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1. INTRODUCTION

Recent turmoil on international currency markets and the subsequent disruptive

economic impact on some economies, highlight the need for a re-evaluation of

exchange rate management practices. The recurring risk of speculative attack in

particular calls for an assessment of fixing or targeting a currency to a benchmark

currency. Since the collapse of the Bretton Woods agreement in the early seventies,

many countries responded to the pressure on fixed exchange rates by officially

floating their currencies. Unofficially, however, many of these countries were and are

still maintaining their currency within certain limits vis-à-vis a benchmark currency.

To smooth revaluations and protect the value of its currency, a central bank will often

restrict the free float to a managed float. The latter (dirty) float is distinguished from a

clean float by the central banks’ commitment to a desirable exchange rate level. This

commitment can take several forms, the extremes of which are given by an effectively

fixed rate with only one to two percentage points margin of variation on the one hand,

and an effectively floating rate with up to ten percentage points margin on the other.

Under the narrow scenario, the limits and central parity are publicly announced and

their limits are defended by committed central banks. Under the generous scenario the

limits (or even the central parity) are sometimes not publicly announced and the

central banks are not always fully committed to defend their currency. Frenkel and

Goldstein (1986) label the former as ‘loud zones’ and the latter as ‘quiet zones.’ The

main difference between the two practices is the degree of credibility of exchange rate

intervention by the central bank. A fairly relaxed managed float would allow the

monetary authority to still smooth exchange rate movements without precommitting

to defend the currency at any price (i.e., at any amount of foreign currency needed to

intervene). While allowing monetary policy coordination between ‘targeted’

countries, such a system would still allow some domestic discretion. Without this

absolute commitment to defend, speculative attacks will become highly risky for the

perpetrators (Williamson 1985).  Kofman, de Vaal, and de Vries (1993) provide a

preliminary analysis of how such a system could function. Werner (1996) and Wren-

Lewis (1997) illustrate how these soft zones moderate the economic impact of

exchange rate movements.



3

Over the past decade, the theoretical (and empirical) exchange rate literature has

focused much of its attention on publicly announced target zones with fully credible

limits, i.e., the central bank intervenes whenever the currency threatens to exceed its

limits. Most of this literature derives from Krugman's (1991) seminal paper in which

he shows that regulated exchange rates no longer exhibit a linear relationship with the

underlying fundamentals of supply and demand. If, for example, there is a fixed (and

credible) upper limit, and the exchange rate is close to that limit, the probability of a

further increase is limited while the probability of a decrease is relatively large. This

distortion in probability symmetry (the truncation of the error distribution) will be

discounted in the agents’ expectations, and consequently in their demand/supply

decision. This implies a non-linear S-shaped relationship between theoretical and

observed exchange rates.

The empirical evidence for this so-called S-shape is, however, elusive. A major

identification problem seems to be the predominance of observations that are well

within the stated limits. Close to the parity, the observed versus fundamental

exchange rate is almost perfectly linear. Estimation methodologies will then not be

able to confirm or refute the presence of non-linearity. Most of this literature uses

continuous time models, which often preclude the incorporation of typical time series

characteristics as time-varying volatility and unconditional fat-tailedness of the error

distribution. Koedijk, Stork, and de Vries (1998) propose a discrete time estimation

procedure for a credible target zone, which allows accommodation of these time

series anomalies. Nevertheless, they still fail to find convincing evidence for the

imposed non-linear relationship. An alternative discrete time target zone model

proposed by Bekaert and Gray (1998) is somewhat more successful in detecting

evidence of a non-linear S-shape. Their model allows for a much wider range of

possible behaviours in both the (conditional) mean and variance of the observed

exchange rate process than is typically considered in the standard target zone

literature. The only restriction imposed on the functional form for the conditional

distribution of exchange rate changes is the specification of the error distribution as

truncated normal. The ‘indicator’ variable, which appears in both conditional mean

and conditional variance specifications, relates to the position of the exchange rate in

the target zone.
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The non-linearity identification problem is further exacerbated if the target zone is

less-than-perfectly credible. The Bekaert and Gray model is restricted to credible

target zones with occasional realignments, modelled using a Poisson-like jump

process.  Identification of the jump parameters (probability and size of a jump) proves

difficult, due to the small number of observed jumps. Miller and Weller (1991) and

