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Abstract 
The basic ideas underlying the Kalman filter are outlined in this paper without direct recourse 
to the complex formulae normally associated with this method. The novel feature of the paper 
is its reliance on a new algebraic system based on the first two moments of the multivariate 
normal distribution. The resulting framework lends itself to an object-oriented 
implementation on computing machines and so many of the ideas are presented in these 
terms. The paper provides yet another perspective of Kalman filtering, one that many should 
find relatively easy to understand. 
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1. Introduction 
An understanding of the Kalman filter (Kalman and Bucy, 1961) is important for those with 
an interest in time series analysis. It provides an essential building block for the process used 
to estimate unknown parameters associated with any linear time series model based on 
normally distributed disturbances. For trial values of the parameters, it is applied recursively 
to successive values of a time series, to yield a sequence of one-step ahead predictions. These 
outputs of the filter are best, linear, unbiased predictors, a consequence being that the 
associated one-step ahead errors are orthogonal. The Kalman filter conveniently produces 
these one-step ahead prediction errors, together with their variances. It may be viewed as a 
device to unravel the dependencies in any time series. As it is always possible to construct 
this sequence of errors from the original series and vice-versa, both series contain the same 
information from an estimation perspective. Thus the likelihood associated with the trial 
parameter values can be evaluated directly from the orthogonal one-step ahead prediction 
errors. The advantage of this strategy is that explicit inversion of the large variance matrix 
associated with the original series is avoided.  

Despite its central role, the Kalman filter is not widely understood by the statistical 
profession. It is rarely taught in undergraduate statistics courses. And those who study it at a 
graduate level often emerge with, at best, a moderate understanding of the method. This 
problem was recognised a few decades ago by Duncan and Horn (1972). Their strategy was to 
couch the derivation of the filter in terms of the more familiar regression framework. 
Meinhold and Singpurwalla (1983) also attempted a resolution. They employed the theory of 
conditional probability in what they term a Bayesian approach. Both attempts provide 
interesting insights into the method. Yet the problem still seems to persist to this day. 

The cause of this pedagogic problem is open to debate. Referencing our own experience as 
students of the technique, we attribute it to the large and unwieldy sets of notation, together 
with the relatively complex recursive formulae found in most expositions. The contribution of 
this paper is to simplify matters by introducing and relying on a novel algebraic system 
centred on the first two moments of a multivariate normal distribution. The concepts 
underpinning this algebraic system are presented mainly in terms of the language of object 
oriented programming. 

The plan of this paper is as follows. The algebraic system is introduced in Section 2. State 
space models are reviewed, building on the algebraic system, in Section 3. The Kalman filter, 
in its new form, is presented in Section 4. 

2. Moment object and Associated Methods 
The Kalman filter is essentially a mechanism for calculating the means and the variances of 
multivariate normal probability distributions at different points of time. It is therefore natural 
to focus on the first two moments of the normal distribution and to treat them as a 
mathematical object with associated operations and methods. The Kalman filter may then be 
described in terms of the resulting algebraic system. 

This algebraic system is outlined in a pseudo-code similar to the Matlab programming 
language. Matlab is fast evolving into the default standard for mathematically oriented 
programming languages. One difference, however, is that we continue to use subscripts to 
avoid an excessive use of brackets, a luxury that is currently not available to computer 
programmers. Most of the notation in the pseudo-code is self-explanatory. We highlight a few 
important conventions: 

• the elementary data type is a matrix and all conventional matrix operations apply 
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• if a, b, c, d are matrices then [a b; c d] designates the matrix 
a b

c d

�

!
 

"

$
#  

• zeros(m,n) is a function that returns an m n×  matrix of zeros 

• inv(a) returns the inverse of the matrix a 

• i:j  represents the index sequence i,i+ 1,…,j where j>i  

• x i i j j1 2 1 2: , :1 6  is the specified submatrix of x 

• comments in the code follow the % symbol. 

 

We adopt the practice of using the same character to represent a random vector and a data 
structure containing its first two moments. To avoid potential ambiguity, the random vector is 
distinguished by a tilde. For example x

~
 represents a random vector with a data structure x. 

The fields of the data structure, denoted by x m.  and x v. , contain the mean and variance 
respectively.  

A data structure is created and tagged as a moment object by the constructor function shown 
in Insert 1. It should be emphasised that in practice additional code may be required to check 
data and to undertake other housekeeping tasks. These details are excluded to ensure that the 
focus of the paper is dedicated to core concepts only. 

function x = moments(m, v) 
x.m = m   % assign mean to its field 
x.v = v    % assign variance to its field 
x = class(x, ‘moments’)  % tag x as a moments object 

Insert 1. Constructor function for the moments object 

 

 

Some common operations are overloaded to work on moment objects. 

Addition 
The generic function for addition in the pseudo-code is assumed to be plus. If two 
commensurate normal random vectors x

~
and y

~
are uncorrelated, the function as it applies to 

moment objects, is shown in Insert 2. Once in place, quasi-mathematical statements such as 

  z = x + y 

invoke the plus function when x and y are moment objects. 

function z =plus(x,y) 
z = moments(x.m + y.m, x.v + y.v) 

Insert 2. Function for adding moments objects 

 

Multiplication 
The generic function for multiplication is assumed to be  times. If a is a matrix and x is a 
commensurate moment object then the function required to overload the multiplication 
operator is shown in Insert 3. This function is called when a quasi-mathematical statement of 
the form 
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 y = a * x 

 is encountered in the computer code. 

function y = times(a, x) 
y = moments(a * x.m, a * x.v * a' ) 

Insert 3. Function for premultiplying moments objects by a matrix 

 

Conditioning Operator  

The interdependencies between the elements of a normally distributed random vector are 
completely summarised by the covariances in the associated variance matrix. If some 
elements of the random vector are observed, then this should indirectly provide information 
about those related elements that are not observed. Suppose the elements are arranged so that 
all those that are observable are placed at the top of the random vector. Then the typical 
random vector x

~
 contains sub-vectors x1

~

 and x2
~

commensurate with this arrangement. It is 

to be expected that the additional information in the observed value x1 of x1
~

should reduce 

the variance of x2
~

.  

The distribution of x2
~

 conditional on x x1 1
~

= summarises the impact of the new information. 

The moments of this conditional distribution are represented by x x2 1| . They are obtained 
using a standard result from the theory of the multivariate normal distribution - see, for 
example, Anderson (1958). 

The means and variances of x1
~

 and x2
~

 are designated by m1, m2 , v11, v22  respectively. 

Furthermore, their covariances are represented by the matrix v21 . The required result is that 

the revised distribution has a mean m v v x m2 21 11
1

1 1+ −�
�

�
�

−

−
 and variance v v v v22 21 11

1
12− − . Note 

the reduction in the variance induced by the term v v v21 11
1

12
− , which is positive if v12 0≠ . 

Furthermore, the revised distribution of x1
~

is concentrated entirely on the single point x1. 

One can think of | as a conditioning operator. Languages like Matlab, however, often reserve 
this symbol for the logical operator or. There is no reason to restrict its use in this way. In the 
context of moment objects it can be defined as the conditioning operator without eliminating 
its use as a logical operator in a more general context. Assuming that it is invoked by the 
symbol |, the generic function ‘or’outlined Insert 4, performs the required conditioning. For 
reasons that will become clearer later, it is convenient to consider the distribution of the entire 
revised random vectorx x

~
| 1 . 

It is now possible to write quasi-mathematical statements in computer code like 

 x = x | x1. 

