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Deuteron disintegration by charged-current neutrino (CCν) scattering offers the possibility to determine
the energy of the incident neutrino by measuring in coincidence two of the three resulting particles: a
charged lepton (usually a muon) and two protons, where we show that this channel can be isolated from all
others—for instance, from those with a pion in the final state. We discuss the kinematics of the process for
several detection scenarios, both in terms of kinematic variables that are natural from a theoretical point of
view and others that are better matched to experimental situations. The deuteron structure is obtained from
a relativistic model (involving an approximation to the Bethe-Salpeter equation) as an extension of a
previous, well-tested model used in deuteron electrodisintegration. We provide inclusive and coincidence
(semi-inclusive) cross sections for a variety of kinematic conditions, using the plane-wave impulse
approximation, introducing final-state hadronic exchange terms (plane-wave Born approximation) and
final-state hadronic interactions (distorted-wave Born approximation).
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I. INTRODUCTION

Deuterium has been used in the past as a target in several
neutrino quasielastic scattering experiments for average
energies in the range 0.5–27 GeV, where the final-state
particles in the reaction were detected in bubble chambers
[1]. For reactions below the pion production threshold, a
neutrino interacts with a neutron bound in deuteron, which
turns into a proton, and a negatively charged lepton is
produced. The two resulting protons are no longer bound,
and one or both of them can be detected in coincidence with
the charged lepton.
From a theoretical point of view, the advantage of

using deuterium as a target with coincidence detection lies
in the fact that the kinematics of the remaining nucleon,
and of all of the particles taking part in the process, are
fully determined by energy-momentum conservation. This
includes the energy of the incoming neutrino, which
usually has a broad energy spectrum, an issue for neutrino
oscillation experiments when nuclei other than deuterium
are used. In the case of nuclei in general, the nucleus is in
general excited to configurations at high missing energy
(see Ref. [2] for a discussion of semi-inclusive CCν
reactions, including the definition of missing energy)
and, even when both a charged lepton and a proton are
detected in coincidence, one cannot reconstruct the incident
neutrino energy. However, the deuteron does not share this

problem, and all kinematic variables can be reconstructed
from measurements of a subset of final-state particles. The
details of such procedures are discussed later. We note that,
insofar as a cut can be made to separate events where pions
are produced from those where they cannot—i.e., where the
“no-pion” cross section can be isolated (the kinematics for
making such a cut are discussed below)—what we continue
to call the semi-inclusive cross section is actually an
exclusive cross section, meaning that the energies and
momenta of all particles are determined by measuring only
the subsets summarized above.
In addition to determining the neutrino energy using only

the kinematics of the reaction being studied, namely
νμ þ 2H → μ− þ pþ p, the cross section for this reaction
can be used to determine the neutrino flux. This, of course,
requires that one know that cross section, and indeed,
especially under favorable conditions, this is the case as
discussed later. Such is not the case, however, for complex
nuclei such as carbon or oxygen, where considerable effort
has gone into evaluating the level of theoretical uncertainty
in modeling neutrino reactions in those cases.
Aside from providing a means to determine the energy

and flux of the incident neutrino in such semi-inclusive
CCν reactions, neutrino disintegration of the deuteron has
the potential to yield valuable new information on the
nucleonic content in the problem. Specifically, given that
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the vector EM form factors of the nucleon are relatively
well determined from electron scattering on protons and
light nuclei, the prime candidate for such an approach is the

isovector, axial-vector form factor of the nucleon, Gð1Þ
A .

Once the uncertainties in the modeling of the deuteron and
pp systems have been evaluated—i.e., the extent to which
different ground-state wave functions yield different results
and to which the treatment of the pp final state gives
different answers—the reaction can be used to determine

Gð1Þ
A . Both aspects of the problem are discussed below.
The paper is organized as follows: In Sec. II the

basic kinematics of the process is described, and the
formalism of the weak responses and the neutrino-deuteron
cross section is given in Sec. III. In Sec. IV the deuteron
structure model is summarized. In Sec. V results are
presented and discussed for inclusive and semi-inclusive
neutrino-deuteron scattering for several choices of kin-
ematics. Finally, in Sec. VI our conclusions are given.

II. KINEMATICS

Let us begin from a “theoretical” point of view
and presume that the energy of the incident neutrino is
known, having mass m with three-momentum k and total
energy ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, contained in the four-momentum

Kμ ¼ ðε;kÞ. Later we will work backwards, assuming that
only final-state momenta are known, and show how
the neutrino energy may be reconstructed. The four-
momentum corresponding to the outgoing charged lepton,
with mass m0, is K0μ ¼ ðε0;k0Þ, and the four-momentum
transfer is Qμ ¼ ðω;qÞ, with −Q2 ¼ jQ2j ¼ q2 − ω2 ≥ 0
(spacelike). The three-momentum transfer q is assumed to
be along the 3-axis so that the lepton momenta define
the 13-plane (see Fig. 1), and the angle between them is
the scattering angle θ. With these definitions, the compo-
nents of the above mentioned four-momenta can be
written as

K0 ¼ ε; K00 ¼ ε0; Q0 ¼ ε − ε0 ¼ ω;

K1 ¼ 1
q kk

0 sin θ; K01 ¼ 1
q kk

0 sin θ; Q1 ¼ 0;

K2 ¼ 0; K02 ¼ 0; Q2 ¼ 0;

K3 ¼ 1
q kðk − k0 cos θÞ; K03 ¼ − 1

q k
0ðk0 − k cos θÞ; Q3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p
¼ q.