Mizrach (1995) developed theoretical target zone models that allow for less than

credible limits. That is, they are characterized by occasional realignments (jumps) or

by the constant threat of realignments. The credibility definition adopted in all of the

above papers is restricted to realignment risk. Central banks are still assumed to be

fully committed to a target zone (in between realignments).

Realignment risk is, however, not the only type of non-credibility of a target zone.

Soft target zones – those that occasionally allow the exchange rate outside their limits

– are by their very nature less-than-perfectly credible. In this paper we propose an

econometric model for these soft target zones, and investigate whether they still retain

the non-linearity implied by a fully credible target zone. On the one hand we expect

the soft currencies to spend more time near the limits, which may alleviate the

identification bias. On the other hand, as we will show, a reduction in the credibility

of the target zone implies a linearisation of the S-shape.

Our approach in this paper is to extend the Bekaert and Gray model to allow for

exchange rates to exceed the stated target zone (i.e., the limits are soft), while still

retaining the qualitative effect of truncation. The degree to which this partial

truncation affects the conditional exchange rate distribution will depend on the

softness of the target zone. We provide a Bayesian estimation methodology to

estimate the soft target zone model. The aim is to identify and measure the existence

of a non-linear relationship based on the distortion of the underlying stochastic

process caused by (soft) target zones. By explicitly modelling the credibility of the

target zone, we attempt to ‘avoid’ the linearisation problem.

To the best of our knowledge, the only other paper advocating a Bayesian

methodology to estimate target zone models is Li (1998). Despite the fact that her

fully credible target zone model is slightly more complicated than Bekaert and
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Gray’s, it is very similar and does include realignment risk. Li proposes a Metropolis-

within-Gibbs sampling methodology to avoid direct evaluation of the complicated

likelihood functions.

The plan of this paper is as follows. The proposed soft target zone model is presented

in Section 2, along with a discussion of the implications the model has on the

theoretical S-shape. An S-shape is still implied by the soft target zone model,

however, the greater the degree of softness, the further the non-linearity is pushed

outside the target zone. The Bayesian estimation methodology is presented in Section

3. We propose a griddy-Gibbs algorithm (Ritter and Tanner, 1992), and use Rao-

Blackwellised estimators (Gelfand and Smith, 1990) for calculating marginal

posterior summaries. A discussion of the estimation of the S-shape implied by the

analysis is also included. In Section 4, the model is applied to ECU-French franc and

Deutschemark-French franc exchange rate data where the limits are known, but are

occasionally exceeded. Within the European Monetary System, exchange rate

targeting of member currencies officially took place against the ECU. Our results

indicate that de facto targeting took place against the Deutschemark. Section 5

concludes with some directions for future work.

2. AN ECONOMETRIC MODEL FOR A SOFT TARGET ZONE

We begin by reviewing a target zone model, where the zone is perfectly credible by

following the basic model of Bekaert and Gray (1998), and assuming known

realignments. Consider the continuously compounded (logarithmic) exchange rate

returns, ∆S S St t t= − −1 , as being determined by the regression relationship

∆S xt t t= +'β ε , (1)

for t N= 2, ,� . Assuming perfectly credible upper and lower limits on the observed

rates so that L S Ut≤ ≤ , the error ε t  is restricted to have a truncated normal

distribution with mode at zero, scale parameter equal to σ t
2 , corresponding upper

limit U U S xt t t= − −−1 'β  and lower limit L L S xt t t= − −−1 'β . The probability

