68 research outputs found

    Baryon acoustic oscillations from Integrated Neutral Gas Observations: Radio frequency interference measurements and telescope site selection

    Full text link
    The Baryon acoustic oscillations from Integrated Neutral Gas Observations (BINGO) telescope is a new 40-m class radio telescope to measure the large-angular-scale intensity of Hi emission at 980-1260 MHz to constrain dark energy parameters. As it needs to measure faint cosmological signals at the milliKelvin level, it requires a site that has very low radio frequency interference (RFI) at frequencies around 1 GHz. We report on measurement campaigns across Uruguay and Brazil to find a suitable site, which looked at the strength of the mobile phone signals and other radio transmissions, the location of wind turbines, and also included mapping airplane flight paths. The site chosen for the BINGO telescope is a valley at Serra do Urubu, a remote part of Paraiba in North-East Brazil, which has sheltering terrain. During our measurements with a portable receiver we did not detect any RFI in or near the BINGO band, given the sensitivity of the equipment. A radio quiet zone around the selected site has been requested to the Brazilian authorities ahead of the telescope construction.Comment: Preprint of an article accepted in the Journal of Astronomical Instrumentation, copyright 2018 World Scientific Publishing Company https://www.worldscientific.com/worldscinet/ja

    Cosmoglobe DR1. III. First full-sky model of polarized synchrotron emission from all WMAP and Planck LFI data

    Full text link
    We present the first model of full-sky polarized synchrotron emission that is derived from all WMAP and Planck LFI frequency maps. The basis of this analysis is the set of end-to-end reprocessed Cosmoglobe Data Release 1 sky maps presented in a companion paper, which have significantly lower instrumental systematics than the legacy products from each experiment. We find that the resulting polarized synchrotron amplitude map has an average noise rms of 3.2μK3.2\,\mathrm{\mu K} at 30 GHz and 22^{\circ} FWHM, which is 30% lower than the recently released BeyondPlanck model that included only LFI+WMAP Ka-V data, and 29% lower than the WMAP K-band map alone. The mean BB-to-EE power spectrum ratio is 0.40±0.020.40\pm0.02, with amplitudes consistent with those measured previously by Planck and QUIJOTE. Assuming a power law model for the synchrotron spectral energy distribution, and using the TT--TT plot method, we find a full-sky inverse noise-variance weighted mean of βs=3.07±0.07\beta_{\mathrm{s}}=-3.07\pm0.07 between Cosmoglobe DR1 K-band and 30 GHz, in good agreement with previous estimates. In summary, the novel Cosmoglobe DR1 synchrotron model is both more sensitive and systematically cleaner than similar previous models, and it has a more complete error description that is defined by a set of Monte Carlo posterior samples. We believe that these products are preferable over previous Planck and WMAP products for all synchrotron-related scientific applications, including simulation, forecasting and component separation.Comment: 15 pages, 15 figures, submitted to A&

    Cosmoglobe: Towards end-to-end CMB cosmological parameter estimation without likelihood approximations

    Full text link
    We implement support for a cosmological parameter estimation algorithm as proposed by Racine et al. (2016) in Commander, and quantify its computational efficiency and cost. For a semi-realistic simulation similar to Planck LFI 70 GHz, we find that the computational cost of producing one single sample is about 60 CPU-hours and that the typical Markov chain correlation length is \sim100 samples. The net effective cost per independent sample is \sim6 000 CPU-hours, in comparison with all low-level processing costs of 812 CPU-hours for Planck LFI and WMAP in Cosmoglobe Data Release 1. Thus, although technically possible to run already in its current state, future work should aim to reduce the effective cost per independent sample by at least one order of magnitude to avoid excessive runtimes, for instance through multi-grid preconditioners and/or derivative-based Markov chain sampling schemes. This work demonstrates the computational feasibility of true Bayesian cosmological parameter estimation with end-to-end error propagation for high-precision CMB experiments without likelihood approximations, but it also highlights the need for additional optimizations before it is ready for full production-level analysis.Comment: 10 pages, 8 figures. Submitted to A&

    BeyondPlanck IV. On end-to-end simulations in CMB analysis -- Bayesian versus frequentist statistics

    Full text link
    End-to-end simulations play a key role in the analysis of any high-sensitivity CMB experiment, providing high-fidelity systematic error propagation capabilities unmatched by any other means. In this paper, we address an important issue regarding such simulations, namely how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained realization derived from the data, or as a random realization independent from the data. We refer to these as Bayesian and frequentist simulations, respectively. We show that the two options lead to significantly different correlation structures, as frequentist simulations, contrary to Bayesian simulations, effectively include cosmic variance, but exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify fundamentally different types of uncertainties, and we argue that they therefore also have different and complementary scientific uses, even if this dichotomy is not absolute. Before BeyondPlanck, most pipelines have used a mix of constrained and random inputs, and used the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BeyondPlanck represents the first end-to-end CMB simulation framework that is able to generate both types of simulations, and these new capabilities have brought this topic to the forefront. The Bayesian BeyondPlanck simulations and their uses are described extensively in a suite of companion papers. In this paper we consider one important applications of the corresponding frequentist simulations, namely code validation. That is, we generate a set of 1-year LFI 30 GHz frequentist simulations with known inputs, and use these to validate the core low-level BeyondPlanck algorithms; gain estimation, correlated noise estimation, and mapmaking

    Strangelet search at RHIC

    Full text link
    Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and downstream from the interaction point along the beam axis where particles with small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides information about neutral energy deposition as a function of transverse position in ZDCs. We report the preliminary results of strangelet search from a triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin

    Multiplicity and Pseudorapidity Distributions of Charged Particles and Photons at Forward Pseudorapidity in Au + Au Collisions at sqrt{s_NN} = 62.4 GeV

    Get PDF
    We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.Comment: 17 pages and 20 figure

    Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p\textit{p+p} collisions at sNN\sqrt{s_{NN}} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie

    Forward Neutral Pion Transverse Single Spin Asymmetries in p+p Collisions at \sqrt{s}=200 GeV

    Get PDF
    We report precision measurements of the Feynman-x dependence, and first measurements of the transverse momentum dependence, of transverse single spin asymmetries for the production of \pi^0 mesons from polarized proton collisions at \sqrt{s}=200 GeV. The x_F dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p_T dependence at fixed x_F are not consistent with pQCD-based calculations.Comment: 6 pages, 4 figure

    K/pi Fluctuations at Relativistic Energies

    Get PDF
    We report results for K/πK/\pi fluctuations from Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/πK/\pi fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at sNN\sqrt{s_{NN}} = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/πK/\pi fluctuations as well as results for K+/π+K^{+}/\pi^{+}, K/πK^{-}/\pi^{-}, K+/πK^{+}/\pi^{-}, and K/π+K^{-}/\pi^{+} fluctuations. We observe that the K/πK/\pi fluctuations scale with the multiplicity density, dN/dηdN/d\eta, rather than the number of participating nucleons.Comment: 6 pages, 4 figure
    corecore