ð1Þ

Concerning the hadronic part of the process, the deuteron at rest carries four-momentum Pμ
d ¼ ðMd; 0; 0; 0Þ, where

Md ¼ 1875.61 MeV is its mass. The protons resulting from the CCν disintegration of the target have the four-momenta
Pμ
1 ¼ ðE1;p1Þ and Pμ

2 ¼ ðE2;p2Þ, respectively. Let θ01 and θ02 be, respectively, the angles of the proton momenta with
respect to the incident neutrino momentum, and ϕ0

1 and ϕ
0
2 their angles with respect to the leptonic plane; the components of

the proton four-momenta can then be written as

P0
1 ¼ E1; P0

2 ¼ E2;

P1
1 ¼ p1½sin θ01 cosϕ0

1 cos θq þ cos θ01 sin θq�; P1
2 ¼ p2½sin θ02 cosϕ0

2 cos θq þ cos θ02 sin θq�;
P2
1 ¼ p1 sin θ01 sinϕ

0
1; P2

2 ¼ p2 sin θ02 sinϕ
0
2;

P3
1 ¼ p1½− sin θ01 cosϕ

0
1 sin θq þ cos θ01 cos θq�; P3

2 ¼ p2½− sin θ02 cosϕ
0
2 sin θq þ cos θ02 cos θq�;

ð2Þ

where θq is the angle between the incident momentum k
and the momentum transfer q, so that

sin θq ¼
1

q
k0 sin θ and cos θq ¼

1

q
ðk − k0 cos θÞ: ð3Þ

The primed angles θ01, θ02 and ϕ0
1, ϕ0

2, defined with
respect to the incident neutrino momentum, are related to
the unprimed ones defined with respect to the momentum
transfer, as were used in Ref. [2], through

sin θ0i cosϕ
0
i ¼ sin θi cosϕi cos θq − cos θi sin θq;

sin θ0i sinϕ
0
i ¼ sin θi sinϕi;

cos θ0i ¼ sin θi cosϕi sin θq þ cos θi cos θq; ð4Þ

with ϕ2 ¼ ϕ1 þ π. Let us next turn to the reverse situation,
the “experimental” point of view where only final-state
particles are presumed to be detected and where the goal is
to determine the incident neutrino energy.

A. Neutrino energy determination

On the one hand, energy and momentum conservation in
the hadronic vertex implies ω ¼ E1 þ E2 −Md and
q ¼ p1 þ p2, or q ¼ p1 cos θ1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
2 − p2

1sin
2θ1

p
for its

magnitude. On the other hand, from the lepton vertex
one has, as shown in Eq. (1), ω ¼ ε − ε0 and
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k02 − 2kk0 cos θ

p
. The transfer variables ω and

q must be equal in both vertices, and positive. Hence,
the energy-momentum conservation conditions yield two
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relationships between the undetected proton energy E2, or
corresponding momentum p2, and the incident neutrino
energy ε, or corresponding momentum k; the only possible
values of E2 and ε (or p2 and k) for the process are
those that fulfill both conditions simultaneously. It should
be noted that this procedure cannot be followed with a
general nuclear target, since the relationship between E2

and p2 is not fixed. Indeed, although on-shellness always
holds, namely E2

A−1 ¼ p2
A−1 þW2

A−1, the rest mass of the

residual system WA−1 is in general unknown (see
Ref. [2]); however, in the specific case of the deuteron
target, WA−1 ¼ mp without ambiguity. Figure 2 shows a
graphical example of how the constraints work. In the
following subsection we develop this possibility of neutrino
energy determination in deuteron scattering analytically by
defining and studying specific kinematic scenarios, as well
as the pion production threshold and other kinematic
constraints.

0 1 2 3 4 5
p

2
 [GeV]

1

2

3

4

5

6

k 
[G

eV
]

Energy conservation
Momentum conservation

0 0.5 1 1.5 2
k' [GeV]

0

1

2

3

4

5

k,
  p

2  [
G

eV
]

k
p

2

FIG. 2 (color online). Left: An example of using energy conservation (dashed curve) and momentum conservation (solid curve) to
determine the incident neutrino momentum k as a function of the undetected proton momentum p2 for a deuteron disintegration with
emitted muon momentum k0 ¼ 1 GeV, scattering angle θ ¼ 60°, emitted proton momentum p1 ¼ 0.5 GeV, and proton emission angle
θ1 ¼ 20°. The intersection of the curves gives the only possible combination of incoming neutrino and undetected proton momenta for
this process (1.45 GeVand 0.83 GeV, respectively). Right: Using this procedure, and for the same kinematic conditions for θ, p1 and θ1,
the resulting incident neutrino momentum k (solid curve) and undetected proton momentum p2 (dotted curve) as a function of the
emitted muon momentum k0.
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FIG. 1. Kinematics for coincidence neutrino-deuteron reactions.
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B. Kinematic scenarios

We consider two scenarios, the first (“scenario A”)
where the two protons in the final state are presumed to
be detected, but not the muon; and the second
(“scenario B”) where the final-state charged lepton and
one proton (called proton number 1) are presumed to be
detected, but not the other proton (proton number 2). Using
the nomenclature given above, we define the following
four-momenta:

Pμ
A ¼ ðEA; pAÞ≡ Pμ

1 þ Pμ
2; ð5Þ

Pμ
B ¼ ðEB; pBÞ≡ K0μ þ Pμ

1; ð6Þ

which yield the following relationships:

EA ¼ E1 þ E2 ¼ Md þ ω; ð7Þ

pA ¼ p1 þ p2 ¼ q; ð8Þ

EB ¼ ε0 þ E1; ð9Þ

pB ¼ k0 þ p1: ð10Þ

Note that in scenario A, this means that q and ω are
immediately known. The angles between the incoming
neutrino direction and the three-vectors pA and pB are
known and denoted θA and θB, respectively. Referring to
Fig. 1, we see that θA ¼ θq. Let us now develop the two
scenarios one at a time.
Scenario A: In this case, one knows q and ω through

q ¼ pA and ω ¼ EA −Md. Noting that k0 ¼ k − q, one has

k02 ¼ k2 þ q2 − 2kq cos θq; ð11Þ

and together with ε0 ¼ ε − ω, and using the fact that
ε02 − k02 ¼ m02, one obtains

kq cos θq − ωε ¼ XA ð12Þ

with

XA ≡ 1

2
½q2 − ω2 þm02 −m2� > 0: ð13Þ

This immediately leads to values of the incoming neutrino
momentum and energy:

k ¼ 1

aA
½q cos θqXA þ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
A þm2aA

q
�; ð14Þ

ε ¼ 1

aA
½ωXA þ q cos θq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
A þm2aA

q
�; ð15Þ

where

aA ≡ ðq cos θqÞ2 − ω2 ≥ 0: ð16Þ

One can show that 0 ≤ θq ≤ θ0q ≤ π=2, where
θ0q ≡ arccosðω=qÞ. Knowing the neutrino beam energy ε
then yields the charged lepton energy ε0 ¼ ε − ω and thus
its momentum k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε02 −m02p

