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The general, universal formalism for semi-inclusive charged-current (anti)neutrino-nucleus reactions is
given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed
developments are presented with the former in mind and are further specialized to cases where the final-
state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such
processes are summarized, and then explicit expressions are developed for the leptonic and hadronic
tensors involved and for the corresponding responses according to the usual charge, longitudinal and
transverse projections, keeping finite the masses of all particles involved. In the case of the hadronic
responses, general symmetry principles are invoked to determine which contributions can occur. Finally,
the general leptonic-hadronic tensor contraction is given as well as the cross section for the process.
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I. INTRODUCTION

Many of the ongoing experiments in charge-changing
neutrino scattering involve quasielastic scattering from light
to medium mass nuclei. An increasing number of these
experiments offer the possibility of studying semi-inclusive
charge-changing (CC) neutrino or antineutrino reactions,
namely, those where a final-state charged lepton and some
other particle are presumed to be detected in coincidence.
For example, in the ArgoNeuT [1] and MicroBooNE [2]
experiments protons, together with muons, are detected in
coincidence using argon time projection chambers. Using
standard nuclear physics notation such reactions would be
denoted Xðνl;l−xÞ and Xðν̄l;lþxÞ, where l ¼ e, μ, or τ.
Here x can be any kinematically allowed particle, for
instance, γ, a nucleon N ¼ p or n, a deuteron d or triton
t, 3He, α, fission fragment, π, K, and so on. The target X
may be a nucleus or the proton itself. All of these
possibilities are contained in the formalism that follows.
One should be clear that this notation indicates what is
presumed to be detected, not what is actually in the final
state. For example, if x ¼ p, this means that one proton
is definitely in the final state; however, depending on the
kinematics chosen for the reaction, there may be
many open channels, a proton and a daughter nucleus
in some discrete state, two protons and a different nucleus in
some discrete state, a proton and a neutron and yet another
nucleus in some discrete state, etc. The semi-inclusive cross
section is then the sum or integral over all unobserved
particles, except the one that is presumed to be detected, in

this example a proton. At a level lower, one has the inclusive
cross section where all particles for all open channels are to
be summed or integrated.
In the rest of the paper, to make things more specific and

to explore the present case of interest in the quasielastic
regime (CCQE), we focus on the specific case of a nuclear
target where a nucleon is the particle that is presumed to be
detected (x ¼ N). Nevertheless it should be clear that
simply by changing the names of the particles involved,
all of the developments can immediately be used in any
other semi-inclusive study. Accordingly, we now consider
reactions of the type A

ZXðνl;l−pÞA−1Z Y, A
ZXðν̄l;lþnÞA−1Z−1Y,

A
ZXðνl;l−nÞA−1Zþ1Y and A

ZXðν̄l;lþpÞA−1Z−2Y. These are to be
viewed in the context of semi-inclusive electron scattering
reactions A

ZXðe; e0pÞA−1Z−1Y and A
ZXðe; e0nÞA−1Z Y. In the initial

state one has some nucleus X in its ground state with
mass number A and charge Z, while in the final state one
has a nuclear system Y with mass number A − 1 and the
charges indicated above. The latter daughter nucleus is not
presumed to be in its ground state, in general (although
this is one possibility when the system is stable to
nucleon emission), and may be in some discrete excited
state (if any exist), may be a granddaughter nucleus plus
two nucleons, and so on. All open channels are to be
considered, and we only require that the mass number and
charge be as indicated, together with the kinematical
information to be discussed in the following section.
Note also that of the four neutrino and antineutrino
reactions given above, the first two are in some sense
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“natural” in that the reactions in the CCQE regime are
at least dominated by the basic reactions on nucleons
in the target nucleus, namely, νl þ n → l− þ p and
ν̄l þ p → lþ þ n, respectively. However, the third and
fourth reactions can occur in nuclei. On the one hand, the
final states involved are complex interacting many-body
states, involving, in general, coupled channels whenever
kinematically allowed. There may be several nucleons in
the final state, and it is possible that the one with the
“wrong” flavor is the one detected. In fact, for some
situations there may be no bound state reached for the
final nucleus, and one definitely has nucleons of both
flavors in the final state. On the other hand, while one
certainly has one-body electroweak current operators
(those that act on a single nucleon), it is also clear that
two-body meson exchange currents (MEC) are present as
well. For instance, important contributions to MEC at
quasielastic kinematics are diagrams where two nucleons
interact with an exchanged W�, going through a virtual Δ
which in turn exchanges a pion between the two nucleons,
leaving two nucleons in the final state. Take, for example,
the third reaction above: if the two initial nucleons are an
nn pair in the nuclear ground state, one can absorb the
exchanged Wþ, go through a Δþ, exchange a πþ, and
have an np pair in the final state where the neutron is the
particle detected in the third reaction (and the proton may
be the one detected in the first reaction). In the develop-
ments presented in the rest of this paper the formalism is
general enough to allow for MEC, no assumption is
required about which specific reaction is being consid-
ered, and only when applying these ideas with particular
modeling are the details required. All of the developments
are kept relativistic; i.e., no nonrelativistic approximations
are made, with one exception which will be discussed
later in this paper. All of the formalism may then be used
regardless of the energy scale, whether at relatively low
energies or, what is more typical, at high energies.

The paper is arranged in the following way: in the next
section the required basic kinematics are summarized. Here
we assume that the incident neutrino or antineutrino has a
given momentum, although in practical situations one
usually has to fold the answers with the appropriate
neutrino flux. In Sec. III we introduce the general electro-
weak leptonic and hadronic tensors. We use the notation
already employed in studies of electron scattering (see, for
instance, Refs. [3,4]), while in Secs. III A and III B the
details of these two tensors are further developed. In
Sec. IV the tensor contractions and semi-inclusive cross
section are presented, and finally, in Sec. V we summarize
the results of this study and indicate where we are presently
applying the formalism using specific models.

II. KINEMATICS

To describe the kinematics of the particles involved in
the process, we indicate four-vectors with capital letters
such as Aμ ¼ ðA0; A1; A2; A3Þ and three-vectors with bold-
face lowercase letters such as a, with their magnitudes in
normal-faced font a ¼ jaj; the metric used, as in [5], yields
A · B ¼ AμBμ ¼ A0B0 − a · b (repeated indices summed).
The incident neutrino (or antineutrino) carries four-

momentum Kμ ¼ ðε;kÞ, where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is the

total energy, k is the three-momentum, and m is the mass.
The outgoing charged lepton has four-momentum K0μ ¼
ðε0;k0Þ and mass m0. The spacelike four-momentum of the
boson exchanged with the nuclear target is Qμ ¼ ðω;qÞ,
with −Q2 ¼ jQ2j ¼ q2 − ω2 ≥ 0. We assume the three-
momentum q to be along the 3-axis so that the incoming
and outgoing leptons define the 13-plane (see Fig. 1).
By defining the lepton scattering angle θ (i.e., the angle
between k and k0), the components of the incident and
outgoing leptons and exchanged boson four-momenta can
be written as

K0 ¼ ε K00 ¼ ε0 Q0 ¼ ε − ε0 ¼ ω

K1 ¼ 1

q
kk0 sin θ K01 ¼ 1

q
kk0 sin θ Q1 ¼ 0

K2 ¼ 0 K02 ¼ 0 Q2 ¼ 0

K3 ¼ 1

q
kðk − k0 cos θÞ K03 ¼ −

1

q
k0ðk0 − k cos θÞ Q3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p
¼ q: ð1Þ