density function of this truncated normal distribution is given by
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is an indicator function of the set A.  In our discussion and example we restrict the

regression coefficient vector β to correspond to a drift (a constant) and a ‘position-in-

the-zone’ explanatory variable. Hence we use x t1 1=  and x S C U Lt t2 12= − −−1 6 1 6 ,

with C the known central parity. With perfectly credible limits, − ≤ ≤1 12x t , a value

of x t2 1= −  corresponds to St −1  at the lower limit L, and x t2 1=  corresponds to St −1  at

the upper limit U. From this point, to simplify the discussion, we set σt = σ  for all

t=2,…,N. The specification of x t' β  as the function determining the mode of the

distribution of ∆St is not critical, as other specifications could be incorporated.

Bekaert and Gray, for example, use a more elaborate model including inflation and

interest differentials. We are instead focusing on the form of the distribution of the

error term εt.

This truncated normal error distribution underlies the fully credible target zone

models used by Bekaert and Gray (1998) and Li (1998). As discussed earlier, the

advantage of the above truncated normal error distribution is that it retains the S-

shape in the expected returns as a function of St −1 , or equivalently, as a function of

the ‘position in the zone’ variable, x t2 . This is due to the fact that under the

assumption of truncated normal errors having a density function as in (2), the

(conditional) expected exchange rate is

E S S S xt t t t

L U

U L

t t

t t
| , , '− −= + +

−

−1 1β σ β σ σ σ

σ σ

1 6 3 8 3 8
3 8 3 8

φ φ

Φ Φ
. (4)

To demonstrate the ‘S-shape’ corresponding to the above function, we set β’  =(0,0),

U = 3.0, L = 0.5, σ = 0.25 and plot E(St|St-1, β, σ) as a function of St-1 in Figure 1.
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Figure 1: E(St|St-1, β’  =(0,0), σ = 0.25) for fully truncated normally distributed errors with exchange
rate constrained between lower limit L=0.5 and and upper limit U=3.0. The 45 degree line represents
the corresponding expected exchange rate when no limits are present.

The S-shape in Figure 1 is a result of the skewness (due to the truncation) of the

distribution of εt as St-1 moves closer to the edge of the target zone. This effect is more

dramatically demonstrated by considering the effect of the truncation on the expected

error term as a function of the ‘position in the zone’ variable as in Figure 2.

Figure 2: E(εt|St-1, β’  = (0,0), σ = 0.25) for fully truncated normally distributed errors with L=0.5 and
U=3.0.

We wish to develop an alternative to the above truncated normal distribution that

qualitatively retains this S-shape in the expected return, but that still allows for

observations to lie outside the stated target zone. One way of specifying an alternative

distribution for ε t  that satisfies these requirements is to retain the basic underlying

normality of the errors, and then allow, say 1 100%− ×α t1 6  of the probability to

remain in the target zone, and the excess α t ×100% probability falling outside the

target zone. A resulting probability density function is given by

last exchange rate
ex

pe
ct

ed
 e

xc
ha

ng
e 

ra
te

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

position in the zone

ex
pe

ct
ed

 e
rr

or

-1.0 -0.5 0.0 0.5 1.0

-0
.2

-0
.1

0.
0

0.
1

0.
2



8

        p t

t

U L L U t

t

L U L t U t

t

t t t t

t

t t t t
ε

α
ε

α
ε εσ

ε
σ

σ σ

σ
ε
σ

σ σ

1 6 3 81 6
3 8 3 8

1 6 3 8
3 8 3 8

1 6 1 6= B=
−

−
+

+ −
+−∞ ∞

1 11
1

1
1 1

φ φ

Φ Φ Φ Φ( , ] ( , ] ( , ) (5)

We call the distribution of ε t  corresponding to the above density the ‘αt-truncated

normal distribution’. Note that this probability αt is allowed to vary with t because we

want a higher chance of falling outside the target zone as the exchange rate St-1 moves

nearer to the edges of the stated zone.