, together with the angle θ
through

k0 cos θ ¼ k − q cos θq; ð17Þ

k0 sin θ ¼ q sin θq: ð18Þ

That is, one now has all of the kinematic variables in
scenario A.
Scenario B: In this situation, EB and pB are presumed

to be known, and the unknown proton variables can be
expressed as E2 ¼ ε − ðEB −MdÞ and p2 ¼ k − pB; from
the latter one gets

p2
2 ¼ k2 þ p2

B − 2kpB cos θB; ð19Þ

and then using the fact that E2
2 − p2

2 ¼ m2
p, one has

kpB cos θB − ðEB −MdÞε ¼ XB ð20Þ
with

XB ≡ 1

2
½p2

B − ðEB −MdÞ2 þm2
p −m2� > 0; ð21Þ

from which one obtains

k ¼ 1

aB
½pB cos θBXB þ ðEB −MdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

q
�; ð22Þ

ε ¼ 1

aB
½ðEB −MdÞXB þ pB cos θB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
B þm2aB

q
�; ð23Þ

where

aB ≡ ðpB cos θBÞ2 − ðEB −MdÞ2: ð24Þ

In this case, one now has q and ω using the usual
relationships in Eq. (1) and can then find E2 and p2 using
Eqs. (7) and (8), yielding all of the kinematic variables in
scenario B.
We now study the incident neutrino energy or momen-

tum threshold to produce the lightest possible extra particle
in the scattering process, namely a neutral pion, π0. One
assumes the knowledge of the three emitted particles
variables, and then defines

Pμ
C ¼ ðEC; pCÞ≡ K0μ þ Pμ

1 þ Pμ
2; ð25Þ

so that EC ¼ ε0 þ E1 þ E2 and pC ¼ k0 þ p1 þ p2. One
then has Eπ0 ¼ Md þ ε − EC and pπ0 ¼ k − pC, whence
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p2
π0
¼ k2 þ p2

C − 2kpC cos θC; ð26Þ

and using the on-shell relation for an emitted neutral pion,
E2
π0
− p2

π0
¼ m2

π0
, one obtains

kpC cos θC − ðEC −MdÞε ¼ XC; ð27Þ

with

XC ≡ 1

2
½p2

C − ðEC −MdÞ2 þm2
π0
−m2�: ð28Þ

From these expressions one obtains the following pion
production threshold values of the incident neutrino
momentum and energy:

kπ0th ¼
1

aC
½pC cos θCXC � ðEC −MdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
C þm2aC

q
�;
ð29Þ

επ0th ¼
1

aC
½ðEC −MdÞXC � pC cos θC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
C þm2aC

q
�;
ð30Þ

where

aC ≡ ðpC cos θCÞ2 − ðEC −MdÞ2: ð31Þ

For given energies of the emitted particles ε0, E1, E2,
neutral pion production is ruled out in the scattering process
if the incident neutrino beam energy fulfills ε ≤ επ0th. (and
equivalently for the momenta).
A potential strategy for measurements of the desired

kinematic variables might be the following: one might
assume that the three particles in the final state—say, a
muon and the two protons—are all measured with adequate
precision first to eliminate the possibility of π0 production,
or, more generally, to isolate processes where a pion is
produced from those where it is not, since the former is
interesting in its own right. Given this first cut, one can then
safely proceed to analyze the reaction

νμ þ 2H → μ− þ pþ p

as above in either of the scenarios, whichever proves to be
the more favorable from an experimental point of view.
Finally in this section, for completeness it is also useful

to make contact with the general developments of semi-
inclusive CCν reactions presented in Ref. [2]. The variables
introduced there translate into the present ones in the
following way:

M0
A ↔ Md; mN ↔ mp; WA−1 ↔ mp;

pN ↔ p1; p ↔ −p2: ð32Þ

The momentum of what is labeled particle 2 above is
usually called the missing momentum: pm ¼ p2 ¼ −p. For
simplicity, below we will show results as functions of
p ¼ jpj. The quantity called E in Ref. [2] and in previous
scaling analyses (see Refs. [3–5]) is zero here, since the
daughter system in the general case is simply the second
proton in the present study. This leads to the following for
the scaling variable y and the quantity Y:

y ¼ 1

2

�ðMd þ ωÞ
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 −W2

T

q
− q

�
; ð33Þ

Y ¼ qþ y; ð34Þ

where the invariant mass in the final state is given by

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMd þ ωÞ2 − q2

q
ð35Þ

and its threshold value by WT ¼ 2mp, so that W ≥ WT . A
useful relationship that emerges is

Md þ ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ y2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ Y2

q
; ð36Þ

and an important constraint in the reaction is the following:

jyj ≤ p ≤ Y: ð37Þ

Furthermore, the cosine of the angle θpq in Ref. [2] is
given by

cos θpq ¼
1

2pq
½W2 − 2ðMd þ ωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ p2

q
�: ð38Þ

III. WEAK RESPONSES AND CROSS SECTION

Using the Feynman rules and integrating over the
undetected nucleon three-momentum, the cross section
of the process can be written as

dσχ ¼
G2cos2θc
2ð2πÞ5

m2
pv0

kε0E1E2

× F 2
χd3k0d3p1δðεþMd − ε0 − E1 − E2Þ; ð39Þ

where F 2
χ is the matrix element squared (see below),

v0 ≡ ðεþ ε0Þ2 − q2, and the differentials can be
expressed as d3k0 ¼ k02dk0dΩk0 ¼ k0ε0dε0dΩk0 and d3p1 ¼
p2
1dp1dΩp1

¼ p1E1dE1dΩp1
. From this expression one

can construct the differential cross section with respect to
any set of variables, taking into account that the integration
of the delta function δðfðx;…ÞÞ with respect to the variable
x forces the variables of f to fulfill the condition f ≡ 0 and
introduces an extra factor j∂fðx;…Þ=∂xj−1.
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As an example, if the energy distribution of the incoming
neutrino beam, PðεÞ, is known, the differential cross
section averaged over incident energies is given by

Z
dσχ

dε0dΩk0dE1dΩp1

PðεÞdε

¼ G2cos2θc
2ð2πÞ5 m2

p
p1k0v0
kE2

PðεÞjFPj−1F 2
χ ; ð40Þ

with

FP ¼ 1 −
εð1 − p1 cos θ1

q Þð1 − k0 cos θ
k Þ

E2

: ð41Þ

As another example, by a further integration of Eq. (39)
over the undetected nucleon energy, one gets the following
differential cross section:

dσχ
dk0dΩk0dΩp1

¼ G2cos2θc
2ð2πÞ5

m2
p

Md

p1k02v0
kε0

jFj−1F 2
χ ; ð42Þ

with

F ¼ 1þ ωp1 − qE1 cos θ1
Mdp1

; ð43Þ

which becomes in the extreme relativistic limit

dσχ½ERL�
dε0dΩk0dΩp1

¼ G2cos2θc
16π5

m2
p

Md
p1ε

02cos2ðθ=2ÞjFj−1F 2
χ :

