210 research outputs found

    Erotic Poetics: Love and the Function of US Literature from Melville to Modernism

    Get PDF
    The dissertation argues Herman Melville, Walt Whitman, Jean Toomer, and Wallace Stevens belong to a genealogy of what I call “erotic poetics.” I use these terms to identify the common set of resources I believe these writers leave to the present. For this genealogy, “poetry”—from the Greek poesis (to make)—encompasses the expansive set of enterprises by which humans create and transform ourselves and our worlds in time. These writers also consider human love, or eros, a category worthy of attention when questions of self- and world-making are at stake. I argue the genealogy of “erotic poetics” develops a historical, material, and secular vision of human life grounded in these terms. I trace its continuities and ruptures by making observations about the language, formal innovations, and historical circumstances of several significant American novels and poems, including “Song of Myself,” Pierre; or the Ambiguities, and Cane. In each chapter, I turn these observations toward a set of contemporary challenges we face today in the US and elsewhere. These include democratic crises at home and abroad, the ecological disasters we associate with climate change, and the struggles for liberty that continue to take shape in opposition to an ongoing history of race violence in the US. The dissertation argues we can best approach these problems if we view human life in the ways the tradition of imaginative literary writing I identify offers. Although many critics have found in these writers’ works materials that support projects of mythic nationalism, I argue the tradition to which they belong also contains elements that destroy those projects. The dissertation identifies these elements and suggests they are of special value today. The genealogy gives us ways to challenge those who continue to insist humans should not interfere with the powerful and invisible forces many argue we cannot influence

    The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation

    Get PDF
    Cell death is critical to normal homeostasis, although this process, when increased aberrantly, can lead to the production of pro-inflammatory mediators promoting autoimmunity. Two novel intercellular mediators of inflammation generated during cell death are high mobility group box 1 (HMGB1) protein and microparticles (MPs). HMGB1 is a nuclear protein that functions in transcription when inside the nucleus but takes on pro-inflammatory properties when released during cell death. Microparticles are small, membrane-bound structures that extrude from cells when they die and contain cell surface proteins and nuclear material from their parent cells. MPs circulate widely throughout the vasculature and mediate long-distance communication between cells. Both MPs and HMGB1 have been implicated in the pathogenesis of a broad spectrum of inflammatory diseases, including the prototypic autoimmune conditions systemic lupus erythematosus and rheumatoid arthritis. Given their range of activity and association with active disease, both structures may prove to be targets for effective therapy in these and other disorders

    A novel method to analyze leukocyte rolling behavior in vivo

    Get PDF
    Leukocyte endothelial cell interaction is a fundamentally important process in many disease states. Current methods to analyze such interactions include the parallel-plate flow chamber and intravital microscopy. Here, we present an improvement of the traditional intravital microscopy that allows leukocyte-endothelial cell interaction to be studied from the time the leukocyte makes its initial contact with the endothelium until it adheres to or detaches from the endothelium. The leukocyte is tracked throughout the venular tree with the aid of a motorized stage and the rolling and adhesive behavior is measured off-line. Because this method can involve human error, methods to automate the tracking procedure have been developed. This novel tracking method allows for a more detailed examination of leukocyte-endothelial cell interactions

    Novel Pink Bollworm Resistance to the Bt Toxin Cry 1Ac: Effects on Mating, Oviposition, Larval Development and Survival