As the exchange rate St-1 moves closer to, say, the upper limit U, the error term εt

moves closer to its corresponding upper limit Ut. We expect the chance of a move

outside the target zone to increase as we move closer to the edge of the target zone.

However, we also expect the chance of intervention from the central bank to increase,

and hence we want to restrict the probability of leaving the target zone to a maximum

value of, say, α* . That is, we set

α α
σ σt

t tL U
t= �

��
�
�� + − �

��
�
��

%
&
'

(
)
*

min *,Φ Φ1 ,  for all . (6)

This value, α* , might be termed a maximum ‘exceedence probability’. It is the largest

chance the exchange rate can have of moving outside the stated target zone in one

step. As the value of α* is a maximum probability, a large value does not necessarily

imply a low degree of credibility of the target zone.  The credibility at any particular

point in time is measured by αt, which would typically be quite small with large

values occurring only when the exchange rate moves close to or beyond the limits.

This is a convenient model for the error distribution because it nests both the non-

truncated normal (α* = 1) and fully truncated (α* = 0) distributions. Our estimation

procedure described in Section 3 allows the data to choose the value of α*  and

therefore we can obtain information regarding the individual αt values. To

demonstrate the effect of the αt-truncated normal distribution, Figure 3 displays the

probability of moving (or remaining) outside the stated target zone for a given

position in the zone.
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Figure 3: The solid curve demonstrates the controlled probability of moving (or remaining) outside the
stated target zone under αt-truncated normal distribution for a given position in the zone and with α* =
0.1, β = (0,0)’, σ = 0.1. The dotted curve is the probability of moving outside the stated target zone
under the non-truncated case of α* = 1.0.

Using individually constructed ε βt t tS x= −∆ '  and αt values the likelihood function

is obtained
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For a small value of α* we retain the essential S-shape in the expected errors. This is

because it can be shown that

E St t t

L U

U L t

U L

L U

t t

t t

t t

t t
ε β σ α σ α σσ σ

σ σ

σ σ

σ σ

| , ,− = −
−

−
+

−

+ −1 1
1

1 6 1 6 3 8 3 8
3 8 3 8

3 8 3 8
3 8 3 8

φ φ φ φ

Φ Φ Φ Φ
. (8)

Notice that if α∗ = 0, and hence all αt = 0, we return to the usual expected value of a

fully truncated normal random variable used in (4). Also, if

α σ σt t tL U= + −Φ Φ/ /1 6 1 61 , then the expected value of εt is zero and

E S S S xt t t t t| , , , '− −= +1 1β σ α β1 6 . This occurs when St-1 is well within the target zone,

relative to σ. In this case, the expected value of the error term, εt, will be zero and the

expected return will be given by xt’β. This corresponds to the ‘flat’ middle of the S-

shape. The smaller the value of α*, the more pronounced the S-shape will be.
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Figure 4: E(St|St-1, β’  = (0,0), σ = 0.25, α∗) for αt-truncated normally distributed errors for each of
α* = {0.1, 0.3, 0.5} and with L=0.5 and U=3.0.

To demonstrate the S-shape corresponding to these non-credible target zones, we

consider the function in (8). We again set β ’ = (0,0), U = 3.0, L = 0.5, σ = 0.25 and

plot E(St|St-1, β, σ, α∗) as a function of St-1 in Figure 4. As α*  increases, the S-shape

becomes less pronounced, with the limiting case α*  = 1 corresponding to the stated

limits having no effect, and hence a linear relationship results with E(St|St-1, β, σ, α∗)

= St-1 +xt’β.  In particular, if α* > 0.5, the expected exchange rate inside the target

zone is a linear function of the regressors. Hence, there is no non-linear impact on

agents expectations inside the stated target zone. However, if α* < 0.5, there will be at

least some degree of non-linearity in this relationship inside the target zone. Figure 5

demonstrates this more dramatically by presenting the expected error term as a

function of the ‘position in the zone’ variable, x2t.