ð44Þ

The energy and momenta in these expressions fulfill
conservation laws, and thus the undetected energies ε
and E2 (or momenta k and p2) take only specific values
that can be deduced as described in the previous section.
The matrix element squared is given by the contraction

of the leptonic and hadronic tensors, which can be written
in terms of products of generalized Rosenbluth factors V
and hadronic responses w for charge, longitudinal and
transverse projections:

F 2
χ ¼ VCCðwVV

CC þ wAA
CCÞ þ VCLðwVV

CL þ wAA
CLÞ

þ VLLðwVV
LL þ wAA

LLÞ þ VTðwVV
T þ wAA

T Þ
þ VTTðwVV

TT þ wAA
TTÞ þ VTCðwVV

TC þ wAA
TCÞ

þ VTLðwVV
TL þ wAA

TLÞ
þ χ½VT 0wVA

T 0 þ VTC0wVA
TC0 þ VTL0wVA

TL0 �; ð45Þ

where χ ¼ þ1 for neutrino scattering and χ ¼ −1 for
antineutrino scattering. The generalized Rosenbluth factors
contributing to this matrix element are given in Ref. [2] for

general lepton masses using the quantities δ≡m=
ffiffiffiffiffiffiffiffiffi
jQ2j

p
and δ0 ≡m0=

ffiffiffiffiffiffiffiffiffi
jQ2j

p
and for general values of the vector and

axial-vector coupling constants aV and aA. Here we
reproduce those expressions particularized to the
Standard Model tree-level values of the coupling constants
(aV ¼ −aA ¼ 1) and to (anti)neutrino scattering with
m ¼ 0:

VCC ¼ 1 − δ02tan2 ~θ=2; ð46Þ

VCL ¼ −ν −
1

ρ0
δ02tan2 ~θ=2; ð47Þ

VLL ¼ ν2 þ
�
1þ 2ν

ρ0
þ ρδ02

�
δ02tan2 ~θ=2; ð48Þ

VT ¼ 1

2
ρþ

�
1 −

ν

ρ0
δ02 −

1

2
ρδ04

�
tan2 ~θ=2; ð49Þ

VTT ¼ −
1

2
ρþ

�
1þ ν

ρ0
þ 1

2
ρδ02

�
δ02tan2 ~θ=2; ð50Þ

VTC ¼ −
1

ρ0
tan ~θ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

ρ
VTT

s
; ð51Þ

VTL ¼ −ðνþ ρρ0δ02ÞVTC; ð52Þ

VT 0 ¼
�
−
1

ρ0
þ νδ02

�
tan2 ~θ=2; ð53Þ

VTC0 ¼ tan ~θ=2

�
1

2
−
1

ρ

�
1þ ν

ρ0
þ 1

2
ρδ02

�
δ02tan2 ~θ=2

�
1=2

;

ð54Þ

VTL0 ¼ −νVTC0 : ð55Þ

The following definitions have been used in the expressions
above:

ν≡ ω

q
; tan2 ~θ=2≡ jQ2j

v0
;

ρ≡ jQ2j
q2

; ρ0 ≡ q
εþ ε0

: ð56Þ

The deuteron responses w, on the other hand, can be
constructed as functions of the three independent four-
momenta of the hadronic part of the process, namely Qμ,
Pμ
d, and Pμ

1, in 17 different VV, AA and VA combinations,
each associated with an invariant function of the four
dynamical invariants constructed with the same set of four-
momenta [2]. The computation of these deuteron responses
will be described in the next section for a sophisticated
model of the nucleon structure.
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IV. DEUTERON STRUCTURE

The calculation of matrix elements for electroweak
breakup of the deuteron requires that some care be
exercised in the construction of a consistent model of
the reaction in order that basic symmetries, such as
electromagnetic current conservation, be maintained.
This is a problem that has been discussed by many authors
in the context of deuteron electrodisintegration. A detailed
discussion in the context of the Bethe-Salpeter equation [6]
and the related spectator equation [7,8] can be found in
Refs. [9,10]. In general, for all approaches, a nucleon-
nucleon (NN) interaction is parametrized in terms of a
potential or interaction kernel which can be iterated in the
appropriate equation, such as the Schrödinger equation or
Bethe-Salpeter equation, to produce the deuteron bound-
state wave function and scattering amplitudes, which is
then fit to data for laboratory kinetic energies up to
T lab ∼ 350 MeV, which is slightly above the pion produc-
tion threshold. Since the NN interaction generally involves
the exchange of electroweak charges, it is necessary in
constructing the model to include two-body currents that
contain coupling to the exchanged particles that carry the
charges. This program generally relies on the ability to
relate the NN interaction to some set of effective meson
exchanges and has been carried out rigorously, for example,
in the context of chiral effective field theory [11] and the
covariant spectator equation [12–14]. However, attempts to
extend this approach to invariant masses well above the
pion threshold have been relatively unsuccessful, and at
large four-momentum transfers and invariant masses it is
necessary to construct models which are not fully con-
sistent as a result of the inability to produce interaction
kernels that can successfully describe NN scattering in this
region.
The calculations presented in this paper use a model

related to the Bethe-Salpeter equation, which is designed to
be used at large four-momentum transfers and invariant
masses and has been used previously to describe deuteron
electrodisintegration [15–19]. A brief outline of the model

containing the modifications required for calculation of the
CCν reaction will be presented here. This model is
constructed primarily for use at large Q2 where relativistic
effects are important and where there are open meson-
production channels that must appear as inelasticities in the
scattering matrix producing the final-state interaction.
However, the plane-wave contributions can be used at
all values of Q2. At this stage, no two-body meson-
exchange currents (MEC) are included in the calculations,
although these will be included in the future, meaning that
the calculations shown here are in the impulse approxi-
mation (IA). As a rough estimate of what this approxima-
tion might entail, we note that in Ref. [20] the scaling
behavior of EM (vector) MEC was found to be such that the
results of the ratio between MEC and IA go as k4A, where kA
is some characteristic three-momentum for a given nucleus
(roughly the Fermi momentum kF). This ratio is typically
found to be about 15%–20% at the maxima of the
quasielastic and MEC contributions for nuclei such as
12C where kA ≅ 228 MeV. However, the characteristic
momentum for 2H is about 55 MeV, which yields a rough
estimate for this ratio in the present situation of
∼5–7 × 10−4—namely, contributions from MEC should
be very small. As a result, this calculation is limited to
the IA.
The Feynman diagrams representing the impulse