In the laboratory system the incoming nuclear
target with mass M0

A carries four-momentum Pμ
A ¼

ðM0
A; 0; 0; 0Þ. We assume that the final hadronic state

consists of a stripped nucleon and the remaining daughter
nucleus with four-momenta Pμ

N ¼ ðEN;pNÞ and
Pμ
A−1 ¼ ðEA−1;pA−1Þ, respectively. This A − 1 daughter

system may be in its ground state or in some discrete
excited state, it may be an A − 2 granddaughter nucleus

plus a nucleon, etc., and it has invariant mass WA−1. The
only assumption so far is that one nucleon is presumed to
be detected and so only final states with one or more
nucleons, at least one being of the appropriate flavor, are
being considered (see also below). Using the coordinate
system introduced above, where q lies along the z axis
and the leptons lie in the 13-plane, the total four-
momentum in the hadronic vertex is
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Pμ
tot ≡Qμ þ Pμ

A ¼ Pμ
N þ Pμ

A−1 ¼ ðP0
tot; 0; 0; P

3
totÞ; ð2Þ

P0
tot ¼ M0

A þ ω ¼ EN þ EA−1 ≡ E; ð3Þ

ptot ¼ P3
totu3 ¼ qu3 ¼ q ¼ pN þ pA−1: ð4Þ

Writing out the components of the products’ four-
momenta one has

P0
N ¼ EN P0

A−1 ¼ EA−1

P1
N ¼ pN sin θN cosϕ P1

A−1 ¼ −pA−1 sin θA−1 cosϕ

P2
N ¼ pN sin θN sinϕ P2

A−1 ¼ −pA−1 sin θA−1 sinϕ

P3
N ¼ pN cos θN P3

A−1 ¼ pA−1 cos θA−1; ð5Þ

where θN and θA−1 are the angles of the hadronic
products with respect to the 3-axis (direction of q),
and ϕ is the angle between the plane defined by the
nucleon momentum pN and the momentum transfer q
and the leptonic (13) plane. From Eqs. (4) and (5) we
have that

sin θA−1 ¼
1

pA−1
pN sin θN

cos θA−1 ¼
1

pA−1
ðq − pN cos θNÞ; ð6Þ

and from conservation of energy, Eq. (3), one has
EA−1 ¼ E − EN , where both products are on shell, i.e.,
EN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
N þm2

N

p
and EA−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
A−1 þW2

A−1

p
, where

WA−1, as said above, is the invariant mass of the A −
1 daughter system.
Having set up the basic form for the semi-inclusive cross

section, let us next consider the problem in more detail
by discussing the general kinematical variables to be used
when studying Xðνl;l−NÞ and Xðν̄l;lþNÞ reactions in the
context of previous studies of Xðe; e0NÞ reactions. We have
seen above that the cross section depends on a limited set
of kinematic variables. The leptonic variables are those
discussed above. The hadronic variables, in contrast, are
best transformed into other variables when treating semi-
inclusive scattering from nuclei. We see in the following
section that the dependences on the azimuthal angle ϕ can
be made explicit using the general Lorentz structure of the
hadronic tensor and so we can leave that variable aside. We
have the momentum transfer q and energy transfer ω from
the leptonic side via the exchange of a singleW�, and so we
can use this pair or equivalently Q2 and ν in other notation,
or Q2 and x≡ jQ2j=2mNν in still other notation. That
leaves us with pN and θN , which are more conveniently
transformed into two new variables. While these sets of
dynamical variables are, of course, completely usable and
indeed natural from an experimental point of view, we see
in the following that alternative sets are more convenient
when studying the specifics of the cross section in the
regime of quasifree scattering.
From three-momentum conservation one has

pA−1 ¼ q − pN ≡ −p; ð7Þ
where p is minus the missing momentum pm, so that the
daughter energy becomes EA−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

A−1 þ p2
p

. This is
completely general and, in particular, is not dictated by any
specific model for the reaction. Clearly this momentum
merely characterizes the split in momentum flow between
the detected nucleon and the unobserved daughter nucleus.
From energy conservation and using the three-momentum
conservation relation, one has

M0
A þ ω ¼ EN þ EA−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2 þ 2qp cos θpq þm2

N

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þW2

A−1

q
ð8Þ

with θpq being the angle between p and q. Next we need
some energy variable to characterize the degree of excita-
tion of the daughter nucleus. A natural choice is the
excitation energy in the rest frame of the recoiling daughter
nucleus, E� ≡WA−1 −W0

A−1 ≥ 0, whereWA−1 includes the
internal excitation energy of the A − 1 system while W0

A−1
is the smallest possible invariant mass of the A − 1 and
will be the ground state rest mass of this system M0

A−1 in
most cases. By construction E� is greater than or equal to
zero—and equal to zero when the daughter nucleus is left
in its ground state. Using this one can obtain the so-called
missing energy

FIG. 1. Kinematics for semi-inclusive neutrino-nucleus
reactions.
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Em ¼ mN þWA−1 −M0
A ¼ Es þ E�; ð9Þ

where Es ¼ mN þW0
A−1 −M0

A is the separation energy (or
“Q value” ); another commonly used energy in the problem
is defined as the minimum energy needed to separate the
nucleus A into a nucleon and the residual nucleus A − 1
in its ground state. As we see below, we could now use
ðE�; pÞ or ðEm; pmÞ in place of ðEN; θNÞ, although it may
be shown that still another choice for the energy is
preferable for certain purposes other than E�, namely,

E ≡ EA−1 − E0
A−1 ≥ 0; ð10Þ

where, as before, EA−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

A−1 þ p2
p

and now also
E0
A−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

A−1
2 þ p2

p
. This quantity does not differ much

from the excitation energy E� for p ≪ W0
A−1, which is

typically the case; let us call it the “daughter energy
difference,” in contrast to the “daughter excitation
energy” E�.
Overall, energy conservation yields an equation for E in

terms of q, ω, p and the angle θpq:

E ¼ ω − Es þmN −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2 þ q2 þ 2pq cos θpq
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

A−1
2 þ p2

q
þW0

A−1: ð11Þ

Thus there are clear relationships between the sets ðEN; θNÞ
and ðp; θÞ and hence ðE; pÞ. Instead of the first set, we now
use the last set as a pair of dynamical variables.
With these preliminaries in hand let us discuss the

characteristic landscape of the coincidence semi-inclusive
cross section as a function of E and p for fixed q and ω
(and of course fixed θ and ϕ). We have not yet required that
the kinematic relationships discussed above should be
satisfied, and when we do so, we find that only specific
regions are accessible. Noting that Eq. (11) yields a curve
of E versus p in the ðE; pÞ plane for each choice of θpq, let
us see what constraint the requirement that −1≤ cosθpq ≤
þ1 imposes on the kinematics.
First, consider ω small (to be specified completely

below) and plot the trajectory when cos θpq ¼ −1. A curve
rising from negative E to intersect E ¼ 0 at p ¼ pmin > 0
which peaks at some value of p and then falls to intersect
E ¼ 0 again, this time at p ¼ pmax > pmin, is generally
obtained. All physically allowable values of E and p must
lie below this curve and, of course, above E ¼ 0. To obtain
the other extreme, cos θpq ¼ þ1, one can simply replace p
by −p in Eq. (11); the physically allowable values of E and
p must lie above this curve. For ω small, no physically
allowable values occur near the latter curve and the physical
region is completely defined by the cos θpq ¼ −1 curve
and E ¼ 0. Following past work [6] we call the minimum
value of momentum pmin ≡ −y and the maximum value

pmax ≡þY. The formal definition of ω small then becomes
“y < 0.” We can set E ¼ 0 in Eq. (11) and solve for y and
Y, yielding

yðq;ωÞ ¼ 1

W2
A

h
ðM0

A þ ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 −W0

A−1
2W2

A

q
− qΛ

i
; ð12Þ

Yðq;ωÞ ¼ 1

W2
A

h
ðM0

A þ ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 −W0

A−1
2W2

A

q
þ qΛ

i
ð13Þ

with

WA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM0

A þ ωÞ2 − q2
q

; ð14Þ

Λ ¼ 1

2
ðW2

A þW0
A−1

2 −m2
NÞ: ð15Þ

A useful relationship is the following:

M0
A þ ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ yÞ2 þm2

N

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þW0

A−1
2

q
: ð16Þ

Noting that the quasielastic peak occurs—approximately—
at the kinematical point where y ¼ 0, it is useful to use
Eq. (16) to define

ωQE ≡ ωðy ¼ 0Þ≡
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þm2
N

q
−mN

o
þ Es

¼ jQ2
QEj=2mN þ Es: ð17Þ

Accordingly, ω small corresponds to y < 0, namely, to
ω < ωQE. Finally, the equation for the upper boundary of
the allowed region (i.e., corresponding to cos θpq ¼ −1) is
given by

E− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðqþ yÞ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ ðq − pÞ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

A−1
2 þ y2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

A−1
2 þ p2

q
: ð18Þ

When the momentum transfer becomes very large, one can
show that this goes to the finite asymptotic limit

E− !
q→∞

E∞
− ¼ yþ p −

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

A−1
2 þ p2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W0

A−1
2 þ y2

q i
:

ð19Þ
Henceforth, instead of the sets fq;ω; EN; θNg or
fQ2; Q · PA; PN · PA;Q · PNg we use the set fq; y; E; pg
to characterize the general two-arm coincidence cross
section. In particular, the response functions to be intro-
duced later are all functions of these four variables together
with ϕ.
In Fig. 2(a) we show families of curves of E− versus p for

specific values of q and y < 0. The physical regions lie
below these curves and above E ¼ 0 for the chosen
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kinematics. Clearly, by imposing these kinematic con-
straints on the semi-inclusive cross section it is possible
to see what features of the dynamics are or are not accessible
in the y < 0 region. Note that even when q → ∞ only a
limited part of the dynamical landscape is accessible. Also
note that inclusive scattering corresponds to integrating over
the entire accessible region for q and y (or equivalently ω)
fixed, and summing over the allowed particle species
(N ¼ p and n), and correcting for double counting by
subtracting the cross section where both a proton and a
neutron are detected in coincidence with the charged lepton.
These developments can be extended rather easily to the

ω large region, which becomes equivalent to y > 0 and
hence to ω > ωQE. Again the curves of E versus p when
cos θpq ¼ �1 define boundaries. The cos θpq ¼ −1 curve
(namely, E ¼ E− above) is much as before, except that now
pmin is negative and so y≡ −pmin is positive. Reflecting
p → −p to obtain the cos θpq ¼ þ1 curve from the
cos θpq ¼ −1 curve as before now yields a nontrivial result:
the physically allowable region must lie below the
cos θpq ¼ −1 curve and above the cos θpq ¼ þ1 curve,
and since the latter lies in the quadrant where E ≥ 0 and
p ≥ 0, this provides a new boundary, namely, E− obtained
from Eq. (18) by changing p to −p. In Fig. 2(b) results
similar to those in Fig. 2(a) are shown, except now for y ≥ 0.
The physically accessible region in each case lies above the
lines extending from p ¼ y to the E axis and below the
curves extending from the E axis to peak at some value of p
and fall again, eventually intersecting the E ¼ 0 line at
pmax ¼ Y. Again we see that only specific parts of the semi-
inclusive cross section are accessible for these kinematics.
The merit of transforming to the ðE; pÞ variables is that

these are best suited to characterizing the nuclear dynamics.
The most important contributions of the semi-inclusive
cross section, as studied to some extent via reactions, lie
at relatively small values of E, where one typically finds
distributions as functions of p that reflect the shell structure
of the specific nucleus being studied. For instance, in a
simple shell model of the nucleus one sees features that
reflect the knockout of nucleons from the valence shell, the
next-to-valence shell, etc. These fall relatively rapidly with

increasing p. Unfortunately, however, such simple models
are not adequate and one also requires overall suppression
of these “momentum distributions” by factors of typically
30% via the so-called spectroscopic factors. Also from
past studies one knows that some of this “missing strength”
is moved to higher values of E, partially through standard
nuclear interactions which make both initial and final
nuclear states complicated. Said another way, the states
involved are undoubtedly not simple single Slater determi-
nants. Also, the NN interaction has both long- and short-
range contributions, and especially the latter can promote
strength to higher E and p. Something like 20%–30% of the
strength is known to reside in this part of the landscape,
although the actual amounts are not very well determined.
In between the two regions one has other likely issues to
deal with, namely, the fact that there are several open
channels to be considered and these can conspire via
channel coupling to produce the true final many-body state.
An example is when a nucleon is ejected from a deep-lying
shell model state: for typical kinematics it is also possible to
have two or more nucleons ejected, and these channels can
couple, yielding a very complex situation. Such issues are
very hard to treat, especially in a relativistic context as is
required for typical studies of neutrino reactions.

III. GENERAL ELECTROWEAK TENSORS

The cross section takes on its characteristic form
involving the contraction of two second-rank Lorentz
tensors, dσ ∼ ημνWμν, corresponding to the leptonic and
the hadronic contributions which are thus factorized and
dealt with independently. The leptonic tensor is defined as

ημν ≡ 2mm0X
if

j�μjν; ð20Þ

where a factor 4mm0 (merged here with an additional factor
1=2) has been included to compensate spinor norms later
on, the lepton masses being kept finite until the end of our
developments. Its hadronic counterpart is

Wμν ≡X
if

Jμ�fi ðqÞJνfiðqÞ; ð21Þ

where the operations
P

if in the two cases correspond to
sums and averages over the appropriate sets of leptonic
quantum numbers (the helicities, in fact) or hadron quan-
tum numbers (helicities or spins, etc.) and integration over
all unobserved particles in the final state of the A − 1
system for hadrons. It proves useful to decompose both
leptonic and hadronic tensors into pieces which are
symmetric (s) or antisymmetric (a) under index interchange
μ↔ν, since in contracting them no symmetric-antisym-
metric cross terms are allowed. Both tensors can thus be
decomposed as ημν ¼ ηsμν þ ηaμν and Wμν ¼ Wμν

s þWμν
a ,

where the terms are defined as

FIG. 2 (color online). Planes defined by the daughter energy
difference E and the missing momentum p, showing the allowed
region for semi-inclusive neutrino-nucleus scattering processes.
(a) For y < 0, i.e., ω below the quasielastic peak. (b) For y > 0,
i.e., ω above the quasielastic peak.
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ηsμν ¼
1

2
ðημν þ ηνμÞ; ηaμν ¼

1

2
ðημν − ηνμÞ;

Wμν
s ¼ 1

2
ðWμν þWνμÞ; Wμν

a ¼ 1

2
ðWμν −WνμÞ: ð22Þ

Clearly one has that ηsμμ ¼ ημμ and Wμμ
s ¼ Wμμ, whereas

ηaμμ ¼ Wμμ
a ¼ 0 (no summation over μ implied in these

expressions). In addition, since each tensor is proportional
to the bilinear combinations of the electroweak currents
in the forms ημν ∼ j�μjν and Wμν ∼ Jμ�Jν, one has that
η�μν ¼ ηνμ and Wμν� ¼ Wνμ, and thus that