Figure 5: E(εt|St-1, β’  = (0,0), σ = 0.25, α∗) for αt-truncated normally distributed errors for each of
α* = {0.1, 0.3, 0.5} and with L=0.5 and U=3.0.

position in the zone

ex
pe

ct
ed

 e
rr

or

-2 -1 0 1 2

-1
.0

-0
.5

0.
0

0.
5

-2 -1 0 1 2

-1
.0

-0
.5

0.
0

0.
5

-2 -1 0 1 2

-1
.0

-0
.5

0.
0

0.
5

0.5

0.3

0.1



11

3. BAYESIAN ANALYSIS OF THE SOFT TARGET ZONE MODEL

In this section, we begin by reviewing the general Bayesian approach, and detail the

means by which empirical results for our model can be obtained. A standard Bayesian

analysis of an econometric model begins with the computation of the posterior

distribution of the parameters in the model, given the observed data.  In general,

suppose the parameters of the model under investigation are denoted by the vector θ,

and let the data be denoted by the vector y.  The Bayesian approach requires the

availability of a prior distribution for the unknown parameter vector θ, and is denoted

by its density function p θ1 6 . Conditional on α*, we choose a standard regression

non-informative prior distribution (Zellner 1971) for

p β σ α
σ

σ β β, | * , , ,1 6 ∝ > − ∞ < < ∞ − ∞ < < ∞
1

0 1 2  for    .           (9)

As α * determines the maximal exceedence probability of observations outside the

stated target zone, it must lie within the unit interval. We employ a selected prior

distribution from the Beta family with hyper-parameters γ and δ, and having density

function

p α
γ δ
γ δ

α α γ δγ δ
* * * , ,1 6 1 6

1 6 1 6 1 6=
+

− > >− −Γ
Γ Γ

1 1
1 0 0 with .                 (10)

We selected a priori probabilities p(α*<0.05) = 0.50 and p(α*<0.20) = 0.95, resulting

in γ = 0.95 and δ = 12.6. These values correspond to strong prior belief in fairly

tightly managed exchange rates. In our application, this is consistent with the French

franc participating in the exchange rate mechanism of the EMS. In other applications

one might like to impose a more diffuse prior on α*, for example, to incorporate the

information that a particular target zone might not be considered so heavily managed.

The likelihood function, which is determined by the econometric model, is given by

the conditional distribution of the data assuming the parameters are fixed. That is,

L p yθ θ1 6 1 6∝ | . Taking these two probability densities, we can construct the

conditional density for the unknown parameter θ, given the observed data y according

to Bayes’ theorem
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p y
p y p

p y
θ

θ θ
|

|1 6 1 6 1 6
1 6

= .                  (11)

As the data are observed, and therefore considered known, the denominator in Bayes’

theorem can be viewed as a constant, and hence we have the often stated result that

the posterior density is proportional to the likelihood function times the prior density,

or

p y L pθ θ θ|1 6 1 6 1 6∝ .            (12)

The problem is then not what is the analytical form of the posterior density, as we

‘know’ it up to a constant of proportionality, but rather what are its features?  For

instance, what are the mean and mode of the distribution? Is it unimodal? How can

statements such as

P c yθ1 ≤ |1 6            (13)

be evaluated? If the denominator in (11) can be easily obtained, using

p y p y p d1 6 1 6 1 6= I θ θ θ|            (14)

then any desired feature of the posterior distribution can be readily obtained.

