13,213 research outputs found

    Single camera 3D planar Doppler velocity measurements using imaging fibre bundles

    Get PDF
    Two frequency planar Doppler Velocimetry (2ν-PDV) is a modification of the Planar Doppler Velocimetry (PDV) method that allows velocity measurements to be made, quickly and non intrusively, across a plane defined by a laser light sheet. In 2ν-PDV the flow is illuminated sequentially with two optical frequencies, separated by about 700MHz. A single CCD viewing through an iodine absorption cell is used to capture images under each illumination. The two images are used to find the normalised transmission through the cell, and the velocity information is encoded as a variation in the transmission Use of a single camera ensures registration of the reference and signal images and removes issues associated with the polarization sensitivity of the beam splitter, which are major problems in the conventional approach. A 2ν-PDV system has been constructed using a continuous-wave Argon ion laser combined with multiple imaging fibre bundles, to port multiple views of the measurement plane to a CCD camera, allowing the measurement of three velocity components.EPSR

    Single camera 3D planar Doppler velocity measurements, using two frequency planar Doppler velocimetry (2v-PDV) and imaging fibre bundles

    Get PDF
    A modified Planar Doppler Velocimetry (PDV) technique, two frequency PDV (2v-PDV), is described that allows measurements of the velocity field over a plane defined by a laser light sheet using sequential illumination of the flow with two closely separated (&IGHz) frequencies of laser light. This allows a common-path imaging head to be used containing a single CCD camera instead of the usual camera pair. The problem of image misalignment is now avoided and the polarisation sensitivity of the beam splitter used in two camera imaging heads is also removed. Cost efficiency is improved by the simplification of the system. This paper describes the development of a 2v-PDV system using a continuous wave argon ion laser capable of making time-averaged velocity measurements. Initially a single velocity component system was constructed using acousto-optic modulators to produce the two illumination frequencies required. The system was then expanded to make 3D velocity measurements using a single CCD camera and multiple coherent imaging fibre bundles. Measurements were made on the rotating disc, in order to assess error level in the measurements, and on a seeded axisymmetric air jet. A method of improving the sensitivity of the 2v-PDV system is demonstrated by using both the rising and falling slopes of the iodine absorption line. Reductions in the error levels of velocity measurements of approximately 40% can be achieved using this increased sensitivity method

    Semi-inclusive charged-current neutrino-nucleus reactions

    Get PDF
    The general, universal formalism for semi-inclusive charged-current (anti)neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case of the hadronic responses, general symmetry principles are invoked to determine which contributions can occur. Finally, the general leptonic-hadronic tensor contraction is given as well as the cross section for the process

    Coincidence charged-current neutrino-induced deuteron disintegration

    Get PDF
    Deuteron disintegration by charged-current neutrino (CCν\nu) scattering offers the possibility to determine the energy of the incident neutrino by measuring in coincidence two of the three resulting particles: a charged lepton (usually a muon) and two protons, where we show that this channel can be isolated from all other, for instance, from those with a pion in the final state. We discuss the kinematics of the process for several detection scenarios, both in terms of kinematic variables that are natural from a theoretical point of view and others that are better matched to experimental situations. The deuteron structure is obtained from a relativistic model (involving an approximation to the Bethe-Salpeter equation) as an extension of a previous, well-tested model used in deuteron electrodisintegration. We provide inclusive and coincidence (semi-inclusive) cross sections for a variety of kinematic conditions, using the plane-wave impulse approximation, introducing final-state hadronic exchange terms (plane-wave Born approximation) and final-state hadronic interactions (distorted-wave Born approximation).Comment: 31 pages, 14 figure

    Measured quantum probability distribution functions for Brownian motion

    Full text link
    The quantum analog of the joint probability distributions describing a classical stochastic process is introduced. A prescription is given for constructing the quantum distribution associated with a sequence of measurements. For the case of quantum Brownian motion this prescription is illustrated with a number of explicit examples. In particular it is shown how the prescription can be extended in the form of a general formula for the Wigner function of a Brownian particle entangled with a heat bath.Comment: Phys. Rev. A, in pres

