175 research outputs found

    THE USE OF PASSIVE DRAG TO INTERPRET VARIATION IN ACTIVE DRAG MEASUREMENTS

    Get PDF
    This study investigated if a measure of mean passive drag could explain the huge differences in propulsive force required by different swimmers to swim at a similar high velocity. Nineteen elite male and female national freestyle swimmers were subjects. The subject’s mean active and passive drag was measured at each swimmer’s top swimming pace. Stepwise regression analysis was used in the analysis. Passive drag was accepted into the equation to calculate mean propulsive force, prior to velocity being rejected. The correlation coefficient for the relationship between mean propelling force and mean passive drag was 0.77. This was statistically significant at the

    Transcatheter closure of Ventricular Septal defects in Malta : initial experience

    Get PDF
    Ventricular septal defects (VSD) consist of deficiencies of the wall separating the two ventricles. VSDs are the commonest congenital cardiac defects. Small VSDs rarely require intervention, however, larger defects cause ventricular volume overload with or without heart failure or pulmonary hypertension and may, therefore, require closure. Traditionally, closure has been an open heart surgical procedure. In recent years, various devices have been developed to close a wide variety of cardiac defects including atrial septal defects and patent arterial ducts through transcatheter interventional techniques. Recently, AGA Medical Corporation have introduced a range of Amplatzer VSD occluders which include specific devices for perimembranous (PM), muscular and post myocardial infarction (MI) VSDs. Atrial septal defect and patent foramen ovale closure has been carried out at St. Luke's Hospital in Malta for the past three years. This year, for the first time, we have closed three VSDs in three individuals; two children with large perimembranous defects and an elderly gentleman with a large post-MI VSD. This paper will discuss this technique and initial results.peer-reviewe

    Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT

    Get PDF
    FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form

    Use of municipal solid waste incineration bottom ash and crop by-product for producing lightweight aggregate

    Get PDF
    Due to the growing amount of residues in Europe, it is mandatory to provide a viable alternative for managing wastes contributing to the efficient use of resources. Besides, it is also essential to move towards a low carbon economy, priority EU by 2050. Among these, it is important to highlight the development of sustainable alternatives capable of incorporating different kind of wastes in their formulations.Municipal Solid Waste Incineration (MSWI) is estimated to increase in Europe, where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85-95 % of the solid product resulting from combustion. BA is a mixture of calcium-rich compounds and others silicates enriched in iron and sodium. In addition, it is categorized as non-hazardous waste which can be revalorized as secondary material in construction or civil engineering fields, previous weathering stabilization during 2-3 months. Taking into account the relative proportion of each size fraction and the corresponding material characterization, the content of glass (primary and secondary) is estimated to be around 60 wt%. Furthermore, as a renewable resource and according to waste management European policies, residual agricultural biomass has attracted attention in preparation of advanced materials for various applications, due to their low cost, abundance, and environment friendliness. Among this residual biomass, rice husk is a by-product of rice milling industry which has high content of silica and has been widely used in buildings as natural thermal insulation material.Weathered BA (WBA) with a particle size less than 30 mm was milled under 100 μm, mixed with 2.0-5.0 mm rice husk, formed into ball-shaped pellets and sintered by different thermal treatments, which remove the organic matter content generating a large porosity. Physico-chemical analysis and mechanical behavior of the manufactured lightweight aggregates were tested. The obtained results provide a suitable physico-mechanical formulation using WBA as silica source, as well as a common crop by-product

    FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1

    Get PDF
    The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication

    Mutant Versions of the S. cerevisiae Transcription Elongation Factor Spt16 Define Regions of Spt16 That Functionally Interact with Histone H3

    Get PDF
    In eukaryotic cells, the highly conserved FACT (FAcilitates Chromatin Transcription) complex plays important roles in several chromatin-based processes including transcription initiation and elongation. During transcription elongation, the FACT complex interacts directly with nucleosomes to facilitate histone removal upon RNA polymerase II (Pol II) passage and assists in the reconstitution of nucleosomes following Pol II passage. Although the contribution of the FACT complex to the process of transcription elongation has been well established, the mechanisms that govern interactions between FACT and chromatin still remain to be fully elucidated. Using the budding yeast Saccharomyces cerevisiae as a model system, we provide evidence that the middle domain of the FACT subunit Spt16 – the Spt16-M domain – is involved in functional interactions with histone H3. Our results show that the Spt16-M domain plays a role in the prevention of cryptic intragenic transcription during transcription elongation and also suggest that the Spt16-M domain has a function in regulating dissociation of Spt16 from chromatin at the end of the transcription process. We also provide evidence for a role for the extreme carboxy terminus of Spt16 in functional interactions with histone H3. Taken together, our studies point to previously undescribed roles for the Spt16 M-domain and extreme carboxy terminus in regulating interactions between Spt16 and chromatin during the process of transcription elongation
    • …
    corecore