19 research outputs found
Missing Data in Sea Turtle Population Monitoring: A Bayesian Statistical Framework Accounting for Incomplete Sampling
This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement:
Raw nest beach monitoring data gathered at sites outside of the national park will be made available upon request to the board of Renatura Congo ([email protected]). Raw nest beach monitoring data gathered at sites inside Conkouati-Douli National Park and code to run models are available from the Dryad Digital Repository: doi:10.5061/dryad.prr4xgxp3Monitoring how populations respond to sustained conservation measures is essential to detect changes in their population status and determine the effectiveness of any interventions. In the case of sea turtles, their populations are difficult to assess because of their complicated life histories. Ground-derived clutch counts are most often used as an index of population size for sea turtles; however, data are often incomplete with varying sampling intensity within and among sites and seasons. To address these issues, we: (1) develop a Bayesian statistical modelling framework that can be used to account for sampling uncertainties in a robust probabilistic manner within a given site and season; and (2) apply this to a previously unpublished long-term sea turtle dataset (n = 17 years) collated for the Republic of the Congo, which hosts two sympatrically nesting species of sea turtle (leatherback turtle [Dermochelys coriacea] and olive ridley turtle [Lepidochelys olivacea]). The results of this analysis suggest that leatherback turtle nesting levels dropped initially and then settled into quasi-cyclical levels of interannual variability, with an average of 573 (mean, 95% prediction interval: 554–626) clutches laid annually between 2012 and 2017. In contrast, nesting abundance for olive ridley turtles has increased more recently, with an average of 1,087 (mean, 95% prediction interval: 1,057–1,153) clutches laid annually between 2012 and 2017. These findings highlight the regional and global importance of this rookery with the Republic of the Congo, hosting the second largest documented populations of olive ridley and the third largest for leatherback turtles in Central Africa; and the fourth largest non-arribada olive ridley rookery globally. Furthermore, whilst the results show that Congo’s single marine and coastal national park provides protection for over half of sea turtle clutches laid in the country, there is scope for further protection along the coast. Although large parts of the African coastline remain to be adequately monitored, the modelling approach used here will be invaluable to inform future status assessments for sea turtles given that most datasets are temporally and spatially fragmented.Darwin InitiativeDepartment for Environment, Food and Rural Affairs (Defra)Research Englan
Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim
Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts.
Location
Global.
Methods
We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections.
Results
Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links.
Main conclusions
Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU
Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization
Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; Perú. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimánFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; Turquía. Ecological Research Society; TurquíaFil: Casale, Paolo. Università degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: González Carman, Victoria. Instituto National de Investigación y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; México. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MéxicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; Turquía. Pamukkale Üniversitesi; TurquíaFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, César P.. Instituto Politécnico Nacional; MéxicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: López-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. Università degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerúFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. Università Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. Fundación Oceanogràfic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto Politécnico Nacional; MéxicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; Turquía. Pamukkale University; TurquíaFil: Tomás, Jesús. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MéxicoFil: Halpin, Patrick N.. University of Duke; Estados Unido
Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales
Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques - including site-based monitoring, genetic analyses, mark-recapture studies and telemetry - can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings: To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine-to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance: The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework - including maps and supporting metadata - will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis
Cellular proliferation rate, and IGFBP-2 and -3 and estradiol receptor alpha expression in the mammary gland of dairy heifers naturally infected with gastrointestinal nematodes during development
Mammary ductal morphogenesis during prepuberty occurs mainly in response to insulin-like growth factor-1 (IGF-1) and estradiol stimulation. Dairy heifers infected with gastrointestinal nematodes have reduced IGF-1 levels, accompanied by reduced growth rate,delayed puberty onset, and lower parenchyma-stroma relationship in their mammary glands. Immunohistochemical studies were undertaken to determine variations in cell division rate, IGF-1 system components, and estradiol receptors (ESR) during peripubertal development in the mammary glands of antiparasitictreated and untreated Holstein heifers naturally infected with gastrointestinal nematodes. Mammary biopsies were taken at 20, 30, 40, and 70 wk of age. Proliferating cell nuclear antigen immunolabeling, evident in nuclei, tended to be higher in the parenchyma of the glands from treated heifers than in those from untreated. IGF binding proteins (IGFBP) type 2 and type 3 immunolabeling was cytoplasmic and was evident in stroma and parenchyma. The IGFBP2-labeled area was lower in treated than in untreated heifers. In the treated group, a maximal expression of this protein was seen at 40 wk of age, whereas in the untreated group the labeling remained constant. No differences were observed for IGFBP3 between treatment groups or during development. Immunolabeling for α ESR (ESR1) was evident in parenchymal nuclei and was higher in treated than in untreated heifers. In the treated group, ESR1 peaked at 30 wk of age and then decreased. These results demonstrate that the parasite burden in young heifers negatively influence mammary gland development, affecting cell division rate and parameters related to estradiol and IGF-1 signaling in the gland.Fil: Perri, Adrián Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Dallard, Bibiana Elisabet. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Baravalle, Celina. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Licoff, N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Formia, N.. Universidad Nacional de La Plata; ArgentinaFil: Ortega, Hugo Hector. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias; ArgentinaFil: Becu, Damasia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Mejia, M. E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Lacau, Isabel Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentin
Numerical dispersal simulations and genetics help explain the origin of hawksbill sea turtles in Ascension Island
Long-distance dispersal and ontogenetic shifts in habitat use are characteristic of numerous marine species and have important ecological, evolutionary, and management implications. These processes, however, are often challenging to study due to the vast areas involved. We used genetic markers and simulations of physical transport within an ocean circulation model to gain understanding into the origin ofjuvenile hawksbill sea turtles (Eretmochelys imbricata) found at Ascension Island, a foraging ground that is thousands of kilometers from known nesting beaches. Regional origin of genetic markers suggests that turtles are from Western Atlantic (86%) and Eastern Atlantic (14%) rookeries. In contrast, numerical simulations of transport by ocean currents suggest that passive dispersal from the western sources would be negligible and instead would primarily be from the East, involving rookeries along Western Africa (i.e., Principe Island) and, potentially, from as far as the Indian Ocean (e.g., Mayotte and the Seychelles). Given that genetic analysis identified the presence of a haplotype endemic to Brazilian hawksbill rookeries at Ascension, we examined the possible role of swimming behavior by juvenile hawksbills from NE Brazil on their current-borne transport to Ascension Island by performing numerical experiments in which swimming behavior was simulated for virtual particles (simulated turtles). We found that oriented swimming substantially influenced the distribution of particles, greatly altering the proportion of particles dispersing into the North Atlantic and South Atlantic. Assigning location-dependent orientation behavior to particles allowed them to reach Ascension Island, remain in favorable temperatures, encounter productive foraging areas, and return to the vicinity of their natal site. The age at first arrival to Ascension (4.5-5.5 years) of these particles corresponded well to estimates of hawksbill age based on their size. Our findings suggest that ocean currents and swimming behavior play an important role in the oceanic ecology of sea turtles and other marine animals
DataSheet_1_Genetic composition of green sea turtles (Chelonia mydas) at coastal feeding areas of Uruguay.pdf
The highly migratory and marine nature of species such as green sea turtles (Chelonia mydas) may hinder understanding of basic life history and impact ensuing management and conservation applications across their full range. To elucidate the linkages between juvenile green turtles foraging in coastal waters of Uruguay in the Southwestern Atlantic Ocean to their future nesting or feeding grounds, this study investigated their genetic composition . A total of 201 tissue samples were collected from turtles that had stranded or were intentionally captured for scientific research along the Uruguayan coast (ca. 33°–35°S) during two sampling periods (2003–2005 and 2009–2014). Samples were pooled for analysis. Twelve mitochondrial control region haplotypes and ten subhaplotypes were identified, all of which had been previously detected at Atlantic or Caribbean nesting beaches. Mixed Stock Analysis revealed that most turtles traced to the Ascension Island rookery, representing a substantial connection to the remote mid-Atlantic island thousands of kilometers distant. Other nesting areas, such as Guinea Bissau in Africa and Trindade Island in Brazil, represented less significant sources. There was no significant temporal or spatial genetic structure within Uruguayan waters, suggesting dispersion along this coast. Despite the geographic distance from the nesting beach, the significant connection to the Ascension Island rookery underscores the importance of considering rookery population size and ocean current influences in understanding source contributions. These findings emphasize the need for conservation efforts, including the maintenance of existing protected areas and the creation of new ones, to ensure the long-term conservation of green turtles connected to various nesting colonies and feeding grounds.</p
Editorial. Design and Territory: Emergencies and Conflicts
With this special edition of the Strategic Design Research Journal (SDRJ) we want to
contribute to the emerging debate on Design and Territory, presenting a selection of papers
submitted on the occasion of the 7th International Forum of Design as a Process, organized
by Latin Network for The Development of Design Processes and the Faculty of Engineering
and Business Administration at the Universidad Nacional de Colombia - Campus of Palmira.
The Latin Network has been founded in 2008 as a group of researchers, academics, students
and businessmen of Latin language and culture and meets periodically in a Forum conceived
as an international specialized conference, in order to debate and discuss their studies and
experiences
Design & Territories: Emergencies and Conflicts at the Time of the Anthropocene
The aim of the paper is to present a focus on the relationship between Design and Territory, framing it in the contemporary debate about the Anthropocene and orienting the discussion in the direction of emergencies and conflicts concerning the evolution of our artificial world. After an overview about typical issues regarding the relationship between design and territory, the authors propose to interpret it through the concept of \u201ctime\u201d, which is the, often underestimate, paradigm at the base of Advanced Design studies. This reasoning will be developed in three phases: how design relates itself with the past of territories and with the forms inherited; how contemporary design deals with the current issues of the territory, in terms of emergences and conflicts; how design anticipates visions of sharable future themes and solutions