The effect is to revise the moment object of a random vector x
~

 to encompass the information 

on the sub-vector x1
~

 provided by the observation x1. 
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function y = or(x, x1) 
m = x.m 
v = x.v 
n = length(m) 
r = length(x1) 
m1 = m(1:r) 
m2 = m(r+1:n) 
v11 = v(1:r, 1:r) 
v22 = v(r+1:n, r+1:n) 
m = [ x1; m2 + v21 * inv(v11) * ( x1- m1)] 
v = [zeros(r, n); zeros(n-r, r) , v22 – v21' * inv(v11) * v21] 
y = moments(m, v) 

Insert 4. ‘Or’ function to perform conditioning operation 

 

The moment objects and the above operations form an algebraic system. The addition  

of uncorrelated moment objects possesses the closure, commutative and associative 
properties. Multiplication between pairs of moment objects is not allowed. Multiplication, as 
presented in this paper, is defined in the narrower sense of an operation between a matrix and 
a moment object. This operation is not commutative. Also, moment objects have no unique 
inverses. Thus the algebraic system is not an algebra. 

3. Data Generating Process 
In describing the data generating process we shall make use of the concept of a variant array, 
terminology that is borrowed from Microsoft’s Visual Basic programming language. A 
variant is a generic data type. It may contain a number, a string, a date or any user defined 
data type or object. A rectangular array of variants is similar in many respects to a 
spreadsheet. In Matlab they are referred to as cell arrays. 

Multiple time series, associated with typical period t, will be designated by a random k-vector 
x t
~
1 6 . The collection of all such vectors, designated by x

~
, is an n×1variant array. In our 

context, x t
~
1 6  strictly represents the contents of the tth cell of the array, the contents being a 

random vector. The elements of x t
~
1 6  are the components of the process.  

It is assumed that the evolution of the process is governed by the first-order recurrence 
relationship 

 x t A x t B u t
~ ~ ~
1 6 1 6 1 6= − +1 ,      (2.1) 

where u t
~

~ NID ,1 6 1 60 Ω , A and B are fixed matrices and Ω  is a fixed positive semi-definite 

variance matrix. It is also assumed that the disturbances u t
~
1 6  are uncorrelated with the so-

called seed vector x
~

01 6 . 

As above, the random vector of components is partitioned into sub-vectors: 

•  x t1
~
1 6  - the observable components which form the time series of interest 

•  x t2
~
1 6 - the unobserved components such as growth rates and seasonal effects. 
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Example 1 
A univariate time series, represented by a random variable y t

~
1 6  in typical period t, is 

governed by a so-called local level data generating process (Muth, 1960) when the process 

mean l t
~
1 6  follows a random walk. More specifically 

 y t l t u t
~ ~ ~
1 6 1 6 1 6= +

1
    (measurement equation) 

 l t l t u t
~ ~ ~
1 6 1 6 1 6= − +1

2
     (transition equation) 

where u t1
~
1 6  and u t2

~
1 6  are mutually and individually contemporaneously and inter-

temporarily uncorrelated. This is the simplest member of the structural time series collection 
of models advocated by Harvey (1991) in place of the more traditional Box-Jenkins approach 

(Box, Jenkins and Reinsel,1976). Using the transition equation to eliminate l t
~
1 6  from the 

measurement equation we get, in conformity with (2.1), the matrix equation 

 
y t

l t

y t
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Note that l t
~
1 6  is the unobserved component. 

Example 2 
The single disturbance version of the local level model, a special case of the framework in 
Snyder (1985), and Ord, Koehler and Snyder (1997), is 

 y t l t u t
~ ~ ~
1 6 1 6 1 6= +     (measurement equation) 

 l t l t u t
~ ~ ~
1 6 1 6 1 6= − +1 α      (transition equation) 

where u t
~
1 6  is a scalar. This model underlies simple exponential smoothing (Brown, 1959). It 

can be written as 

 
y t

l t

y t

l t
u t~

~

~

~
~
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1 6
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in conformity with the structure of (2.1).   

