155 research outputs found

    Bayesian Soft Target Zones.

    Get PDF
    Several authors have postulated econometric models for exchange rates restricted to lie within known target zones. However, it is not uncommon to observe exchange rate data with known limits that are not fully 'credible'; that is, where some of the observations fall outside the stated range. An empirical model for exchange rates in a soft target zone where there is a controlled probability of the observed rates exceeding the stated limits is developed in this paper. A Bayesian approach is used to analyse the model, which is then demonstrated on Deutschemark-French franc and ECU-French franc exchange rate data.Bayesian estimation, griddy-Gibbs sampler, credible target zones, soft margins, European Monetary System

    Understanding the Kalman Filter: an Object Oriented Programming Perspective.

    Get PDF
    The basic ideals underlying the Kalman filter are outlined in this paper without direct recourse to the complex formulae normally associated with this method. The novel feature of the paper is its reliance on a new algebraic system based on the first two moments of the multivariate normal distribution. The resulting framework lends itself to an object-oriented implementation on computing machines and so many of the ideas are presented in these terms. The paper provides yet another perspective of Kalman filtering, one that many should find relatively easy to understand.Time series analysis, forecasting, Kalman filter, dynamic linear statistical models, object oriented programming.

    A structural Time Series Model with Markov Switching.

    Get PDF
    We propose an innovations form of the structural model underlying exponential smoothing that is further augmented by a latent Markov switching process. A particular case of the new model is the local level model with a switching drift, where the switching component describes the change between high and low growth rate periods. This new model is used to analyse the US business cycle using US Quarterly real GNP data. Model parameters are estimated using a Gibbs sampling algorithm and subsequently used for forecasting purposes. In addition, the stability of the new model is tested against Hamilton's model over a range of observation periods.Structural models, Markov switching regime, Gibbs sampling Business cycle.

    Implicit Bayesian Inference Using Option Prices.

    Get PDF
    A Bayesian approach to option pricing is presented, in which posterior inference about the underlying returns process is conducted implicitly, via observed option prices. A range of models which allow for conditional leptokurtosis, skewness and time-varying volatility in returns, are considered, with posterior parameter distributions and model probabilities backed out from the option prices. Fit, predictive and hedging densities associated with the different models are produced. Models are ranked according to several criteria, including their ability to fit observed option prices, predict future option prices and minimize hedging errors. In addition to model-specific results, averaged predictive and hedging densities are produced, the weights used in the averaging process being the posterior model probabilities. The method is applied to option price data on the S&P500 stock index. Whilst the results provide some support for the Black-Scholes model, no one model dominates according to all criteria considered.Bayesian Implicit Inference; Option Pricing Errors; Option Price Prediction; Hedging Errors; Nonnormal Returns Models; GARCH; Bayesian Model averaging.

    Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model

    Get PDF
    We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore