467 research outputs found

    A closed-form equation for capillary pressure in porous media for all wettabilities

    Get PDF
    A saturation–capillary pressure relationship is proposed that is applicable for all wettabilities, including mixed-wet and oil-wet or hydrophobic media. This formulation is more flexible than existing correlations that only match water-wet data, while also allowing saturation to be written as a closed-form function of capillary pressure: we can determine capillary pressure explicitly from saturation, and vice versa. We propose Pc=A+Btan(π2−πSCe)for0≤Se≤1, where Se is the normalized saturation. A indicates the wettability: A>0 is a water-wet medium, A<0 is hydrophobic while small A suggests mixed wettability. B represents the average curvature and pore-size distribution which can be much lower in mixed-wet compared to water-wet media with the same pore structure if the menisci are approximately minimal surfaces. C is an exponent that controls the inflection point in the capillary pressure and the asymptotic behaviour near end points. We match the model accurately to 29 datasets in the literature for water-wet, mixed-wet and hydrophobic media, including rocks, soils, bead and sand packs and fibrous materials with over four orders of magnitude difference in permeability and porosities from 20% to nearly 90%. We apply Leverett J-function scaling to make the expression for capillary pressure dimensionless and discuss the behaviour of analytical solutions for spontaneous imbibition

    Deep learning features encode interpretable morphologies within histological images.

    Get PDF
    Convolutional neural networks (CNNs) are revolutionizing digital pathology by enabling machine learning-based classification of a variety of phenotypes from hematoxylin and eosin (H&E) whole slide images (WSIs), but the interpretation of CNNs remains difficult. Most studies have considered interpretability in a post hoc fashion, e.g. by presenting example regions with strongly predicted class labels. However, such an approach does not explain the biological features that contribute to correct predictions. To address this problem, here we investigate the interpretability of H&E-derived CNN features (the feature weights in the final layer of a transfer-learning-based architecture). While many studies have incorporated CNN features into predictive models, there has been little empirical study of their properties. We show such features can be construed as abstract morphological genes ( mones ) with strong independent associations to biological phenotypes. Many mones are specific to individual cancer types, while others are found in multiple cancers especially from related tissue types. We also observe that mone-mone correlations are strong and robustly preserved across related cancers. Importantly, linear mone-based classifiers can very accurately separate 38 distinct classes (19 tumor types and their adjacent normals, AUC = [Formula: see text] for each class prediction), and linear classifiers are also highly effective for universal tumor detection (AUC = [Formula: see text]). This linearity provides evidence that individual mones or correlated mone clusters may be associated with interpretable histopathological features or other patient characteristics. In particular, the statistical similarity of mones to gene expression values allows integrative mone analysis via expression-based bioinformatics approaches. We observe strong correlations between individual mones and individual gene expression values, notably mones associated with collagen gene expression in ovarian cancer. Mone-expression comparisons also indicate that immunoglobulin expression can be identified using mones in colon adenocarcinoma and that immune activity can be identified across multiple cancer types, and we verify these findings by expert histopathological review. Our work demonstrates that mones provide a morphological H&E decomposition that can be effectively associated with diverse phenotypes, analogous to the interpretability of transcription via gene expression values. Our work also demonstrates mones can be interpreted without using a classifier as a proxy

    Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling

    Full text link
    Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts

    A method to correct steady-state relative permeability measurements for inhomogeneous saturation profiles in one-dimensional flow

    Get PDF
    Traditionally, steady-state relative permeability is calculated from measurements on small rock samples using Darcy’s law and assuming a homogenous saturation profile and constant capillary pressure. However, these assumptions are rarely correct as local inhomogeneities exist; furthermore, the wetting phase tends to be retained at the outlet–the so-called capillary end effect. We have introduced a new method that corrects the relative permeabilities, analytically, for an inhomogeneous saturation profile along the flow direction. The only data required are the measured pressure drops for different fractional flow values, an estimate of capillary pressure, and the saturation profiles. An optimization routine is applied to find the range of relative permeability values consistent with the uncertainty in the measured pressure. Assuming a homogenous saturation profile systematically underestimates the relative permeability and this effect is most marked for media where one of the phases is strongly wetting with a noticeable capillary end effect. Relative permeabilities from seven two-phase flow experiments in centimetre-scale samples with different wettability were corrected while reconciling some hitherto apparently contradictory results. We reproduce relative permeabilities of water-wet Bentheimer sandstone that are closer to other measurements in the literature on larger samples than the original analysis. Furthermore, we find that the water relative permeability during waterflooding a carbonate sample with a wide range of pore sizes can be high, due to good connectivity through the microporosity. For mixed-wet media with lower capillary pressure and less variable saturation profiles, the corrections are less significant