approximation are shown in Fig. 3. Figure 3(a) represents
the direct plane-wave contribution, Fig. 3(b) represents the
corresponding exchange contribution, and Fig. 3(c) repre-
sents the contribution from final-state interactions. Use
of Fig. 3(a) alone is called the plane-wave impulse
approximation (PWIA), while adding the exchange dia-
gram Fig. 3(b) gives the plane-wave Born approximation
(PWBA) [21,22]. We refer to the inclusion of all three
diagrams in Fig. 3 as the distorted-wave Born approxima-
tion (DWBA). In the next section, results are shown for all
three assumptions to ascertain the impact of antisymmet-
rization and final-state interactions on the predictions made
in this study.

(a) (b) (c)

FIG. 3 (color online). Feynman diagrams representing charge-changing neutrino reactions in the impulse approximation.
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The matrix element corresponding to Fig. 3(a) is given
by

hp1s1;p2s2jJμðQÞjpdλdia
¼ −ūðp1; s1ÞΓμ

CCðqÞG0ðPd −P2ÞΓT
λd
ðP2;PdÞūTðp2; s2Þ;

ð57Þ

where the target deuteron has four-momentum Pd and spin
λd, and the two final-state protons have four-momentum
and spin ðP1; s1Þ and ðP2; s2Þ. The single-nucleon propa-
gator is

G0ðPÞ ¼
γ · PþmN

m2
N − P2 − iη

; ð58Þ

and the weak charged-current operator has vector and axial-
vector contributions

Γμ
CCðQÞ ¼ ½Γμ

VðQÞ − Γμ
AðQÞ�τþ; ð59Þ

Γμ
VðQÞ ¼ FI¼1

1 ðQ2Þγμ þ FI¼1
2 ðQ2Þ
2mN

iσμνQν; ð60Þ

Γμ
AðQÞ ¼

�
GAðQ2Þγμ þGPðQ2Þ Qμ

2mN

�
γ5; ð61Þ

where the vector-isovector form factors used here are from
the GKex05 parametrization (see Ref. [23] and references
therein) of the nucleon electromagnetic form factors, and
the axial-vector and induced pseudoscalar form factors are
taken to be

GAðQ2Þ ¼ 1.2695

ð1þ Q2

M2
A
Þ2

ð62Þ

and

GPðQ2Þ ¼ 1	
1

185.05 þ Q2

4m2
p


GAðQ2Þ: ð63Þ

Unless stated otherwise, we use MA ¼ 1.03 GeV.
For this contribution, the one leg of the deuteron is on

shell. The deuteron vertex function with nucleon 2 on shell
can be written as

ΓλdðP2; PdÞ ¼ g1ðP2
2; P2 · PdÞγ · ξλdðPÞ þ g2ðP2

2; P2 · PdÞ
P · ξλdðPdÞ

mN

−
�
g3ðP2

2; P2 · PdÞγ · ξλdðPdÞ þ g4ðP2
2; P2 · PdÞ

P · ξλdðPdÞ
mN

�
γ · p1 þm

mN
C; ð64Þ

where P1 ¼ Pd − P2, P ¼ 1
2
ðP1 − P2Þ ¼ Pd

2
− P2, C is the charge-conjugation matrix and ξλd is the deuteron polarization

four-vector. The invariant functions gi are given by

g1ðP2
2; P2 · PdÞ ¼

2Eκ −Mdffiffiffiffiffiffi
8π

p
�
uðκÞ − 1ffiffiffi

2
p wðκÞ þ

ffiffiffi
3

2

r
mN

κ
vtðκÞ

�
; ð65Þ

g2ðP2
2; P2 · PdÞ ¼

2Eκ −Mdffiffiffiffiffiffi
8π

p
�

mN

Eκ þmN
uðκÞ þmNð2Eκ þmNÞffiffiffi

2
p

κ2
wðκÞ þ

ffiffiffi
3

2

r
mN

κ
vtðκÞ

�
; ð66Þ

g3ðP2
2; P2 · PdÞ ¼

ffiffiffiffiffiffiffiffi
3

16π

r
mNEκ

κ
vtðκÞ; ð67Þ

g4ðP2
2; P2 · PdÞ ¼ −

m2
Nffiffiffiffiffiffi

8π
p

Md

�
ð2Eκ −MdÞ

�
1

Eκ þmN
uðκÞ − Eκ þ 2mNffiffiffi

2
p

κ2
wðκÞ

�
þ

ffiffiffi
3

p
Md

κ
vsðκÞ

�
; ð68Þ

where

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPd · P2Þ2

P2
d

− P2
2

s
ð69Þ

is the magnitude of the neutron three-momentum in the
deuteron rest frame, and

Eκ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þm2

N

q
: ð70Þ

The functions uðκÞ, wðκÞ, vsðκÞ and vtðκÞ are the s-wave,
d-wave, singlet p-wave and triple p-wave radial wave
functions of the deuteron in momentum space. For con-
venience, the spectator deuteron wave function can be
defined as
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ψλd;s2ðP2;PdÞ¼G0ðPd−P2ÞΓT
λd
ðP2;PdÞūTðp2;s2Þ: ð71Þ

We choose to normalize this wave function such that in the
deuteron rest frame

X
s2

Z
d3p2

ð2πÞ3
mN

Ep2

ψ̄ λd;s2ðP2; PdÞγ0ψλd;s2ðP2; PdÞ ¼ 1;

ð72Þ

which is correct only in the absence of energy-dependent
kernels [9]. This corresponds to a normalization of the
radial wave functions

Z
∞

0

dκκ2

ð2πÞ3 ½u
2ðκÞ þ w2ðκÞ þ v2t ðκÞ þ v2sðκÞ� ¼ 1: ð73Þ

For the calculations in this paper we use the WJC 2 wave
functions [12].
The current matrix element corresponding to Fig. 3(a)

can then be written as

hp1s1;p2s2jJμðQÞjpdλdia
¼ −ūðp1; s1ÞΓμ

CCðQÞψλd;s2ðP2; PdÞ: ð74Þ

The current matrix element corresponding to Fig. 3(b) is
related to that of Fig. 3(a) by a crossing of the two final-
state protons. So,

hp1s1;p2s2jJμðQÞjpdλdib ¼ hp2s2;p1s1jJμðQÞjpdλdia:
ð75Þ

The contribution from final-state interactions
represented by Fig. 3(c) requires the introduction of a
pp scattering amplitude M and an integration for the loop
four-momentum k2, which involves both the deuteron
vertex function and the pp scattering amplitude. In this
case, both of the protons are in general off shell. However,
an examination of the contributions of the poles of
the nucleon propagators shows that the contribution from
the positive-energy on-shell pole of proton 2 dominates the
calculation. As in the previous electrodisintegration calcu-
lations, we choose to put particle 2 on its positive-energy
mass shell to simplify the calculation. Using this approach,
the contribution of the final-state interaction to the current
matrix element is given by

hp1s1;p2s2jJμðQÞjpdλdic
¼

Z
d3k2
ð2πÞ3

m
Ek2

ūaðp1; s1Þūbðp2; s2ÞMab;cdðP1; P2;K2Þ

×G0ceðPd þQ − K2ÞΓμ
CCefðqÞG0fgðPd − K2Þ

× Λþ
dhðk2ÞΓT

λd gh
ðK2; PÞ; ð76Þ

where M is the pp scattering amplitude,

ΛþðpÞ ¼
X
s

uðp; sÞūðp; sÞ ¼ γ · Pþm
2m

ð77Þ

is the positive energy projection operator, and the Dirac
indices for the various components are shown explicitly.
At this point, only the incoming momentum for particle 1

is off shell. For small values of the final-state invariant
mass, this poses no problem, since the spectator equation
could be used to construct a scattering matrix consistent
with the deuteron bound state, and a consistent current
operator could also be constructed. However, for invariant
mass well above the pion threshold, there are no existing
particle-exchange models of the kernel that reproduce the
data. For this reason, it is necessary to use scattering
matrices that have been fit to data, which limits the
scattering amplitudes to the case where all legs of the
scattering matrix are on mass shell. In Ref. [15],
the separation of the propagator for particle 1 into on-shell
and off-shell contributions is described in some detail. All
contributions can be calculated if a prescription is provided
for taking the initial four-momentum of particle 1 off mass
shell. This problem has been discussed in Ref. [24]. In the
calculations presented here, we will use only the on-shell
contribution which is well determined and is dominant.
The completely on-mass-shell scattering amplitude can

be parametrized in terms of five Fermi invariants as

Mab;cd ¼ F Sðs; tÞδacδbd þ FVðs; tÞγac · γbd
þ F Tðs; tÞσμνacðσμνÞbd þ FPðs; tÞγ5acγ5bd
þ FAðs; tÞðγ5γÞac · ðγ5γÞbd; ð78Þ

where s and t are the usual Mandelstam variables and
amplitudes F i can be separated into isoscalar and isovector
contributions using

F iðs; tÞ ¼ F I¼0
i ðs; tÞ þ F I¼1

i ðs; tÞτð1Þ · τð2Þ: ð79Þ

The invariant amplitudes have been constructed in two
ways. First, the helicity amplitudes obtained from SAID
[25–27] have been used to obtain the invariant functions as
described in Ref. [15]. In this case, the analysis of the pn
amplitudes is limited to s ≤ 5.97 GeV2, and the pp are
limited to s ≤ 9.16 GeV2. The second method is the use of
a Regge model of NN scattering fit to cross sections and
spin observables over the range 5.4 GeV2 ≤ s ≤
4000 GeV2 [28,29].
With this brief summary of the dynamics used in the

present study, let us now proceed to the presentation of
some typical results both for inclusive and semi-inclusive
CCν reactions with the deuteron.
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V. RESULTS

A. Inclusive cross sections

We start by considering results for the inclusive cross
section, i.e., where only the final-state charged lepton is
presumed to be detected. We assume that only the no-pion
cross section is allowed and that other channels are not
involved. This, of course, is an issue for experimental
studies, and any inclusive measurement must involve all
open channels. Our purpose in starting with modeling of
the inclusive no-pion cross section is to ascertain where in
q, ω and scattering angle one should expect to find
significant CCν strength before going on to study the
semi-inclusive reaction. We begin by showing in Figs. 4
and 5 the inclusive no-pion CCν deuteron disintegration
cross sections as a function of the momentum of the
outgoing muon for three incident neutrino momenta
(k ¼ 0.5, 1 and 3 GeV) and for four small lepton scattering
angles, θ ¼ 2.5°, 5°, 10°, and 15° (Fig. 4) and four larger
angles, θ ¼ 45°, 90°, 135°, and 180° (Fig. 5). In each plot
the corresponding momentum transfer at the peak (in MeV)
is indicated, and results for PWIA, PWBA and DWIA

calculations are shown. From these curves we extract the
muon momentum at the peak of the inclusive no-pion cross
section (k00), as well as at 1 order of magnitude below the
peak before and after k00 (k

0
< and k0>, respectively). As can

be seen in these plots, the general trend is a decrease of the
cross section when including exchange terms, i.e., from
PWIA to PWBA, as well as when considering final-state
interactions, i.e., from PWBA to DWBA. For momentum
transfers around 500 MeV and larger, the PWIA and
PWBA results are indistinguishable; and they are also
indistinguishable from the DWBA result for momentum
transfers between 500 and 1000 MeV, approximately. From
the last we conclude that, at least for inclusive no-pion
scattering and for reasonably large values of the momentum
transfer at the peak of the cross section, the details of the
modeling (i.e., as reflected in the three models used in the
present work) are not too important. In contrast, for
kinematics where the exchanged momentum is small, there
are significant differences in going from model to model,
and for quantitative comparisons with data some care
should be exercised.
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FIG. 4 (color online). CCν deuteron disintegration inclusive no-pion cross section as a function of the outgoing muon momentum k0
for three incident neutrino momenta (k ¼ 0.5, 1 and 3 GeV) and four lepton scattering angles (θ ¼ 2.5°, 5°, 10°, and 15°). Dotted lines
correspond to PWIA results, dashed lines to PWBA and solid lines to DWBA. Numbers in the top-left corner of each plot correspond to
the momentum transfer q in MeV at the peak of the cross sections.
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B. Semi-inclusive cross sections

