4,745 research outputs found

    Ion sputter textured graphite electrode plates

    Get PDF
    A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices

    Ion sputter textured graphite

    Get PDF
    A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. An ion flux having an energy between 500 eV and 1000 eV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spines. Such textured surfaces are especially useful as anode collector plates in high efficiency electron tube devices

    Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    Get PDF
    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws

    The 30/20 GHz flight experiment system, phase 2. Volume 1: Executive summary

    Get PDF
    Summary information on the final communication system design, communication payload, space vehicle, and development plan for the 30/20 GHz flight experiment will be installed on the LEASAT spacecraft which will be placed into orbit from the space shuttle cargo bay. The communication concept has two parts: a truck service and a customer premise service (CPS). The trucking system serves four spot beams which are interconnected in a satellite switched time division multiple access mode by an IF switch matrix. The CPS covers two large areas of the eastern United States with a pair of scanning beams

    The 30/20 GHz flight experiment system, phase 2. Volume 2: Experiment system description

    Get PDF
    A detailed technical description of the 30/20 GHz flight experiment system is presented. The overall communication system is described with performance analyses, communication operations, and experiment plans. Hardware descriptions of the payload are given with the tradeoff studies that led to the final design. The spacecraft bus which carries the payload is discussed and its interface with the launch vehicle system is described. Finally, the hardwares and the operations of the terrestrial segment are presented

    The 30/20 GHz flight experiment system, phase 2. Volume 3: Experiment system requirement document

    Get PDF
    An approach to the requirements document to be used to procure the system by NASA is presented. The basic approach is similar to the requirements document used in the commercial communication satellite. Enough detail requirements are given to define the system without tight constraints

    Stormy weather in 3C 196.1: nuclear outbursts and merger events shape the environment of the hybrid radio galaxy 3C 196.1

    Full text link
    We present a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a z=0.198z=0.198 cluster. HST data show Hα\alpha+[N II] emission aligned with the jet 8.4 GHz radio emission. An Hα\alpha+[N II] filament coincides with the brightest X-ray emission, the northern hotspot. Analysis of the X-ray and radio images reveals cavities located at galactic- and cluster- scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission and the south-western Hα\alpha+[N II] emission is bounded (in projection) by this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio emission, and hence we interpret this depression in X-ray surface brightness as being caused by a buoyantly rising bubble originating from an AGN outburst \sim280 Myrs ago. A \textit{Chandra} snapshot observation allowed us to constrain the physical parameters of the cluster, which has a cool core with a low central temperature \sim2.8 keV, low central entropy index \sim13 keV cm2^2 and a short cooling time of \sim500 Myr, which is <0.05<0.05 of the age of the Universe at this redshift. By fitting jumps in the X-ray density we found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also found compelling evidence of a past merger, indicated by a morphology reminiscent of gas sloshing in the X-ray residual image. Finally, we computed the pressures, enthalpies EcavE_{cav} and jet powers PjetP_{jet} associated with the cavities: Ecav7×1058E_{cav}\sim7\times10^{58} erg, Pjet1.9×1044P_{jet}\sim1.9\times10^{44} erg s1^{-1} for the inner cavity and Ecav3×1060E_{cav}\sim3\times10^{60} erg, Pjet3.4×1044P_{jet}\sim3.4\times10^{44} erg s1^{-1} for the outer cavity.Comment: 14 pages, 4 figures, ApJ accepte

    X-ray Detection of the Primary Lens Galaxy Cluster of the Gravitational Lens System Q0957+561

    Get PDF
    Analysis of several recent ROSAT HRI observations of the gravitationally lensed system Q0957+561 has led to the detection at the 3sigma level of the cluster lens containing the primary galaxy G1. The total mass was estimated by applying the equation of hydrostatic equilibrium to the detected hot intracluster gas for a range of cluster core radii, cluster sizes and for different values of the Hubble constant. X-ray estimates of the lensing cluster mass provide a means to determine the cluster contribution to the deflection of rays originating from the quasar Q0957+561. The present mass estimates were used to evaluate the convergence parameter kappa, the ratio of the local surface mass density of the cluster to the critical surface mass density for lensing. The convergence parameter, kappa, calculated in the vicinity of the lensed images, was found to range between 0.07 and 0.21, depending on the assumed cluster core radius and cluster extent. This range of uncertainty in kappa does not include possible systematic errors arising from the estimation of the cluster temperature through the use of the cluster luminosity-temperature relation and the assumption of spherical symmetry of the cluster gas. Applying this range of values of kappa to the lensing model of Grogin & Narayan (1996) for Q0957+561 but not accounting for uncertainties in that model yields a range of values for the Hubble constant:67<H_0<82 km s^-1 Mpc^-1, for a time delay of 1.1 years.Comment: Accepted for publication in ApJ, 25 pages, 9 figure

    Ram pressure stripping and the formation of cold fronts

    Full text link
    Chandra and XMM-Newton observations of many clusters reveal sharp discontinuities in the surface brightness, which, unlike shocks, have lower gas temperature on the X-ray brighter side of the discontinuity. For that reason these features are called ``cold fronts''. It is believed that some cold fronts are formed when a subcluster merges with another cluster and the ram pressure of gas flowing outside the subcluster gives the contact discontinuity the characteristic curved shape. While some edges may not arise directly from mergers (e.g., A496, Dupke & White, 2003), this paper focuses on those which arise as contact discontinuities between a merging subcluster and the ambient cluster gas. We argue that the flow of gas past the merging subcluster induces slow motions inside the cloud. These motions transport gas from the central parts of the subcluster towards the interface. Since in a typical cluster or group (even an isothermal one) the entropy of the gas in the central regions is significantly lower than in the outer regions, the transport of the low entropy gas towards the interface and the associated adiabatic expansion makes the gas temperature immediately inside the interface lower than in any other place in the system, thus enhancing the temperature jump across the interface and making the ``tip'' of the contact discontinuity cool. We illustrate this picture with the XMM-Newton gas temperature map of the A3667 cluster.Comment: 5 pages, 2 color figures, accepted for publication in MNRA

    Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence

    Full text link
    Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear MHD wave modes---the fast, Alfven, and slow waves---are identified and the properties of the density-parallel magnetic field correlation for these kinetic wave modes is presented. The construction of synthetic spacecraft data, based on the quasi-linear premise---that some characteristics of magnetized plasma turbulence can be usefully modeled as a collection of randomly phased, linear wave modes---is described in detail. Theoretical predictions of the density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell linear eigenfunctions are presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that the observed density-parallel magnetic field correlation is consistent with a statistically negligible kinetic fast wave energy contribution for the large sample used in this study. A model of the solar wind inertial range fluctuations is proposed comprised of a mixture of a critically balanced distribution of incompressible Alfvenic fluctuations and a critically balanced or more anisotropic than critical balance distribution of compressible slow wave fluctuations. These results imply that there is little or no transfer of large scale turbulent energy through the inertial range down to whistler waves at small scales.Comment: Accepted to Astrophysical Journal. 28 pages, 7 figure
    corecore