    N-terminal pro-B-type natriuretic peptide and the prediction of primary cardiovascular events: results from 15-year follow-up of WOSCOPS

    Get PDF
    <b>Aims:</b>To test whether N-terminal pro-B-type natriuretic peptide (NT-proBNP) was independently associated with, and improved the prediction of, cardiovascular disease (CVD) in a primary prevention cohort. <b>Methods and results:</b> In the West of Scotland Coronary Prevention Study (WOSCOPS), a cohort of middle-aged men with hypercholesterolaemia at a moderate risk of CVD, we related the baseline NT-proBNP (geometric mean 28 pg/mL) in 4801 men to the risk of CVD over 15 years during which 1690 experienced CVD events. Taking into account the competing risk of non-CVD death, NT-proBNP was associated with an increased risk of all CVD [HR: 1.17 (95% CI: 1.11–1.23) per standard deviation increase in log NT-proBNP] after adjustment for classical and clinical cardiovascular risk factors plus C-reactive protein. N-terminal pro-B-type natriuretic peptide was more strongly related to the risk of fatal [HR: 1.34 (95% CI: 1.19–1.52)] than non-fatal CVD [HR: 1.17 (95% CI: 1.10–1.24)] (P= 0.022). The addition of NT-proBNP to traditional risk factors improved the C-index (+0.013; P < 0.001). The continuous net reclassification index improved with the addition of NT-proBNP by 19.8% (95% CI: 13.6–25.9%) compared with 9.8% (95% CI: 4.2–15.6%) with the addition of C-reactive protein. N-terminal pro-B-type natriuretic peptide correctly reclassified 14.7% of events, whereas C-reactive protein correctly reclassified 3.4% of events. Results were similar in the 4128 men without evidence of angina, nitrate prescription, minor ECG abnormalities, or prior cerebrovascular disease. <b>Conclusion:</b> N-terminal pro-B-type natriuretic peptide predicts CVD events in men without clinical evidence of CHD, angina, or history of stroke, and appears related more strongly to the risk for fatal events. N-terminal pro-B-type natriuretic peptide also provides moderate risk discrimination, in excess of that provided by the measurement of C-reactive protein

    Assessment of the Potential Impact and Cost-effectiveness of Self-Testing for HIV in Low-Income Countries.

    Get PDF
    Studies have demonstrated that self-testing for human immunodeficiency virus (HIV) is highly acceptable among individuals and could allow cost savings, compared with provider-delivered HIV testing and counseling (PHTC), although the longer-term population-level effects are uncertain. We evaluated the cost-effectiveness of introducing self-testing in 2015 over a 20-year time frame in a country such as Zimbabwe

    Networks and the epidemiology of infectious disease

    Get PDF
    The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues

    Quantum measurement and decoherence

    Get PDF
    Distribution functions defined in accord with the quantum theory of measurement are combined with results obtained from the quantum Langevin equation to discuss decoherence in quantum Brownian motion. Closed form expressions for wave packet spreading and the attenuation of coherence of a pair of wave packets are obtained. The results are exact within the context of linear passive dissipation. It is shown that, contrary to widely accepted current belief, decoherence can occur at high temperature in the absence of dissipation. Expressions for the decoherence time with and without dissipation are obtained that differ from those appearing in earlier discussions

    Wigner Distribution Function Approach to Dissipative Problems in Quantum Mechanics with emphasis on Decoherence and Measurement Theory

    Get PDF
    We first review the usefulness of the Wigner distribution functions (WDF), associated with Lindblad and pre-master equations, for analyzing a host of problems in Quantum Optics where dissipation plays a major role, an arena where weak coupling and long-time approximations are valid. However, we also show their limitations for the discussion of decoherence, which is generally a short-time phenomenon with decay rates typically much smaller than typical dissipative decay rates. We discuss two approaches to the problem both of which use a quantum Langevin equation (QLE) as a starting-point: (a) use of a reduced WDF but in the context of an exact master equation (b) use of a WDF for the complete system corresponding to entanglement at all times
    corecore