    Get PDF
    Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) bacterium and target key lepidopteran pests. In all previous strains of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) selected in the laboratory for resistance to insecticidal Cry1Ac toxin using an artificial diet containing the toxin, resistance to Cry1Ac and to Bt cotton is linked to three cadherin alleles (r1, r2, and r3). In contrast, the BG(4) pink bollworm strain was selected for resistance to Bt cotton by feeding larvae for four days in each of 42 generations on bolls of ‘NuCOTN33B®’ that expressed Cry1Ac toxin. After additional selection for eleven generations on Cry1Ac-incorporated diet, the susceptibility to Cry1Ac, fecundity, egg viability, and mating of this strain (Bt4R) was compared with the unselected Cry1Ac-susceptible parent strain. Some larvae of the Bt4R strain survived on diet containing ≥ 10 µg Cry1Ac per milliliter artificial diet, but none survived on transgenic cotton bolls. In contrast to strains selected exclusively on Cry1Ac diet, some survival of progeny of reciprocal moth crosses of Bt4R resistant and Bt-susceptible strains occurred on Cry1Ac-treated diet, suggesting differences in levels of dominance. The Bt4R resistant strain does not have the r1, r2, or r3 mutant cadherin genes as do all previous strains of pink bollworm selected on Cry1Ac-treated artificial diet. The combined results suggest a mechanism of resistance to Cry1Ac that is different from previously described cadherin mutations

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process

    Get PDF
    Neutrophils are obligate cells entering lymph nodes shortly after immunization with protein antigens in adjuvants, starting during the first hour and continuing for several days in two distinct waves. Previously, we demonstrated the strong suppressive effects of neutrophils on CD4 T cell and B cell responses, using either neutrophil-depleting antibodies or genetically neutropenic mice. In this study, we find that neutrophils are the major cells controlling the spread of T cell responses to distal lymph nodes. Although in the presence of neutrophils, ∼75% of the response was restricted to the draining node, in their absence, most of the response was found in distal nodes. Prostanoids were responsible for the rapid entry of neutrophils into the draining nodes, as well as for the two distinct neutrophil effects: the modulation of the magnitude of the cellular response, and in its spread outside the draining nodes. Neutrophil-produced thromboxane A(2) was the key eicosanoid controlling both effects. Adoptive transfer of neutrophils into mice genetically deficient in neutrophils indicated their role in both. These functions of neutrophils are important in infections and vaccinations with adjuvants where neutrophils are abundant in the initial stages

    Neutrophil granulocyte-dependent proteolysis enhances platelet adhesion to the arterial wall under high-shear flow

    Get PDF
    Background: Under high shear stress platelets adhere preferentially to the adventitia layer of the arterial vessel wall in a von Willebrand factor (VWF)-dependent manner. Objective: The present study was undertaken in an attempt to characterize the structural background of the relative thromboresistance of the media and the impact of neutrophil leukocyte-derived proteases (matrix metalloproteinases, neutrophil elastase) on platelet adhesion in this layer of the arteries. Methods and results: Platelet adhesion to cross-sections of the human iliac artery was monitored by indirect immunofluorescent detection of GpIIb/IIIa antigen. Exposure of the vessel wall to activated neutrophils or neutrophil-derived proteases increased platelet adhesion to the media about tenfold over the control level at 3350 s−1 surface shear rate. In parallel with this enhanced thrombogenicity morphological changes in the media were evidenced by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The fine proteoglycan meshwork seen with Cupromeronic Blue enhancement of the SEM images was removed by the proteolytic treatment and the typical collagen fiber structure was exposed on the AFM images of the media. Conclusion: Through their proteases activated neutrophils degrade proteoglycans, unmask VWF binding sites and thus abolish the thromboresistance of the media in human arteries

    Sex-specific regulation of chemokine Cxcl5/6 controls neutrophil recruitment and tissue injury in acute inflammatory states

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Barts and The London Trustees Studentship (SM), Marie Curie fellowships (MB, JD), Arthritis Research UK career development fellowship (JW), William Harvey Research Foundation grant (JW/RSS), Kidney Research UK fellowship (NSAP), Barts and The London Vacation Scholarship (ISN), Wellcome Trust senior fellowship (DWG), and a Wellcome Trust career development fellowship (RSS). This work forms part of the research themes contributing to the translational research portfolio of Barts and The London Cardiovascular Biomedical Research Unit, which is supported and funded by National Institute for Health Researc
    corecore