For each combination of initial and final lepton
momenta, k ¼ 0.5, 1 and 3 GeV and k0 ¼ k0<; k00; k

0
> (the

latter dependent on k and θ), we show in Figs. 6 and 7 CCν
deuteron disintegration semi-inclusive cross sections as a
function of the missing momentum (residual nucleon
momentum) for two representative lepton scattering angles,
θ ¼ 10° and 135°, and one representative nucleon emission
angle ϕ ¼ 0°. We show PWIA, PWBA and DWBA results,
which for θ ¼ 0° follow the same trend as for the inclusive
no-pion cross sections, namely decreasing values in the
order PWIA, PWBA, DWBA. For θ ¼ 135°, the three
calculations are very close.
In Fig. 8 we show semi-inclusive neutrino-deuteron

cross sections for different nucleon emission angles ϕ
for representative neutrino momenta and scattering angle in
DWBA at the quasielastic peak (k0 ¼ k00). In order to clearly
see the deviation of the cross sections due to the interfer-
ence responses (the ϕ-dependent terms) that contribute to
the cross section in DWBA, we show in Fig. 9 for the same
kinematics at the peak and in Fig. 10 at k0 ¼ k0< the ratios of
semi-inclusive neutrino-deuteron cross sections for differ-
ent nucleon emission angles ϕ over the result for ϕ ¼ 0°.

The deviations increase with increasing angle ϕ, increasing
missing momentum p and decreasing incident momentum
k, reaching up to a 40% at the quasielastic peak and up to a
60% at k0 ¼ k0<. Upon integrating to get the inclusive no-
pion cross section, all of these ϕ-dependent contributions
disappear; however, for semi-inclusive measurements there
are clearly significant effects to be seen when comparing
in-plane with out-of-plane detection of the final-state
protons.
For completeness, we have also studied the effect of

initial-state interactions by using different deuteron wave
functions. As an example we show in Fig. 11, for
representative kinematics, the CCν deuteron disintegration
semi-inclusive cross sections using different deuteron wave
functions. For the kinematics shown, this set of wave
functions yields results that differ by only a small amount.
The largest deviation from the average is for the WJC 1
deuteron vertex function, which differs for the rest at p ¼ 0

by less than 5%. The interaction kernel in this case contains
a small admixture of pseudoscalar pion exchange, which
produces a hard short-range force that causes cross section
strength to be transferred from small to large p, resulting in
an unusually small cross section at p ¼ 0.
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C. Effect of axial mass

The above results have all been obtained using an axial
mass MA ¼ 1.03 GeV in the parametrization of the axial
form factor of Eq. (62). We have computed the same
inclusive no-pion cross sections using an increased value of
the axial mass,MA ¼ 1.3 GeV, and we have found that for
small momentum transfers (q≲ 150 MeV), the results
hardly change as expected, since then the Q2-dependence
in the form factors is small and they are determined by their
Q2 → 0 limit. For larger momentum transfers, however, the

Q2-dependence is now important and one sees that the
increased axial mass gives noticeably larger inclusive
no-pion cross sections. For momentum transfers between
150 MeV and 500 MeV, approximately, there is an overlap
between the spread of results for different calculations
(PWIA, PWBA and DWBA) obtained with the two values
of the axial mass. Therefore, in that kinematic region the
effect of exchange and/or distortion can be confused with a
modified value of the axial mass, which calls for extra
caution when interpreting experimental data. For instance,
inclusive no-pion neutrino-deuteron measurements at inci-
dent momentum k ¼ 0.5 GeV and scattering angle θ ¼ 45°
(corresponding to q ≈ 360 MeV at the peak), compatible
with an axial mass MA ¼ 1.03 GeV when interpreted
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45° and muon momentum k0 ¼ k00 (at the quasielastic peak).
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through a PWIA calculation, would actually correspond to
a larger axial mass, close to MA ¼ 1.3 GeV, if they were
(more correctly) interpreted using a DWBA calculation.
This comparison is shown in Fig. 12 (results for MA ¼
1.03 GeV were also shown in the first plot of Fig. 5).
As said above, the three types of modeling give very

similar results at momentum transfers between 500 and
1000 MeV. The negligible spread seen there might lead one
to naively think that those kinematic conditions are well
suited to determining the axial mass from experiment, as
long as data from other regions are ignored in the analysis
to avoid confusion. We show in Fig. 13 examples of results
in that region forMA ¼ 1.03 GeV and forMA ¼ 1.3 GeV:
at incident momentum k ¼ 3 GeV and scattering angle
θ ¼ 10°, corresponding to q ≈ 530 MeV at the peak (left),
and at k ¼ 0.5 GeV and θ ¼ 135°, q ≈ 700 MeV (right).
However, even if the adjustment of the data to a given axial
mass could be done in principle in that region, the
corresponding momentum transfer is uncertain within a
range related to the incident neutrino flux. As we showed
above, only semi-inclusive measurements, not inclusive

0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45
k' [GeV]

0

2

4

6

8

10
dσ

 / 
dε

'd
Ω

k'
 [

10
-1

1  G
eV

-3
]

PWIA M
A

=1.03 GeV

PWBA M
A

=1.03 GeV

DWBA M
A

=1.03 GeV

PWIA M
A

=1.3 GeV

PWBA M
A

=1.3 GeV

DWBA M=1.3 GeV

k = 0.5 GeV, θ = 45 deg

FIG. 12 (color online). For axial massesMA ¼ 1.03 GeV (dark
curves) and MA ¼ 1.3 GeV (lighter curves), CCν deuteron
disintegration inclusive no-pion cross section as a function of
the outgoing muon momentum k0 for incident neutrino momen-
tum k ¼ 0.5 GeV and scattering angle θ ¼ 45°. Dotted lines
correspond to PWIA results, dashed lines to PWBA, and solid
lines to DWBA.