    Pore-scale imaging of displacement patterns in an altered-wettability carbonate

    Get PDF
    High-resolution X-ray imaging combined with a steady-state flow experiment is used to demonstrate how pore-scale displacement affects macroscopic properties in an altered-wettability microporous carbonate, where porosity and fluid saturation can be directly obtained from the grey-scale micro-CT images. The resolvable macro pores are largely oil-wet with an average thermodynamic contact angle of 120°. The pore-by-pore analysis shows locally either oil or brine almost fully occupied the macro pores, with some oil displacement in the micro-porosity. We observed a typical oil-wet behaviour consistent with the contact angle measurement. The brine tended to occupy the larger macro pores, leading to a higher brine relative permeability, lower residual oil saturation, than under water-wet conditions and in a mixed-wet sandstone. The capillary pressure was negative and seven times larger in the carbonate than the sandstone, despite having a similar average pore size. These different displacement patterns are principally determined by the difference in wettability

    Psychometric properties of Persian version of body image shame scale: A study in cosmetic surgery clinics

    Get PDF
    Background: Body image shame considerably contributes to the development and persistence of eating and body image disorders. Objectives: The current study was done to determine the psychometric properties of the body image shame scale and introduce a suitable measure for researchers and therapists in the field of psychological health. Methods: In this study, 409 (136 men and 273 females) individuals who referred to cosmetic surgery clinics in Tehran were chosen. The construct validity of the body image shame was assessed using confirmatory factor analysis and divergent and convergent validity. To assess the divergent and convergent validity of the body compassion scale, appearance anxiety inventory, dysmorphic concern questionnaire and Forms of Self-Criticizing/Attacking and Self-Reassuring Scale were used. Internal Consistency and test-retest reliability (4 weeks' interval) were used to evaluate reliability. LISREL V8.80 and SSPS V20 were used for data analysis. Results: The results of confirmatory factor analysis showed that the two-factor model (internal and external body image shame) fitted the data (RMSEA = 0.07, NFI = 0.94, CFI = 0.92). Body image shame scale had a positive, significant correlation with dysmorphic concern, appearance anxiety, and self-criticism, and a negative, significant correlation with body compassion (P < 0.05). Also, Cronbach's alpha coefficient, for the whole of scale, internal body image shame, and external body image shame were 0.85, 0.79, and 0.82, respectively. Conclusions: Psychometric properties of the persian version of the body image shame scale were confirmed in this study. Therefore, it can be used as a valid instrument in research and clinical works in populations with concerns about body image. Copyright © 2020, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited

    Seismic Behavior of Steel SCBF Buildings Including Consideration of Diaphragm Inelasticity

    Get PDF
    SDII ReportThis report provides a summary of nonlinear response history analyses conducted on a three- dimensional model of a series of steel buildings with special concentric braced frames (SCBFs). The models are conducted in OpenSees and include appropriate nonlinear response for the braced frames as well as the concrete-filled steel deck diaphragms and bare steel deck roofs. Additionally the buildings are designed considering traditional diaphragm design as defined by ASCE 7-16 12.10.1 as well as the new alternative diaphragm design procedures of ASCE 7-16 12.10.3. These alternative procedures have a seismic response modification coefficient, Rs, which is specific to the diaphragm system. Rs values between 1 and 3 are investigated herein. The results indicate that SCBF building performance is sensitive to the diaphragm design, and that traditional diaphragm design does not lead to acceptable levels of performance. Use of the alternative diaphragm design procedure with Rs=2.0 for concrete-filled steel deck floors and Rs=2.5 for bare steel deck roofs is recommended. Future work is needed to continue to refine collapse criteria for 3D building models and to allow the engineer greater clarity in the extent of expected inelasticity in the vertical system vs. the diaphragm system when different combinations of R and Rs, i.e. different combinations of vertical and horizontal lateral force resisting systems, are employed.American Institute of Steel Construction (AISC), American Iron and Steel Institute (AISI), Steel Deck Institute (SDI), Steel Joist Institute (SJI), Metal Building Manufacturers Association (MBMA), National Science Foundation (NSF