ηsμν ¼ Reημν; ηaμν ¼ iImημν;

Wμν
s ¼ ReWμν; Wμν

a ¼ iImWμν: ð23Þ

Let us begin by defining the following (real) symmetric
(no prime) and antisymmetric (prime) hadronic response
functions:

WCC ≡ ReW00 ¼ W00; ð24Þ

WCL ≡ 2ReW03 ¼ 2W03
s ; ð25Þ

WLL ≡ ReW33 ¼ W33; ð26Þ

WT ≡ ReW22 þ ReW11 ¼ W22 þW11; ð27Þ

WTT ≡ ReW22 − ReW11 ¼ W22 −W11; ð28Þ

WTC ≡ 2
ffiffiffi
2

p
ReW01 ¼ 2

ffiffiffi
2

p
W01

s ; ð29Þ

WTL ≡ 2
ffiffiffi
2

p
ReW31 ¼ 2

ffiffiffi
2

p
W31

s ; ð30Þ

WTT ≡ 2ReW12 ¼ 2W12
s ; ð31Þ

WTC ≡ 2
ffiffiffi
2

p
ReW02 ¼ 2

ffiffiffi
2

p
W02

s ; ð32Þ

WTL ≡ 2
ffiffiffi
2

p
ReW32 ¼ 2

ffiffiffi
2

p
W32

s ; ð33Þ

WT 0 ≡ −2ImW12 ¼ 2iW12
a ; ð34Þ

WTC0 ≡ −2
ffiffiffi
2

p
ImW02 ¼ 2

ffiffiffi
2

p
iW02

a ; ð35Þ

WTL0 ≡ −2
ffiffiffi
2

p
ImW32 ¼ 2

ffiffiffi
2

p
iW32

a ; ð36Þ

WCL0 ≡ ImW03 ¼ iW03
a ; ð37Þ

WTC0 ≡ 2
ffiffiffi
2

p
ImW01 ¼ −2

ffiffiffi
2

p
iW01

a ; ð38Þ

WTL0 ≡ 2
ffiffiffi
2

p
ImW31 ¼ −2

ffiffiffi
2

p
iW31

a : ð39Þ
HereC refers to charge (the μ ¼ 0) projection, L refers to

longitudinal (momentum transfer direction, μ ¼ 3) projec-
tion and T refers to transverse (μ ¼ 1; 2) projections.
Concerning the latter, the meaning of the combinations

used above can be elucidated by introducing the spherical
components of the transverse projections of the hadronic
current, defined as

Jðþ1Þ ¼−
1ffiffiffi
2

p ðJ1þ iJ2Þ; Jð−1Þ ¼ 1ffiffiffi
2

p ðJ1− iJ2Þ; Jð0Þ ¼J3;

ð40Þ

or inversely,

J1 ¼ −
1ffiffiffi
2

p ðJðþ1Þ − Jð−1ÞÞ; J2 ¼ iffiffiffi
2

p ðJðþ1Þ þ Jð−1ÞÞ;

J3 ¼ Jð0Þ: ð41Þ

With these definitions, and using the notation Wðmm0Þ for
the spherical vector components (m;m0 ¼ fþ1;−1; 0g) of
the hadronic tensor, one can rewrite the responses that
contain transverse projections as

WT ≡Wðþ1þ1Þ þWð−1−1Þ; ð42Þ

WTT ≡ 2ReWðþ1−1Þ; ð43Þ

WTL ≡ −2ReðWð0þ1Þ −Wð0−1ÞÞ; ð44Þ

WTT ≡ 2ImWðþ1−1Þ; ð45Þ

WTL ≡ −2ImðWð0þ1Þ þWð0−1ÞÞ; ð46Þ

WT 0 ≡Wðþ1þ1Þ −Wð−1−1Þ; ð47Þ

WTL0 ≡ −2ReðWð0þ1Þ þWð0−1ÞÞ; ð48Þ

WTL0 ≡ −2ImðWð0þ1Þ −Wð0−1ÞÞ: ð49Þ
It is thus clear that the T response, being an incoherent
sum of circularly (or linearly) polarized responses, is the
unpolarized transverse response, whereas the TT response
contains the information needed to specify the linear
polarization information [more clearly seen in Eq. (28)].
The T 0 response, on the other hand, gives the additional
information needed, together with the T response to specify
the circular polarization.
Equivalently to the hadronic case, the corresponding

symmetric (no prime) and antisymmetric (prime) leptonic
quantities may be defined as

v0V̂CC ≡ Reη00 ¼ η00; ð50Þ

v0V̂CL ≡ Reη03 ¼ ηs03; ð51Þ

v0V̂LL ≡ Reη33 ¼ η33; ð52Þ

v0V̂T ≡ 1

2
ðReη22 þ Reη11Þ ¼

1

2
ðη22 þ η11Þ; ð53Þ

MORENO et al. PHYSICAL REVIEW D 90, 013014 (2014)

013014-6



v0V̂TT ≡ 1

2
ðReη22 − Reη11Þ ¼

1

2
ðη22 − η11Þ; ð54Þ

v0V̂TC ≡ 1ffiffiffi
2

p Reη01 ¼
1ffiffiffi
2

p ηs01; ð55Þ

v0V̂TL ≡ 1ffiffiffi
2

p Reη31 ¼
1ffiffiffi
2

p ηs31; ð56Þ

v0V̂TT ≡ Reη12 ¼ ηs12; ð57Þ

v0V̂TC ≡ 1ffiffiffi
2

p Reη02 ¼
1ffiffiffi
2

p ηs02; ð58Þ

v0V̂TL ≡ 1ffiffiffi
2

p Reη32 ¼
1ffiffiffi
2

p ηs32; ð59Þ

v0V̂T 0 ≡ Imη12 ¼ −iηa12; ð60Þ

v0V̂TC0 ≡ 1ffiffiffi
2

p Imη02 ¼ −
1ffiffiffi
2

p iηa02; ð61Þ

v0V̂TL0 ≡ 1ffiffiffi
2

p Imη32 ¼ −
1ffiffiffi
2

p iηa32; ð62Þ

v0V̂CL0 ≡ −Imη03 ¼ iηa03; ð63Þ

v0V̂TC0 ≡ −
1ffiffiffi
2

p Imη01 ¼
1ffiffiffi
2

p iηa01; ð64Þ

v0V̂TL0 ≡ −
1ffiffiffi
2

p Imη31 ¼
1ffiffiffi
2

p iηa31; ð65Þ

where the overall factor v0 is defined as

v0 ≡ ðεþ ε0Þ2 − q2: ð66Þ

The results found here are completely general; they are
simply a convenient rewriting of the original components of
the leptonic and hadronic tensors where the projections
along the momentum transfer direction (L) and transverse
to it provide the organizing principle.