A statistical description entails finding the distributions of x t
~
1 6  over time. When none of the 

elements of the x t
~
1 6  are observable, the formulae for recursive calculation of the moments of 

x t
~
1 6 , designated by µ t1 6  and Σ t1 6  for the mean and variance respectively, are usually stated 

as 

 µ µt A t1 6 1 6= −1        (2.2) 

 Σ Σ Ωt A t A B B1 6 1 6= − ′ + ′1 .      (2.3) 

Such formulae may be used when the moments of the seed random vector x
~

01 6  are specified. 
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Using moment objects, these equations may be replaced by 

 x t A x t B u1 6 1 6= − +* *1 .      (2.4)  

This parsimonious statement is sufficient to invoke the operations necessary to compute the 
required moments. A striking feature of (2.4) is that it has the same structure as the original 
data generating process (2.1). The random variables have simply been replaced by their 
corresponding moment objects. The effect is to consolidate the specification of the algorithm 
required to undertake the necessary calculations. Another feature of the equation is that the 
time subscript has been dropped from the term representing the moments of the disturbances. 
In our version of the dynamic linear data generating process, it has been assumed that the 
moments of the disturbances remain unchanged over time. The time subscript for the moment 
object u is redundant, something that is not true of the original disturbances u t

~
1 6 . 

4. Kalman Filter and Associated Methods 
The Kalman filter applies to those situations where some of the elements of the random vector 
x t
~
1 6  are observable. In the preceding local level examples, y t

~
1 6  is observable but l t

~
1 6  is 

not. In the following, it is convenient to use y t1 6  as an alias for x t11 6
~

. Adaptations of the 

formula (2.4) are required to revise the moments of x t
~
1 6  to reflect the informational impact 

of successive observations y y s11 6 1 6, ,!  where s, a time period, is potentially different from 

t. We denote the moments of x t
~
1 6  conditional on  y y s11 6 1 6, ,!  by the variant array element 

x t s,1 6 . The two-dimensional variant array of resulting conditional moments is depicted in 

Table 1 for the case n = 4. The moments in column 0 are obtained without recourse to any 
data. They correspond to the moments in the previous section. The moments on the diagonal 
are often referred to as filtered quantities. Those in the final column 4 correspond to the so-
called smoothed quantities.  

 Periods of data 

Period (t) 0 1 2 3 4 

0 x 0 0,1 6  x 0 1,1 6  x 0 2,1 6  x 0 3,1 6  x 0 4,1 6  

1 x 1 0,1 6  x 11,1 6  x 1 2,1 6  x 2 2,1 6  x 1 4,1 6  

2 x 2 0,1 6  x 2 1,1 6  x 2 2,1 6  x 2 2,1 6  x 2 4,1 6  

3 x 3 0,1 6  x 31,1 6  x 3 2,1 6  x 3 2,1 6  x 4 4,1 6  

4 x 4 0,1 6  x 4 1,1 6  x 4 2,1 6  x 4 2,1 6  x 4 4,1 6  

Table 1. Notation for moments of distributions incorporating data
 

 

The Kalman filter is geared to finding the filtered quantities on the diagonal. In the process it 
also makes use of the moments in the band immediately below the diagonal. The elements in 
this band correspond to the moments of the one-step ahead prediction distributions. The 
function for the Kalman filter, in terms of the moment objects, is shown in Insert 5. Here y  
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denotes a one-dimensional variant array, the tth cell containing the vector of time series 
observations associated with period t, and x0 is the moment object for the distribution of the 
components in period 0. The output of this function corresponds to the moment object 
x n n,1 6 . Note that the consolidation of distributional information into moment objects has 

provided a relatively simple specification of the filter. 

function x = Filter(y , A, B, u, x0) 
n = length(y)   %sample size 
x = x0    %moments of seed distribution 
for t = 1:n 
    x = A * x + B * u  %one-step ahead prediction 
   x x y t= | 1 6    %revision with sample information 

end 

Insert 5. Kalman filter function 

 

