412 research outputs found

    Dynamical Cobordisms in General Relativity and String Theory

    Full text link
    We describe a class of time-dependent solutions in string- or M-theory that are exact with respect to alpha-prime and curvature corrections and interpolate in physical space between regions in which the low energy physics is well-approximated by different string theories and string compactifications. The regions are connected by expanding "domain walls" but are not separated by causal horizons, and physical excitations can propagate between them. As specific examples we construct solutions that interpolate between oriented and unoriented string theories, and also between type II and heterotic theories. Our solutions can be weakly curved and under perturbative control everywhere and can asymptote to supersymmetric at late times.Comment: 35 pages, 5 figures, LaTeX v2: reference adde

    Justification of the symmetric damping model of the dynamical Casimir effect in a cavity with a semiconductor mirror

    Full text link
    A "microscopic" justification of the "symmetric damping" model of a quantum oscillator with time-dependent frequency and time-dependent damping is given. This model is used to predict results of experiments on simulating the dynamical Casimir effect in a cavity with a photo-excited semiconductor mirror. It is shown that the most general bilinear time-dependent coupling of a selected oscillator (field mode) to a bath of harmonic oscillators results in two equal friction coefficients for the both quadratures, provided all the coupling coefficients are proportional to a single arbitrary function of time whose duration is much shorter than the periods of all oscillators. The choice of coupling in the rotating wave approximation form leads to the "mimimum noise" model of the quantum damped oscillator, introduced earlier in a pure phenomenological way.Comment: 9 pages, typos corrected, corresponds to the published version, except for the reference styl

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Supersymmetric Solutions in Six Dimensions: A Linear Structure

    Get PDF
    The equations underlying all supersymmetric solutions of six-dimensional minimal ungauged supergravity coupled to an anti-self-dual tensor multiplet have been known for quite a while, and their complicated non-linear form has hindered all attempts to systematically understand and construct BPS solutions. In this paper we show that, by suitably re-parameterizing these equations, one can find a structure that allows one to construct supersymmetric solutions by solving a sequence of linear equations. We then illustrate this method by constructing a new class of geometries describing several parallel spirals carrying D1, D5 and P charge and parameterized by four arbitrary functions of one variable. A similar linear structure is known to exist in five dimensions, where it underlies the black hole, black ring and corresponding microstate geometries. The unexpected generalization of this to six dimensions will have important applications to the construction of new, more general such geometries.Comment: v2: Eqs. (2.1), (2.39) corrected, references added. v3: minor correction

    A Multilevel Analysis of the Impact of Socio-Structural and Environmental Influences on Condom Use Among Female Sex Workers

    Get PDF
    This study uses multilevel analysis to examine individual, organizational and community levels of influence on condom use among female commercial sex workers (FSW) in the Philippines. A randomized controlled study involving 1,382 female commercial sex workers assigned to three intervention groups consisting of peer education, managerial training, combined peer and managerial intervention and a usual care control group was conducted. The results of the multilevel analysis show that FSWs who work in establishments with condom use rules tend to have a higher level of condom use (β = .70, P < 0.01). Among the different intervention groups, the combined peer and managerial intervention had the largest effect on condom use (β = 1.30, P < 0.01) compared with the usual care group. Using a three-level hierarchical model, we found that 62% of the variation lies within individuals, whereas 24% and 14% of the variation lies between establishments, and communities, respectively. Standard errors were underestimated when clustering of the FSWs in the different establishments and communities were not taken into consideration. The results demonstrate the importance of using multilevel analysis for community-based HIV/AIDS intervention programs to examine individual, establishment and community effects

    Does a PBL-based medical curriculum predispose training in specific career paths? A systematic review of the literature

    Get PDF
    Background North American medical schools have used problem-based learning (PBL) structured medical education for more than 60 years. However, it has only recently been introduced in other medical schools outside of North America. Since its inception, there has been the debate on whether the PBL learning process predisposes students to select certain career paths. Objectives To review available evidence to determine the predisposition of specific career paths when undertaking a PBL-based medical curriculum. The career path trajectory was determined as measured by official Matching Programs, self-reported questionnaires and surveys, and formally defined career development milestones. Methods A systematic literature review was performed. PubMed, Medline, Cochrane and ERIC databases were analysed in addition to reference lists for appropriate inclusion. Results Eleven studies fitting the inclusion criteria were identified. The majority of studies showed that PBL did not predispose a student to a career in a specific speciality (n = 7 out of 11 studies, 64%). However, three studies reported a significantly increased number of PBL graduates working in primary care compared to those from a non-PBL curriculum. Conclusions PBL has been shown not to predispose medical students to a career in General Practice or any other speciality. Furthermore, a greater number of similar studies are required before a definitive conclusion can be made in the future
    corecore