A. Leptonic tensor

From the definition in Eq. (20) and employing the
conventions of [5], we form the general leptonic tensor
involving neutrinos and negatively charged leptons—later
it is straightforward to extend the results to include
antineutrinos and positively charged leptons:

ημνðK0; KÞ ¼ mm0X
s;s0

ūðK; sÞðaVγμ þ aAγμγ5ÞuðK0; s0Þ

× ūðK0; s0ÞðaVγν þ aAγνγ5ÞuðK; sÞ; ð67Þ

which includes the sum over final spin states and the
average over initial spin states, the latter implying a factor
1=2. In the standard model the charged-current vector
and axial coupling constants take the values aV ¼ 1 and
aA ¼ −1, which yields the usual form of the vertex
γμð1 − γ5Þ. Upon eliminating the spinors using traces
one finds

ημνðK0; KÞ≡ 1

4
fTr½aVγμ þ aAγμγ5�ðK0 þm0Þ½aVγν þ aAγνγ5�ðK þmÞg

¼ 1

4
fa2VTr½γμðK0 þm0ÞγνðK þmÞ�ð1Þ þ a2ATr½γμγ5ðK0 þm0Þγνγ5ðK þmÞ�ð2Þ

þaVaAðTr½γμðK0 þm0Þγνγ5ðK þmÞ�ð3Þ þ Tr½γμγ5ðK0 þm0ÞγνðK þmÞ�ð4ÞÞg: ð68Þ

The traces can then be expressed as

1

4
Tr½�ð1Þ ¼ KμK0

ν þ K0
μKν − gμνðK · K0 −mm0Þ; ð69Þ

1

4
Tr½�ð2Þ ¼ KμK0

ν þ K0
μKν − gμνðK · K0 þmm0Þ; ð70Þ

1

4
Tr½�ð3Þ ¼

1

4
Tr½�ð4Þ ¼ −iεμναβKαK0β: ð71Þ

Cases (1) and (2) are symmetric under the interchange
of μ with ν, while cases (3) and (4) (the VA-interference

terms) are antisymmetric. Note that if studying reactions
with an incident or outgoing massless leptons (m ¼ 0 or
m0 ¼ 0), then cases (1) and (2) yield the same answer.
We introduce the following definitions:

ν≡ ω

q
; ð72Þ

ρ≡ jQ2j
q2

¼ 1 − ν2; ρ0 ≡ q
εþ ε0

; ð73Þ

δ≡ mffiffiffiffiffiffiffiffiffi
jQ2j

p ; δ0 ≡ m0ffiffiffiffiffiffiffiffiffi
jQ2j

p ; ð74Þ

SEMI-INCLUSIVE CHARGED-CURRENT NEUTRINO- … PHYSICAL REVIEW D 90, 013014 (2014)

013014-7



tan2 ~θ=2 ¼ jQ2j
v0

¼ ρρ02

1 − ρ02
: ð75Þ

In terms of the angle ~θ the quantities Q2 and v0 [the latter defined in Eq. (66)] can be written as

Q2 ¼ −4εε0sin2 ~θ=2; ð76Þ

v0 ¼ 4εε0cos2 ~θ=2: ð77Þ

Using the previous definitions the components of the leptonic tensor as defined in Eqs. (50)–(65) give rise to the following
expressions:

V̂CC ¼ 1

2
fða2V þ a2AÞ − ½a2Vðδ − δ0Þ2 þ a2Aðδþ δ0Þ2�tan2 ~θ=2g; ð78Þ

V̂CL ¼ −
1

2
ða2V þ a2AÞ

�
ν −

1

ρ0
ðδ2 − δ02Þtan2 ~θ=2

�
; ð79Þ

V̂LL ¼ 1

2

�
ða2V þ a2AÞ

�
ν2 −

1

ρ0
ð2ν − ρρ0ðδ2 − δ02ÞÞðδ2 − δ02Þtan2 ~θ=2

�
þ½a2Vðδ − δ0Þ2 þ a2Aðδþ δ0Þ2�tan2 ~θ=2

�
; ð80Þ

V̂T ¼ 1

2
ða2V þ a2AÞ

��
1

2
ρþ tan2 ~θ=2

�
þ
�
ν

ρ0
ðδ2 − δ02Þ − 1

2
ρðδ2 − δ02Þ2

�
tan2 ~θ=2

�
− ða2V − a2AÞδδ0tan2 ~θ=2; ð81Þ

V̂TT ¼ 1

2
ða2V þ a2AÞ

�
−
1

2
ρþ

�
ðδ2 þ δ02Þ − ν

ρ0
ðδ2 − δ02Þ þ 1

2
ρðδ2 − δ02Þ2

�
tan2 ~θ=2

�
; ð82Þ

V̂TC ¼ −
1

2
ða2V þ a2AÞ

1

ρ0
tan ~θ=2 ×

�
1

2
−
1

ρ
½ðδ2 þ δ02Þ − ν

ρ0
ðδ2 − δ02Þ þ 1

2
ρðδ2 − δ02Þ2� tan2 ~θ=2

�
1=2

; ð83Þ

V̂TL ¼ −ðν − ρρ0ðδ2 − δ02ÞÞV̂TC; ð84Þ

V̂TT ¼ 0; ð85Þ

V̂TC ¼ 0; ð86Þ

V̂TL ¼ 0; ð87Þ

V̂T 0 ¼ aVaA
1

ρ0
ð1þ νρ0ðδ2 − δ02ÞÞtan2 ~θ=2; ð88Þ

V̂TC0 ¼ −aVaA tan ~θ=2

×

�
1

2
−
1

ρ

�
ðδ2 þ δ02Þ − ν

ρ0
ðδ2 − δ02Þ

þ 1

2
ρðδ2 − δ02Þ2

�
tan2 ~θ=2

�
1=2

; ð89Þ

V̂TL0 ¼ −νV̂TC0 ; ð90Þ

V̂CL0 ¼ 0; ð91Þ

V̂TC0 ¼ 0; ð92Þ

V̂TL0 ¼ 0: ð93Þ

Within these 16 factors, 10 of them are symmetric and 6 are
antisymmetric. Under the conditions in this work, 6 of them
vanish, namely, the ones with an underlined subscript
(see [4] for processes where they do not); the rest reduce
to the following expressions in the extreme relativistic limit

(ERL), defined as V̂K !ERL 1
2
ða2V þ a2AÞvK for the symmetric

ones (no prime) and as V̂K0 !ERLaVaAvK0 for the antisym-
metric ones (prime):

vCC ¼ 1; ð94Þ

vCL ¼ −ν; ð95Þ

vLL ¼ ν2; ð96Þ

vT ¼ 1

2
ρþ tan2θ=2; ð97Þ
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vTT ¼ −
1

2
ρ; ð98Þ

vTC ¼ −
1ffiffiffi
2

p
ρ0
tan θ=2; ð99Þ

vTL ¼ −νvTC; ð100Þ

vT 0 ¼ tan θ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþ tan2θ=2

q
; ð101Þ

vTC0 ¼ −
1ffiffiffi
2

p tan θ=2; ð102Þ

vTL0 ¼ −νvTC0 : ð103Þ

It isworthnoticing that the followingcombination isuseful
when discussing conserved vector current (CVC) terms:

V̂L ≡ V̂CC þ 2νV̂CL þ ν2V̂LL

¼ 1

2
ða2V þ a2AÞ

�
ρ2 þ νρ

�
2

ρ0
þ νðδ2 − δ02Þ

�
ðδ2 − δ02Þtan2 ~θ=2

�
−
1

2
½a2Vðδ − δ0Þ2 þ a2Aðδþ δ0Þ2�ρtan2 ~θ=2; ð104Þ

whose corresponding ERL factor is vL ¼ ρ2. Also, the T
and TT terms are simply related:

V̂T þ V̂TT ¼ 1

2
fða2V þ a2AÞ þ ½a2Vðδ − δ0Þ2

þ a2Aðδþ δ0Þ2�gtan2 ~θ=2: ð105Þ

Finally, one can easily complete the leptonic develop-
ments by going to the start and replacing the u spinor by v
spinors so that the leptonic tensor for antiparticles can be
obtained. The final result is that upon contracting the
leptonic and hadronic tensors (see Sec. IV) the VVand AA
terms are as above, while the VA interference changes sign.