0 0.02 0.04 0.06 0.08
p [GeV]

0

200

400

600

800

dσ
 / 

dε
'd

Ω
k'

dΩ
p N

 [
10

-1
0  G

eV
-3

]

k = 3 GeV, θ = 10 deg, k' = k'
0

0 0.04 0.08 0.12 0.16
p [GeV]

0

5

10

15

20

dσ
 / 

dε
'd

Ω
k'

dΩ
p N

 [
10

-1
0  G

eV
-3

]

PWIA M
A

= 1.03 GeV

PWBA M
A

= 1.03 GeV

DWBA M
A

= 1.03 GeV

PWIA M
A

= 1.3 GeV

PWBA M
A

= 1.3 GeV

DWBA M
A

= 1.3 GeV

k = 0.5 GeV, θ = 135 deg, k' = k'
0

FIG. 14 (color online). For axial masses MA ¼ 1.03 GeV (dark curves) and MA ¼ 1.3 GeV (lighter curves), CCν deuteron
disintegration semi-inclusive cross sections as a function of the missing momentum p for the same kinematic conditions of Fig. 13,
namely k ¼ 3 GeV, θ ¼ 0° (left), and k ¼ 0.5 GeV, θ ¼ 135° (right), and the muon momentum at the peak, k0 ¼ k00. Dotted lines
correspond to PWIA results, dashed lines to PWBA, and solid lines to DWBA.

2.82 2.84 2.86 2.88 2.9
k' [GeV]

0

50

100

150

200

dσ
 / 

dε
'd

Ω
k'

 [
10

-1
1  G

eV
-3

]

PWIA M
A

=1.03 GeV

PWBA M
A

=1.03 GeV

DWBA M
A

=1.03 GeV

PWIA M
A

=1.3 GeV

PWBA M
A

=1.3 GeV

DWBA M=1.3 GeV

k = 3 GeV, θ = 10 deg

0.2 0.22 0.24 0.26 0.28 0.3
k' [GeV]

0

0.5

1.0

1.5

2.0

2.5

dσ
 / 

dε
'd

Ω
k'

 [
10

-1
1  G

eV
-3

]

k = 0.5 GeV, θ = 135 deg

FIG. 13 (color online). Same as in Fig. 12, but for k ¼ 3 GeV, θ ¼ 10° (left), and for k ¼ 0.5 GeV, θ ¼ 135° (right).

MORENO et al. PHYSICAL REVIEW D 92, 053006 (2015)

053006-14



ones, allow one to determine the incoming neutrino
momentum and therefore the momentum transfer of the
process (within the experimental uncertainties). Semi-
inclusive measurements and calculations are thus required
to precisely determine the axial mass. We show in Fig. 14,
at the same kinematic conditions of the plots in Fig. 13 and
at the quasielastic peak (k0 ¼ k00), the comparison of semi-
inclusive cross sections for different axial masses. Clearly,
measuring such semi-inclusive cross sections has the
potential of yielding an excellent way to determine the
axial-vector form factor. The uncertainties from the vector
form factors from electron scattering are relatively small,
and, as we have seen, the uncertainties from modeling the
initial- and final-state two-body problem is arguably the
smallest to be found in the entire periodic table.

VI. CONCLUSIONS

Wehave defined the kinematics of deuteron disintegration
by neutrino scattering, νμ þ 2H → μ− þ pþ p, and ana-
lyzed different detection scenarios in terms of both theo-
retically natural and experimentally practical kinematic
variables. The deuteron as a target has the peculiarity that
a semi-inclusive (coincidence) measurement of any two of
the three particles in the final state is actually exclusive, since
the final state, consisting of a charged lepton and twoprotons
(below the pion production threshold), has no other open
channel, in contrast to the usual situation for complex nuclei
where bothmissingmomentum andmissing energy depend-
ences occur. One obvious conclusion is that semi-inclusive
studies of this reaction hold promise for determining the
incident neutrino energy using kinematics alone.
In this study we have presented results for both inclusive

no-pion and semi-inclusive CCν cross sections using for
the underlying dynamics a relativistic model of the deu-
teron and final-state pp structure that involves an approxi-
mation to the Bethe-Salpeter equation. We note that such an
approach is completely covariant: the kinematics, the
initial-state deuteron, the current operators and the final-
state pp system are all fully relativistic, in contrast to much
of the modeling of CCν reactions in general, where
approximations are often employed (for a discussion of
the role played by relativity for such reactions, see
Ref. [34]). We have provided inclusive no-pion and
semi-inclusive CCν deuteron disintegration cross sections
for a variety of kinematical conditions within PWIA,
PWBA (i.e., introducing final-state hadronic exchange
terms) and DWBA (i.e., using final-state hadronic inter-
actions including exchange). The calculation of the two-
body dynamics with the model used in this work,
particularly when including exchange terms and final-state
interactions (DWBA), is computationally demanding and
therefore not well suited as direct input to neutrino event
generators. However, we anticipate being able to provide

simple parametrizations of the cross section in work that is
currently in progress, and these will soon be made available
for event simulations.
At small and large momentum transfers (q ≲ 500 and

q≳ 1000 MeV), the approximation used for the interaction
(PWIA, PWBA, DWBA) plays a significant role. Clearly
antisymmetrization (going from PWIA to PWBA) is seen to
be important for such kinematics, with a somewhat smaller
effect seen to arise from final-state interactions (going to the
full DWBA). On the other hand, initial-state variations using
state-of-the-art deuteron wave functions are observed to be
minor. In contrast, for intermediate values of q, the three
types of approximation lead to an essentially universal result,
showing very small sensitivity to both initial- and final-state
physics. Thus, with an appropriate choice of kinematics,
namely where the Q2-dependence of the axial-vector form
factor plays a minor role (see below), results of semi-
inclusive CCν disintegration of deuterium could not only
provide the incident neutrinoenergy, as statedabove, but also
yield the incident neutrino flux with relatively minor
uncertainties from the modeling.
Finally, in addition to the motivations for studying the

νμ þ 2H → μ− þ pþ p reaction given above, it can also
serve as a way to improve our knowledge of the Q2-
dependence of the isovector, axial-vector form factor. We
have seen that the impact of changing the axialmassMA used
in a dipole parametrization of this form factor is significant in
regions where the dependence on the modeling of the two-
body problem is weak. The MA dependence increases for
increasing momentum transfer, being negligible at
q≲ 150 MeV. We have shown that there is a range of
intermediate momentum transfers (150≲ q≲ 500 MeV)
where the spreads of the curves for different approximations
(PWIA, PWBA, DWBA) computed with axial masses
MA ∼ 1 and MA ∼ 1.3 GeV overlap, leading to a potential
confusion in the extraction of the axial mass from exper-
imental data unless the full model is employed. We close by
noting that at some level inclusive measurements always
suffer from their inability to be performed at a specific value
of q, whereas the ability to determine all kinematic variables
using semi-inclusive measurements, including the momen-
tum transfer, provides a unique tool for studies of this type.
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