adverse outcome is

smaller. The sample size also increases as the Type I error rate (i.e., the α-level, or the p-value

at which the H0 would be rejected), decreases (Fig 5).

Table 5. Sample size required in order to obtain an expected upper limit of a one-sided exact confidence interval estimate equal to the given values, for a range of

confidence levels, assuming the true probability of an adverse outcome = 0.01 (i.e., 1%).

δ Upper limit Level of confidence

80% 90% 95% 99%

0.05 1.05% 31,528 69,755 113,244 223,931

0.10 1.10% 8,710 18,582 29,799 58,339

0.15 1.15% 4,226 8,754 13,891 26,957

0.20 1.20% 2,570 5,196 8,171 15,732

0.25 1.25% 1,766 3,496 5,454 10,427

0.30 1.30% 1,308 2,544 3,941 7,487

0.35 1.35% 1,020 1,953 3,006 5,678

0.40 1.40% 825 1,559 2,385 4,482

0.45 1.45% 687 1,281 1,950 3,647

0.50 1.50% 584 1,077 1,632 3,038

The expected proportional distance to the upper limit (δ, as in Fig 2) and the corresponding expected upper limit are given.

https://doi.org/10.1371/journal.pone.0211417.t005
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Assessment of published hypothesis tests

The p-values shown in Table 3 reveal that not all studies produced significant results (i.e., they

did not pass the threshold) despite some point estimates of adverse event frequency being

below the threshold level. For example, in the captive bolt study of Hampton [30], the reported

point estimate (0.04) was less than the threshold standard (0.05), but the statistical power was

too low to provide a statistically significant comparison with the animal welfare standard (p-

value 0.588) due to the small sample size (n = 28).

Even for relatively well-developed animal welfare fields such as slaughter of livestock, the issue

of sample size has received little attention. For example, animal-based data derived from abattoir

auditing is often compared with a threshold of 95% effective stunning [22, 54, 55], equivalent to a

frequency of non-immediate insensibility of 0.05, requiring the sample sizes shown in Table 6.

However, reported sample sizes from such studies often fail to reach the minimum number we

calculated for this purpose (299) [21, 30], even with relatively high error rates (20%) and scaling

factors (0.5; Table 6). We encourage future animal welfare monitoring studies to heed the lessons

Fig 2. Heat maps illustrating the relationship between the probability of an adverse event (x-axis), proportional distance to desired upper limit (δ; y-axis) and required

sample size (yellow-grey gradient) for different required confidence levels (80–99%; a–d).

https://doi.org/10.1371/journal.pone.0211417.g002
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demonstrated in the examples in Table 3 and to provide the resources needed in order to sample

enough animals so as to produce statistically robust results. Providing adequate resources is likely

to be particularly important when there is public scrutiny of an animal welfare assessment, consid-

ering the potential cost of a false positive result. In this context, a false positive result would take

the form of a sample indicating that adverse frequency exceeded a threshold, when the true fre-

quency in the population did not. In a contentious field, such as livestock transport [5, 8], the pub-

lic cost of such a false positive result could be considerable.

Pilot studies and research trials

For previously untested research or animal management techniques, research trials (pilot stud-

ies or validation studies) are typically advised or required before approval is given for opera-

tional use [9]. The three Rs approach to minimising animal welfare impacts in research

indicates that the number of animals affected should be minimised wherever possible [56, 57].

Fig 3. One-sided confidence interval estimates for adverse event frequency estimates from six published animal welfare studies of operational (not research)

activities. Point estimates are shown (grey dots), as are the following confidence intervals: 80% (grey), 90% (green), 95% (blue) and 99% (red). For those studies that

used sample sizes<1000, the confidence intervals are relatively wide for estimating frequencies, whereas for those that used sample sizes>1000 the confidence

intervals are relatively narrow. For study details, see Table 1.

https://doi.org/10.1371/journal.pone.0211417.g003
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This logically leads to a compromise between statistical rigour (maximising the sample sizes in

order to create greater confidence) and animal impacts (minimising the numbers of animals

affected) for trials of novel animal manipulation techniques [58]. Hence, small sample sizes

must be used according to the precautionary principle, and tolerance levels must be high in

order for outcome data to exceed specified thresholds [59]. For this reason, many pilot studies

use small sample sizes (e.g., ~10 animals) and often do not report confidence intervals for fre-

quency data [29, 30, 50]. For example, in New Zealand, lethal traps for carnivorous and omniv-

orous mammals are required to pass animal welfare threshold tests designed from guidelines

produced by ISO (the International Organization for Standardization) [58]. These specify that

90% confidence is required that insensibility occurs within 3 minutes in >70% of test animals

[59]. Sample sizes used are typically 10–19 animals (Table 3). We suggest that in this context,

smaller sample sizes could be used by allowing high tolerance.