B. Hadronic tensor

Among the various components of the hadronic tensor
defined above, only some of them occur, which can be
deduced from the general developments of the hadronic
tensor as it is constructed from the available four-momenta.
The reaction of interest here is semi-inclusive scattering
where, as we have seen in Sec. II, at the hadronic vertex one
has incoming momentum transferQμ and the nuclear target
momentum Pμ

A. In the final state one has the momentum of
the detected nucleon Pμ

N together with the residual nucleus’
momentum which can be eliminated using four-momentum
conservation: Pμ

A−1 ¼ Qμ þ Pμ
A − Pμ

N . Six invariants can be
constructed:

I1≡Q2; I2≡Q ·PA; I3≡Q ·PN ;

I4≡PA ·PN ; I5≡P2
A ¼M0

A
2; I6≡P2

N ¼m2
N; ð106Þ

of which the first four are dynamical variables, whereas the
last two are fixed by the target nucleus and nucleon masses.
Accordingly, all invariant structure functions depend on the
four dynamical invariants Ii, i ¼ 1;…; 4. They can be
expressed as

I1 ¼ ω2 − q2 < 0; ð107Þ

I2 ¼ M0
Aω; ð108Þ

I3 ¼ ωEN − qpN cos θN; ð109Þ

I4 ¼ M0
AEN: ð110Þ

Next one can write symmetric and antisymmetric had-
ronic tensors as functions of the three independent four-
momenta Qμ, Pμ

A and Pμ
N . In fact, it proves to be more

convenient to introduce projected four-momenta to replace
the last two, namely,

Uμ ≡ 1

M0
A

�
Pμ
A −

�
Q · PA

Q2

�
Qμ

�
; ð111Þ

Vμ ≡ 1

MN

�
Pμ
N −

�
Q · PN

Q2

�
Qμ

�
; ð112Þ

where then Q ·U ¼ Q · V ¼ 0. Also, to keep the dimen-
sions consistent in the developments below, let us introduce
a dimensionless four-momentum transfer

~Qμ ≡ Qμffiffiffiffiffiffiffiffiffi
jQ2j

p : ð113Þ

The symmetric hadronic tensor may then be written

Wμν
s ¼X1gμνþX2

~Qμ ~QνþX3UμUνþX4ð ~QμUνþUμ ~QνÞ
þX5VμVνþX6ð ~QμVνþVμ ~QνÞþX7ðUμVνþVμUνÞ;

ð114Þ

where Xi, i ¼ 1;…; 7 are invariant functions of the
invariants discussed above. These seven types of terms
arise from VV and AA contributions. Likewise, the
antisymmetric tensor can be constructed from the basic
four-momenta
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Wμν
a ¼ ifY1ð ~QμUν −Uμ ~QνÞ þ Y2ð ~QμVν −Vμ ~QνÞ

þ Y3ðUμVν −VμUνÞþZ1ε
μναβ ~QαUβ þZ2ε

μναβ ~QαVβ

þZ3ε
μναβUαVβg; ð115Þ

where again Yi and Zi, i ¼ 1;…; 3 are invariant functions
of the invariants above. The terms having no εμναβ, namely,
the Yi terms (as well as the Xi terms, as said above), arise
from VV and AA contributions, whereas those with εμναβ,
namely, the Zi terms, come from VA interferences. Note
that for inclusive scattering where one does not haveVμ as a
building block, only terms of the X1, X2, X3, X4, Y1 and Z1

type can occur.
For a conserved vector current (CVC) situation such as

seen here for the VV terms or for purely polar-vector
electron scattering, the continuity equation in momentum
space requires that

QμðWμν
s ÞVV ¼ QμðWμν

a ÞVV ¼ 0: ð116Þ

For the symmetric tensor this contraction removes the
terms with X3, X5; Y3, Z1, leaving the conditions

ð−XVV
1 þ XVV

2 Þ ~Qν þ XVV
4 Uν þ XVV

6 Vν ¼ 0; ð117Þ

YVV
1 Uν þ YVV

2 Vν ¼ 0; ð118Þ

where no terms with εμναβ can occur in a VV situation, i.e.,
ZVV
1 ¼ ZVV

2 ¼ ZVV
3 ¼ 0, as noted above. Since the basic

four-momenta are linearly independent of each other, the
coefficients above must all be independently zero, namely,
XVV
1 − XVV

2 ¼ XVV
4 ¼ XVV

6 ¼ YVV
1 ¼ YVV

2 ¼ 0.
Accordingly, one has

ðWμν
s ÞVV ¼ XVV

1

�
gμν −

QμQν

Q2

�
þ XVV

3 UμUν

þ XVV
5 VμVν þ XVV

7 ðUμVν þ VμUνÞ; ð119Þ

ðWμν
a ÞVV ¼ YVV

3 ðUμVν − VμUνÞ: ð120Þ

For instance, in semi-inclusive electron scattering the
symmetric terms lead to the standard L, T, TL and TT
responses, while the antisymmetric term which becomes
accessible with polarized electron scattering yields the TL0
response, the so-called 5th response [3,4]. For the other
cases, the AA and VA responses, there is no further
simplification in general. The resulting number of contri-
butions of each type is summarized in Table I for semi-
inclusive and for inclusive scattering, the latter arising from
integrating the semi-inclusive contributions. For the semi-
inclusive case of interest here, they form the functions
Xi; Yi; Zi as follows:

X1 ¼ XVV
1 þ XAA

1 Y1 ¼ YAA
1

X2 ¼ XVV
1 þ XAA

2 Y2 ¼ YAA
2

X3 ¼ XVV
3 þ XAA

3 Y3 ¼ YVV
3 þ YAA

3

X4 ¼ XAA
4 Z1 ¼ ZVA

1

X5 ¼ XVV
5 þ XAA

5 Z2 ¼ ZVA
2

X6 ¼ XAA
6 Z3 ¼ ZVA

3

X7 ¼ XVV
7 þ XAA

7 : ð121Þ

Upon using the kinematic variables in the laboratory
system discussed in Sec. II, in particular, Eqs. (72), 73),
together with the following definitions:

ηT ≡ pN

mN
sin θN; ð122Þ

H ≡ 1

mN
½EN − νpN cos θN �; ð123Þ

the hadronic response functions defined in Sec. III can be
written as

WCC
s ¼ 1

ρ2
fρ2X1 þ ρν2X2 þ X3 þ 2

ffiffiffi
ρ

p
νX4þH2X5

þ 2
ffiffiffi
ρ

p
νHX6 þ 2HX7g; ð124Þ

WCL
s ¼ 2ν

ρ2

�
ρX2 þ X3 þ

ffiffiffi
ρ

p �
1

ν
þ ν

�
X4

þH2X5 þ
ffiffiffi
ρ

p �
1

ν
þ ν

�
HX6 þ 2HX7

�
; ð125Þ

WLL
s ¼ 1

ρ2
f−ρ2X1 þ ρX2 þ ν2X3 þ 2

ffiffiffi
ρ

p
νX4

þ ν2H2X5 þ 2
ffiffiffi
ρ

p
νHX6 þ 2ν2HX7g; ð126Þ

WT
s ¼ −2X1 þ X5η

2
T; ð127Þ

WTT
s ¼ −X5η

2
T cos 2ϕ; ð128Þ

TABLE I. Number of electroweak responses in semi-inclusive
and inclusive processes, classified according to their properties
under spatial inversion (VV, AA, and VA) and index interchange
(symmetric and antisymmetric).