An alternative to the Kalman filter is to use a regression approach. Equations (2.1) are 
stacked, ensuring that all unobserved components on the left-hand side are transferred to the 
right-hand side of the associated equations. This gives a regression problem, as originally 
proposed by Duncan and Horn (1972), where all the unobserved components make up the 
vector of unknown regression coefficients. The estimates of the coefficients, obtained using 
the least squares methods, depend on the entire sample of size n. Thus they correspond to the 
smoothed values depicted in the final column of Table 1. Duncan and Horn (1972) never 
recommended the use of regression to estimate dynamic linear models. Instead, they used the 
regression as a stepping-stone in the derivation of the Kalman filter. It appears that they may 
have been dissuaded from the regression calculations by the large size of the resulting 
problem. The matrices associated with the regression are sparse, however, so the approach is 
now feasible using special sparse matrix solvers. 

As illustrated in Table 1 for the special case n = 4, the Kalman filter and regression 
approaches overlap in the sense that they both yield the moments of the distribution of 
x n n
~

,1 6 . This is the information required to generate the moments of the prediction 

distributions using the relationships, expressed in terms of moment objects, as: 

 x n j n A x n j n B u+ = + − +, * ( , ) *1 6 1    j = 1 2, ,!  

As mentioned earlier, the Kalman filter is often used to generate the orthogonal one-step 
ahead prediction errors and their variances for evaluating the likelihood function (Schweppe, 
1965).  The Kalman filter, as described in Insert 5, can be supplemented with statements to 
calculate and store the required quantities, as shown in Insert 6.  
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function [e, v] = Filter( y , A, B, u, x0) 
n = length(y)   %sample size 
r = length(y 11 6 )  %number of observable time series 

x = x0    %moments of seed distribution 
for t = 1:n 
    x = A * x + B * u  %moments of one-step ahead prediction distribution 
   � . :y x m r= 11 6                %one-step ahead prediction  

   v t x v r r1 6 1 6= . : , :1 1       %variance matrix of one-step ahead error 

   e t y t y1 6 1 6= − �   %one-step ahead prediction error 

   x x y t= | 1 6    %revision with sample information 

end 

Insert 6. Kalman filter function: the augmented version 

 

There are several approaches regarding the initialisation of the filter. If the time series under 
consideration are stationary, then the Kalman filter is typically seeded with the marginal 
distribution of the components vector. The mean of this distribution is zero. The variance 
matrix V satisfies the linear equation 

 V AVA B B= ′ + ′Ω . 

A method for solving this equation is described in Harvey (1991).  

For nonstationary time series, the marginal distribution is undefined. A common practice, in 
this particular case, is to use a diagonal variance matrix with large but finite numbers as a 
substitute for what should be infinite variances. An approximation of this kind may not 
always work well. Then specialised algorithms are required (Ansley and Kohn, 1985;  de 
Jong, 1991; Snyder and Saligari, 1996; Koopman and Durbin , 1999). The details of this 
particular problem go beyond the scope of the present paper.  Alternatively, the moments of 
the seed distribution can be chosen using Bayesian subjective prior probability considerations. 

6. Conclusions 
It has been shown that moment objects are a convenient way of consolidating information 
pertaining to multivariate normal distributions. By defining appropriate addition, 
multiplication and conditioning operators, the Kalman filter was presented in a more concise 
form than usual. The consequent simplification of the specification of the Kalman filter 
should have significant pedagogic advantages, making it more amenable to a broader base of 
students of statistics. 

The exposition was focused on the invariant form of the state space model where A, B and Ω  
do not change over time. The invariance property was only used to reduce notational 
overheads. Thus the theory is easily adapted to more general cases where these matrices 
depend on time. 

The algebraic system developed in this paper transcends the theory of Kalman filtering. We 
expect it to have useful applications to other areas of statistics that are built on the 
multivariate normal distribution.   
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