Some research trials involve rare wildlife species that are of conservation concern. For such

species (e.g., Amur tigers (Panthera tigris altaica) [60] and Tasmanian devils (Sarcophilus

Fig 4. One-sided confidence interval estimates for adverse animal welfare event frequency estimates from six published research trials. Point estimates are

shown (grey dots), as are the following confidence intervals: 80% (grey), 90% (green), 95% (blue) and 99% (red). It is evident that for studies that used small sample

sizes, the confidence intervals are wide. For study details, see Table 2.

https://doi.org/10.1371/journal.pone.0211417.g004
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harrisii) [61]), attaining large sample sizes may be impossible. We emphasise that our guide-

lines in this study are primarily designed for monitoring of operational activities, allowing

large sample sizes, rather than research programs or pilot studies of new technologies [9]. In

these situations, it would be worth considering using alternative methods for estimating sam-

ple size requirements e.g., [34, 36].

Recommendations for designing welfare monitoring programs

The designers of animal welfare monitoring programs should use the guidelines presented

here to ensure that the desired level of precision is achieved. For activities that demonstrate a

relatively high frequency of adverse events (e.g., 0.12 [12%] non-fatal wounding for amateur

shooting of European rabbits (Oryctolagus cuniculus)) [16], relatively low sample sizes can be

used. However, for techniques that achieve a relatively low frequency of adverse events (e.g.,

0.01 or 1% mortalities for helicopter darting of moose (Alces alces) [49], or pole syringe capture

of kangaroos [62]), much higher sample sizes must be used.

Table 6. Sample size required in order to obtain 80% power to detect that the probability of an adverse outcome is less than pS, for a range of Type I error rates (α),

assuming that the true probability of an adverse outcome = 0.05 (i.e., 5%).

τ pS Type I error rate (α)

20% 10% 5% 1%

0.05 5.25% >10,240 >10,240 >10,240 >10,240

0.10 5.50% 5,803 9,302 >10,240 >10,240

0.15 5.75% 2,601 4,205 5,708 9,306

0.20 6.00% 1,540 2,441 3,330 5,319

0.25 6.25% 1,009 1,580 2,208 3,508

0.30 6.50% 709 1,140 1,541 2,501

0.35 6.75% 540 905 1,160 1,868

0.40 7.00% 429 670 930 1,450

0.45 7.25% 339 540 728 1,181

0.50 7.50% 299 448 598 1,004

The scaling factor to the specified value (τ, as in Fig 3), and the corresponding specified value (pS), are given.

https://doi.org/10.1371/journal.pone.0211417.t006

Table 7. Sample size required in order to obtain 80% power to detect that the probability of an adverse outcome is less than pS, for a range of Type I error rates (α),

assuming that the true probability of an adverse outcome = 0.01 (i.e., 1%).

τ ps Type I error rate (α)

20% 10% 5% 1%

0.05 1.05% >10,240 >10,240 >10,240 >10,240

0.10 1.10% >10,240 >10,240 >10,240 >10,240

0.15 1.15% >10,240 >10,240 >10,240 >10,240

0.20 1.20% 7,804 >10,240 >10,240 >10,240

0.25 1.25% 5,309 8,097 >10,240 >10,240

0.30 1.30% 3,802 5,804 7,990 >10,240

0.35 1.35% 2,791 4,707 5,994 9,804

0.40 1.40% 2,307 3,602 4,911 7,616

0.45 1.45% 2,004 2,792 3,818 6,417

0.50 1.50% 1,428 2,402 3,315 5,212

The scaling factor to the specified value (τ, as in Fig 3), and the corresponding specified value (pS), are given.

https://doi.org/10.1371/journal.pone.0211417.t007
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Conclusions

The sample sizes used to estimate the frequency of adverse events in animal welfare studies

have been high variable. The desired level of precision for the outcome(s) of interest should be

reported in all publications, along with the required sample size(s). The guidelines presented

here should be used to determine the number of animals to be sampled in order to estimate

the proportion of adverse animal events with a desired level of precision.
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Fig 5. Heat maps illustrating the relationship between the probability of an adverse event (x-axis), the scaling factor to specified value (y-axis), and the required

sample size (yellow-grey gradient) for different Type I error rates (1–20%; a–d). For a given probability of an adverse event, larger sample sizes are required with low

Type I error rates and at low scaling factors. The sample size is given up to a maximum of 10,240; larger sample sizes are required for the grey-coloured zone.
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