Semi-inclusive Inclusive

Type Sym A-sym Sym A-sym

VV 4 1 2 0
AA 7 3 4 1
VA 0 3 0 1
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WTC
s ¼ 2

ffiffiffi
2

p

ρ
ηTfHX5 þ

ffiffiffi
ρ

p
νX6 þ X7g cosϕ; ð129Þ

WTL
s ¼ 2

ffiffiffi
2

p

ρ
ηTfνHX5 þ

ffiffiffi
ρ

p
X6 þ νX7g cosϕ; ð130Þ

WTT
s ¼ X5η

2
T sin 2ϕ; ð131Þ

WTC
s ¼ 2

ffiffiffi
2

p

ρ
ηTfHX5 þ

ffiffiffi
ρ

p
νX6 þ X7g sinϕ; ð132Þ

WTL
s ¼ 2

ffiffiffi
2

p

ρ
ηTfνHX5 þ

ffiffiffi
ρ

p
X6 þ νX7g sinϕ; ð133Þ

WT 0
a ¼ 1ffiffiffi

ρ
p fZ1 þHZ2g; ð134Þ

WTC0
a ¼ 2

ffiffiffi
2

p

ρ
ηTf−ð

ffiffiffi
ρ

p
νY2 þ Y3Þ sinϕ

þ ð ffiffiffi
ρ

p
Z2 þ νZ3Þ cosϕg; ð135Þ

WTL0
a ¼2

ffiffiffi
2

p

ρ
ηTf−ð

ffiffiffi
ρ

p
Y2þνY3Þsinϕþð ffiffiffi

ρ
p

νZ2þZ3Þcosϕg;
ð136Þ

WCL0
a ¼ −

1ffiffiffi
ρ

p fY1 þHY2g; ð137Þ

WTC0
a ¼2

ffiffiffi
2

p

ρ
ηTfð

ffiffiffi
ρ

p
νY2þY3Þcosϕþð ffiffiffi

ρ
p

Z2þνZ3Þsinϕg;
ð138Þ

WTL0
a ¼2

ffiffiffi
2

p

ρ
ηTfð

ffiffiffi
ρ

p
Y2þνY3Þcosϕþð ffiffiffi

ρ
p

νZ2þZ3Þsinϕg:
ð139Þ

Note how the explicit dependence on the azimuthal angle
ϕ emerges: one has pairs of symmetric contributions,
namely, TT↔TT, TC↔TC, and TL↔TL, where a cosine
is replaced by a sine, as well as pairs of antisymmetric
contributions, namely, TC0↔TC0 and TL0↔TL0, where a
rotation is involved. Also note that, while these constitute
the complete set of semi-inclusive responses, in fact none
of the underlined cases enter when combined with the
leptonic factors obtained above, since the latter are all zero
[see Eqs. (78)–(93)].

IV. CONTRACTION OF TENSORS
AND CROSS SECTION

The contraction of the leptonic and the hadronic tensors
arises from the application of standard Feynman rules to
the evaluation of the cross section of the process under
study here; it is an invariant, taking the same form in the

laboratory, in the center of momentum, or in any other
system of reference. As mentioned in Sec. III, the sym-
metric and the antisymmetric components of the leptonic
and the hadronic tensors can be contracted separately since
no cross terms are allowed:

v0F 2
χ ≡ ημνWμν ¼ ηsμνW

μν
s þ χηaμνW

μν
a ; ð140Þ

where χ ¼ 1 for incident neutrinos, as obtained in
Sec. III A, and χ ¼ −1 for antineutrinos, as can be easily
shown with the same formalism but using antiparticle
spinors v in Eq. (67). In Cartesian components the
symmetric and the antisymmetric contractions above yield

ηsμνW
μν
s ¼ ηs00W

00
s þ 2ηs03W

03
s þ ηs33W

33
s þ ηs11W

11
s þ ηs22W

22
s

þ 2ηs01W
01
s þ 2ηs31W

31
s þ 2ηs02W

02
s

þ 2ηs32W
32
s þ 2ηs12W

12
s ; ð141Þ

ηaμνW
μν
a ¼ 2ηa03W

03
a þ 2ηa01W

01
a þ 2ηa31W

31
a

þ2ηa02W
02
a þ 2ηa32W

32
a þ 2ηa12W

12
a ; ð142Þ

which, according to the developments of Sec. III, can be
expressed as

ηsμνW
μν
s ¼Reη00ReW00þ2Reη03ReW03þReη33ReW33

þReη11ReW11þReη22ReW22þ2Reη01ReW01

þ2Reη31ReW31þ2Reη02ReW02þ2Reη32ReW32

þ2Reη12ReW12; ð143Þ

−ηaμνW
μν
a ¼2Imη03ImW03þ2Imη01ImW01þ2Imη31ImW31

þ2Imη02ImW02þ2Imη32ImW32þ2Imη12ImW12:

ð144Þ

Finally, in terms of projections with respect to the
momentum transfer direction, the contractions read

ηsμνW
μν
s ¼ v0f½V̂CCWCC þ V̂CLWCL þ V̂LLWLL

þ V̂TWT þ V̂TTWTT þ V̂TCWTC þ V̂TLWTL�
þ ½V̂TTWTT þ V̂TCWTC þ V̂TLWTL�g; ð145Þ

ηaμνW
μν
a ¼ v0f½V̂T 0WT 0 þ V̂TC0WTC0 þ V̂TL0WTL0 �

þ½V̂CL0WCL0 þ V̂TC0WTC0 þ V̂TL0WTL0 �g; ð146Þ

where the hadronic responses contain all the VV, AA,
and VA terms applicable to each of them, as shown in
Eqs. (121).
In any of the above representations the symmetric con-

traction involves 10 terms and the antisymmetric one
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involves 6 terms, for an expected total of 16 terms. From the
tensor contractions above, the matrix element of the process
is [see definition of the leptonic tensor in Eq. (67)]

jMχ j2 ¼
G2 cos2 θcv0

2mm0 F 2
χ ; ð147Þ

whereG ¼ 1.166 × 10−5 GeV−2 is the coupling constant of
the weak interaction, cos θc ¼ 0.974 with θc the Cabibbo

angle accounting for the misalignment between the strong
and the weak hadronic eigenstates, v0 was defined in
Eq. (66), and, as said above, χ ¼ þ1 for neutrino and
χ ¼ −1 for antineutrino scattering.
We then evaluate the coincidence cross section of

the processes AXðνl;l−NÞA−1Y or AXðν̄l;lþNÞA−1Y in
the laboratory system [see [4] for the procedures for the
analogous case of ðe; e0NÞ reactions]. Using standard
Feynman rules we get for the cross section,

dσχ ¼
G2cos2θc
2ð2πÞ5

mNWA−1v0
kε0ENEA−1

F 2
χd3k0d3pNd3pA−1δ

4ðK þ PA − K0 − PA−1 − PNÞ: ð148Þ

This form is exact in the cases where the A − 1 system is in
a bound ground state or a long-lived excited state. In other
cases this form assumes that the wave function of the A − 1
system can be factorized into center-of-mass and relative
wave functions, which is not, in general, true for relativistic
wave functions. However, since the momenta available
to the A − 1 system will generally be of the order of the
Fermi momentum and the masses of the undetected frag-
ments will tend to be large, the nuclear system will
generally be treated nonrelativistically and the factorization
of the wave function will then be exact. Upon integration
over the unobserved residual daughter nucleus momentum
pA−1 and energy EA−1, one gets

dσχ
dk0dΩk0dΩpN

¼ G2cos2θc
2ð2πÞ5

mNWA−1

M0
A

pNk02v0
kε0Frec

F 2
χ ; ð149Þ

where WA−1 is defined so that f ≡ 0, with

f ¼ εþM0
A − ε0 − ðp2

N þm2
NÞ1=2

− ðq2 þ p2
N − 2qpN cos θN þW2

A−1Þ1=2: ð150Þ

This equation is a rewriting of the energy conservation
condition stated in Eq. (8). From the function f one also
obtains the recoil factor Frec as

