236 research outputs found

    Electron probe microanalysis of ion exchange of selected elements between dentine and adhesive restorative materials

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Background: There have been numerous attempts to demonstrate the phenomenon of ion exchange between auto cure glass ionomer cements (GICs) and dentine. The purpose of this study was to employ an electron probe microanalysis (EPMA) technique to examine the interchange of elements between non-demineralized dentine and two types of restorative material, auto cure GICs and a resin composite. Methods: Restorations of auto cure GICs (Riva Fast, Fuji IX Fast, Ketac Molar Quick and Fuji VII) and a bonded composite resin were placed in each of 10 recently extracted human third molar teeth. After two weeks the restorations were sectioned and prepared for EPMA. Percentage weights of calcium, phosphorus aluminum, strontium and fluoride were calculated in the restorations 200μm from the restorative interface and 200μm into the dentine at 5μm intervals. Results: There was evidence of calcium and phosphorus in all five auto cure GICs to a depth of 50μm. Aluminum and strontium ions were also present in dentine except subjacent to Ketac Molar restorations. There was evidence of element transfer into composite resin and resin-bonded dentine. Conclusions: The findings of this paper support the concept of ion exchange as a bonding mechanism between auto cure GIC and dentine. Element penetration into tooth structure and GIC exceeded beyond the “ion exchange layer” observed in scanning electron microscopy studies. Penetration of calcium and phosphorus into composite resin from dentine likely occurred as a result of the self-etching process dissolving calcium and phosphorus and incorporating these elements into the hybrid layer. The presence of Al and Sr ions in dentine were likely to be associated with resin tags extending into the dentine.GM Knight, JM McIntyre, GG Craig and Mulyan

    Enhancement of fluoride release from glass ionomer cement following a coating of silver fluoride

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.BACKGROUND: This study investigated the extent to which a coating of 10% silver fluoride (AgF) on discs of glass jonomer cements (GIGs) would enhance the release of fluoride ion into eluting solutions at varying pH. MATERIALS AND METHODS: Forty discs each of Fuji LX, Fuji VII and of Vitrebond were prepared in a plastic mould. Twenty discs of each material were coated for 30 seconds with a 10% solution of AgF. Five discs each of coated and uncoated material were placed individually in 4m1 of differing eluant solutions. The eluant solutions comprised deionized distilled water (DDW) and three separate acetate buffered solutions at pH 7, pH 5 and pH 3. After 30 minutes the discs were removed and placed in five vials containing 4m1 of the various solutions for a further 30 minutes. This was repeated for further intervals of time up to 216 hours, and all eluant solutions were stored. Fluoride concentrations in the eluant solutions were estimated using a fluoride specific electrode, with TISAB IV as a metal ion complexing and ionic concentration adjustment agent. Cumulative fluoride release patterns were determined from the incremental data. RESULTS: The coating of AgF greatly enhanced the level of fluoride ion release from all materials tested. Of the uncoated samples, Vitrehond released the greater concentrations of fluoride ion, followed by Fuji VII. However, cumulative levels of fluoride released from coated samples of the GICs almost matched those from coated Vitrebond. CONCLUSIONS: It was concluded that a coating of 10% AgF on GICs and a resin modified GIC greatly enhanced the concentration of fluoride released from these materials. This finding might be applied to improving protection against recurrent caries, particularly in high caries risk patients, and in the atraumatic restorative technique (ART) of restoration placement

    Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements.

    Get PDF
    OBJECTIVE: The aim of this study was to determine whether there is a correlation between acid erosion and fluoride release of conventional glass ionomer cements. METHODS: Ten specimens for each material were prepared for fluoride release tests and five for acid erosion tests separately. After placed in pH cycling solution, concentration of fluoride was measured by a fluoride-ion selective electrode each day for 15 days. For the acid erosion test, specimens were immersed in a lactic acid solution and their depth measured with a spring-loaded dial gauge. The data were submitted to 3-way ANOVA, followed by Tukey's test (p0.05). The highest acid erosion values were registered for Magic Glass, Ion Z, VitroFil and Maxxion R, which exceeded the maximum stipulated by the relevant ISO test (ISO 9917-1). A positive linear correlation (r2=0.4886) was found for both properties, i.e., higher fluoride release is related to higher acid erosion. SIGNIFICANCE: Acid erosion and fluoride release are related properties of GICs, though factors such as pH and P/L ratio lead to differences between actual values for individual brands of these materials