    The impact of bimodal pore size distribution and wettability on relative permeability and capillary pressure in a microporous limestone with uncertainty quantification

    Get PDF
    Pore-scale X-ray imaging combined with a steady-state flow experiment was used to study the displacement processes during waterflooding in an altered-wettability carbonate, Ketton limestone, with more than two orders of magnitude difference in pore size between macropores and microporosity. We simultaneously characterized macroscopic and local multiphase flow parameters, including relative permeability, capillary pressure, wettability, and fluid occupancy in pores and throats. An accurate method was applied for porosity and fluid saturation measurements using greyscale based differential imaging without image segmentation. The relative permeability values were corrected by considering the measured saturation profile along the sample length to account for the so-called capillary end effect. The behaviour of relative permeability and capillary pressure was compared to other measurements in the literature to demonstrate the combined effects of wettability and pore structure. Typical oil-wet behaviour in resolvable macropores was measured from contact angle, fluid occupancy and curvature. The capillary pressure was negative while the oil relative permeability dropped quickly as oil was drained to low saturation and flowed through connected oil layers. Brine initially largely flowed through water-wet microporosity, and then filled the centre of large oil-wet pore bodies. Thus, the brine relative permeability remained exceptionally low until brine formed a connected flow path in the macropores leading to a substantial increase in relative permeability. Overall, this work demonstrates that not only wettability but also pore size distribution and microporosity have significant impact on displacement processes

    Image-based pore-scale modelling of the effect of wettability on breakthrough capillary pressure in gas diffusion layers

    Get PDF
    Wettability design is of crucial importance for the optimization of multiphase flow behaviour in gas diffusion layers (GDLs) in fuel cells. The accumulation of electrochemically-generated water in the GDLs will impact fuel cell performance. Hence, it is necessary to understand multiphase displacement to design optimal pore structures and wettability to allow the rapid flow of gases and water in GDLs over a wide saturation range. This work uses high-resolution in situ three-dimensional X-ray imaging combined with a pore network model to investigate the breakthrough capillary pressure and water saturation in GDLs manufactured with different mass fractions of polytetrafluoroethylene coating: 5, 20, 40, and 60%, making them more hydrophobic. We first demonstrate that the pore network extraction method provides representative networks for the fibrous porous media examined. Then, using a pore-network flow model we simulate water invasion into initially gas-filled fibrous media, and analyze the effect of wettability on breakthrough capillary pressure and water saturation. With an appropriate pore-scale characterization of wettability, a pore network model can match experimental results and predict displacement behaviour

    Pore‐scale observations of hydrogen trapping and migration in porous rock: demonstrating the effect of Ostwald ripening

    Get PDF
    We use high-resolution three-dimensional X-ray imaging to study hydrogen injection and withdrawal in the pore space of Bentheimer sandstone. The results are compared with a replicate experiment using nitrogen. We observe less trapping with hydrogen because the initial saturation after drainage is lower due to channeling. Remarkably we observe that after imbibition, if the sample is imaged again after 12 hr, there is a significant rearrangement of the trapped hydrogen. Many smaller ganglia disappear while the larger ganglia swell, with no detectable change in overall gas volume. For nitrogen, the fluid configuration is largely unchanged. This rearrangement is facilitated by concentration gradients of dissolved gas in the aqueous phase—Ostwald ripening, We estimate the time-scales for this effect to be significant, consistent with the experimental observations. The swelling of larger ganglia potentially increases the gas connectivity, leading to less hysteresis and more efficient withdrawal
    corecore