Frec¼
ENEA−1

M0
ApN

���� ∂f∂pN

����¼
����1þωpN−qEN cosθN

M0
ApN

����: ð151Þ

When ERL applies, the cross section in Eq. (149) becomes

dσχ½ERL�
dε0dΩk0dΩpN

¼ G2cos2θc
16π5

mNWA−1

M0
A

pNε
02cos2ðθ=2Þ
Frec

F 2
χ :

ð152Þ

V. CONCLUSIONS

In this study we have presented the general formalism for
semi-inclusive charged-current neutrino-nucleus reactions,
i.e., those processes where neutrinos (antineutrinos)

interact with a nuclear target, and in addition to the
final-state lepton (antilepton), one assumes that some other
particle is also detected in coincidence. Such processes are
called semi-inclusive reactions to contrast them to inclusive
reactions where only the final-state lepton is detected. The
features summarized below highlight the generality of this
formalism. We note the following:

(i) The masses of the incoming and outgoing leptons
are kept; viz., no extreme relativistic limit has been
invoked. Although for typical kinematical situations
the impact is limited when considering scattering
of active neutrinos with production of electrons or
muons, it becomes relevant for tau production, and it
can also be easily extended to study massive sterile
neutrino interactions with nuclei.

(ii) The scattering of both neutrinos and antineutrinos is
considered, differing just in the sign of the anti-
symmetric tensor contraction contribution to the
matrix element of the process.

(iii) No assumptions are made on the hadronic target, on
the particle emitted and detected in coincidence, or
on the state of the residual, undetected hadronic
system after the emission. In particular, the latter can
be in an excited bound state or be partially or totally
unbound, as long as charge and baryon numbers are
conserved.

(iv) The detailed characterization of the semi-inclusive
neutrino cross section is organized in a form that
makes it easy to understand as a straightforward
generalization of the well-known formalism for in-
clusive [3] and semi-inclusive [4] electron scattering
cross sections, as well as for inclusive neutrino
reactions [7]. Indeed, the purely vector semi-inclusive
neutrino responses are the same as the corresponding
isovector electron scattering responses, viz., because
of CVC. Two forms are given for the general response
structure of the cross sections, one in terms of
chargelike, longitudinal and transverse projections
of the electroweak current (theWs of Secs. III and IV)
and another in terms of invariant structure functions
(the Xs, Ys and Zs of Sec. III).
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(v) Using the basic symmetries in the problem (angular
momentum, parity and four-momentum conserva-
tion) we have isolated the general dependences on
the azimuthal angle ϕ. For instance, even without
detailed modeling, one can see how specific inter-
ference terms in the response change sign when
going from ϕ ¼ 0 to ϕ ¼ π. One should be clear
that such interference contributions are intrinsic to
the basic semi-inclusive electroweak reaction and
must be modeled. They are not, for instance,
present for inclusive reactions, and indeed, the
modeling typically used in studies of the latter are
often quite inadequate when studying semi-inclusive
scattering.

(vi) The general semi-inclusive response is organized
into symmetric and antisymmetric contributions,
and contributions that are purely vector (VV), purely
axial-vector (AA) and VA interferences. For such
processes, of the 16 possible response functions, the
6 underlined contributions [see Eqs. (145), (146)]
do not enter for CCν reactions, leaving 10 distinct
contributions to the semi-inclusive cross section.
These in turn are built from the 17 invariant structure
functions introduced in Eqs. (114) and (115) (note
that the term containing Y1 does not contribute for
CCν reactions). In contrast, there are only 5 distinct
contributions to the inclusive cross section.

(vii) Furthermore, the semi-inclusive responses are all
functions of 4 kinematic variables, whereas the
inclusive ones depend on only 2 kinematic variables.
Of course, complete integrations over two of the
variables in the former yield either zero for some of
the interference responses or yield their inclusive
counterparts.

(viii) Ultimately, when specific models are considered and
when the neutrino fluxes commonly employed when
comparing with experiment are taken into consid-
eration, it will be necessary to integrate over the
neutrino energies involved with the fluxes as weight-
ing factors. Note, however, that this does not at all
mean that one reverts to the inclusive responses. In
fact, those integrations can be cast as line integrals in
the ðE; pÞ plane, which are not simply related to the
complete integrations in that plane that would yield
the inclusive responses. Indeed, such integrations
leave averaged responses that depend on 3 kinematic
variables and the interference responses do not
integrate to zero.

(ix) Accordingly, the demands being placed on modeling
the coincidence reactions are much greater. Where
crude models such as the relativistic Fermi gas
model may be acceptable for studies of inclusive
scattering (to the extent that errors of perhaps 30%
are viewed as acceptable), for semi-inclusive studies
many of the models being employed are certainly

inapplicable, since they are incapable of predicting
even roughly the correct ðE; pÞ dependence of the
cross section.

Furthermore, neutral-current neutrino weak interactions
can also be described by the formalism in this work upon
integration over the outgoing neutrino variables. This
inclusive u channel results in nonvanishing responses in
general, in contrast to inclusive t-channel reactions where
integration over the momentum of the ejected particle
(of course, consistent with four-momentum conservation)
causes the responses dependent on the angle ϕ to vanish
(see the discussion in [8]).
As stated above, the formalism has been kept entirely

general and any type of coincidence reaction can be
represented in terms of the response functions introduced
in this work. However, to make the formalism clearer, we
have focused on the case where the particle detected in
coincidence with the final-state muon is a nucleon. In fact,
in practical situations this is likely to be a proton so that the
semi-inclusive reactions of interest will typically be of the
type A

ZXðνl;l−pÞA−1Z Y and A
ZXðν̄l;lþpÞA−1Z−2Y. A general

differential cross section is given, from which a variety of
integrations can be performed; we do so over the residual
daughter nucleus variables, assuming that the incoming
neutrino energy is known, to produce a differential cross
section suitable for Monte Carlo generators. In practical
situations, however, the energy of the incoming neutrinos
lies within a rather wide range, connecting to a variety of
possible dynamic regimes in the nuclear target. This is the
reason why we introduce in this work the excitation energy
and the momentum of the residual system as hadronic
kinematic variables. For given (measured) conditions such
as the final lepton and emitted nucleon momenta (both
magnitude and direction, or angles), a range of incoming
neutrino energies translates into a curve in the ðE; pÞ plane
that reveals which nuclear dynamics are most relevant for
the process, for instance multinucleon versus one-nucleon
emission. Some care has been taken in providing the
interconnections between the “experimental” kinematic
variables (energies and momenta of the detected particles)
and the “nuclear” kinematic variables, p and E, since the
response of the nucleus is a rapidly varying function of
the latter.
Our plan for work already in progress is to study specific

reactions involving particular nuclei. In doing so, it is
clearly essential to understand where the dominant regions
in the ðE; pÞ plane lie to be able to predict the semi-
inclusive (and also inclusive) neutrino cross sections with
sufficient confidence.
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