    Fluoride content and recharge ability of five glassionomer dental materials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship between fluoride content and fluoride release for glass-ionomer cements is not well understood. The aim of this laboratory study was: to determine the fluoride concentrations at the surfaces of glass-ionomer materials with respect to different storage media and different pH environments; to examine the recharge ability of the materials after NaF immersion; and to assess the morphological changes at the material surfaces using scanning electron microscope and energy dispersive spectroscopic techniques (SEM/EDS).</p> <p>Methods</p> <p>Five glass-ionomer materials, Fuji Triage (FT), Fuji II LC (FII), Fuji VIII (FVIII), Fuji IX GP (FIX), and Ketac N100 (KN), were analyzed in this study. Resin-based fluoride releasing material Helioseal F (HSF) was used as a comparison material. The sample consisted of 120 cured cement disks (n = 20 disks of each tested material, 10 × 1.5 mm). Five disks of each material were stored in 4 different storage media (I- saline, II- acidic solution ph = 2.5, III- acid solution ph = 5.5, IV- NaF solution (c = 500/106). After 7 days, two disks of each material were transferred from media I, II and III to the NaF solution for 3 min. EDS analysis was conducted in 3 randomly selected spots of each experimental disk. SEM was used to determine morphological characteristics of the material surface. Differences between the experimental groups have been analyzed using Student's t-test with the level of significance set at p < 0.001.</p> <p>Results</p> <p>FT showed the highest fluoride content at the surface of the material. The lowest amounts of fluoride ions were detected at the surfaces of the FT disks stored at low pH environments, and this difference was statistically significant (p < 0.001). Glass-ionomers showed significantly higher fluoride concentrations when compared to the HSF (p < 0.001). After immersion in the NaF solution, fluoride concentrations at the surfaces of the disks increased when compared with previous storage media (FT>FVIII>KN>FII>FIX). SEM analysis of the surface morphology revealed numerous voids, cracks and microporosities in all experimental groups, except for KN and HSF. More homogenous material structure with more discrete cracks was observed in samples stored at neutral pH environment, compared to disks stored in acidic solutions.</p> <p>Conclusion</p> <p>The tested materials could be considered as promising dental materials with potential prophylactic characteristics due to their relatively high fluoride content, but also the ability to extensively reabsorb fluoride ions, especially in acidic environments.</p

    Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    Get PDF
    Static magnetic field (SMF) therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to:(i) summarize SMF research conducted in humans; (ii) critically evaluate reporting quality of SMF dosages and treatment parameters and (iii) propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61%) of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial

    Cheek Tooth Morphology and Ancient Mitochondrial DNA of Late Pleistocene Horses from the Western Interior of North America: Implications for the Taxonomy of North American Late Pleistocene Equus

    Get PDF
    Horses were a dominant component of North American Pleistocene land mammal communities and their remains are well represented in the fossil record. Despite the abundant material available for study, there is still considerable disagreement over the number of species of Equus that inhabited the different regions of the continent and on their taxonomic nomenclature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late Pleistocene Equus specimens from the Western Interior of North America, with the objective of clarifying the species that lived in this region prior to the end-Pleistocene extinction. Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a non-caballine (E. conversidens) species were identified from different localities across most of the Western Interior. A second non-caballine species (E. cedralensis) was recognized from southern localities based exclusively on the morphological analyses of the cheek teeth. Notably the separation into caballine and non-caballine species was observed in the Bayesian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analyses of the upper and lower premolars. Teeth morphologically identified as E. conversidens that yielded ancient mtDNA fall within the New World stilt-legged clade recognized in previous studies and this is the name we apply to this group. Geographic variation in morphology in the caballine species is indicated by statistically different occlusal enamel patterns in the specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other geographic regions. Whether this represents ecomorphological variation and/or a certain degree of geographic and genetic isolation of these Arctic populations requires further study

    Chondroitin sulfates and their binding molecules in the central nervous system

    Get PDF
    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases
    corecore