3.1 Applying the griddy-Gibbs sampler

The likelihood function is given by the product of the conditional densities of the

errors. In this problem, θ β σ α' , , *= 1 6 , where β β β= 1 2, '1 6 , as these are the

parameters we wish to estimate. As the likelihood function is a complicated function

of θ, it is difficult to obtain even a simple numerical estimate of  p(y).  In this case, we

resort to an alternative approach for obtaining features of the posterior distribution,

namely the use of Markov chain Monte Carlo methods and in particular the ‘griddy

Gibbs sampler’. We briefly review the Gibbs sampler, Gelfand and Smith (1990), and

summarise the extension to the ‘griddy’ Gibbs sampler, Ritter and Tanner (1992), in

the context of our particular model.

Under quite general conditions, (Tierney 1994), a Gibbs sampler can be constructed

by sampling from the so-called full conditional distributions.  That is, we begin by

selecting starting values β β σ α1
0

2
0 0 01 6 1 6 1 6 1 64 9, , , *  and sampling iteratively
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σ σ β β α

β β β α σ

β β α σ β

α α σ β β

i i i i

i i i i

i i i i

i i i i

p y

p y

p y

p y

1 6 1 6 1 6 1 6

1 6 1 6 1 6 1 6

1 6 1 6 1 6 1 6

1 6 1 6 1 6 1 6

4 9

4 9

4 9

4 9

~ | , , * ,

~ | , * , ,

~ | * , , ,

* ~ *| , , ,

1
1

2
1 1

1 1 2
1 1

2 2
1

1

1 2

− − −

− −

−
           (15)

for i M= 1 2, , ,� . Repeated sampling in this manner whilst updating the conditioning

variables produces a sample of M parameter sets β σ αi i i1 6 1 6 1 64 9, , *  which converge in

distribution to the posterior distribution p yβ σ α, , *|1 6 . From this sample we can

extract features of the posterior distribution, its marginal densities and probability

intervals.

The ‘griddy’ Gibbs sampler simply uses the fact that we can approximately sample

from the full conditional distributions in (15) by computing, for example

� | , * , ,p yi i iβ β α σ1 2
1 1− −1 6 1 6 1 64 9            (16)

by evaluating

L p pi i i i i i iβ β σ α β β σ α α1 2
1 1

1 2
1 1 1, , , * , , | * *− − − − −1 6 1 6 1 6 1 6 1 6 1 6 1 64 9 4 9 4 9            (17)

on a (univariate) grid of β1 values and numerically normalising so that

� | , , * ,p y di i iβ β σ α β1 2
1 1

1 1− − =I 1 6 1 6 1 64 9 . Then, using the standard inverse cumulative

distribution function (cdf) sampling method, a sampled β1
i1 6  can be obtained. We can

also use these numerically normalised conditional densities to construct Rao-

Blackwellised marginal posterior density estimates (see Gelfand and Smith, 1990).

Marginal posterior probability intervals can be obtained from these marginal posterior

density estimates, or from histograms of the sampled parameters directly. The Rao-

Blackwellised marginal density estimators have been shown to have smaller (Monte

Carlo) mean squared error than the simple histogram approach (Gelfand and Smith,

1990).

3.2 Inference regarding the S-shape

In order to produce an estimate of the S-shape curve resulting from our analysis, we

recognise that for fixed St-1, the expected value E(St|St-1, β, σ, α∗) is a function of the
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unknown parameters.  Hence, we can think of this expectation as a parameter in and

of itself, and construct a posterior distribution for it.  For each St-1  denote

ψ β σ α β σ αS t tt
E S S

−
= −1 1, , * | , , , *1 6 1 6 .            (18)

To construct an estimate of this distribution from the output of our Gibbs sampler, we

construct a sample of M ψ β σ αS
i

t t
i i i

t
E S S

−
= −1 1

1 6 1 6 1 6 1 64 9| , , , *  values, which comprise a

sample from the marginal posterior distribution of p ySt
ψ

−1
|3 8 . From this sample we

can obtain the upper and lower 5% probability quantiles, which yield 90% Bayesian

confidence intervals, as well as point estimates for ψ St−1
, for any given value of St-1.

4. AN EXAMPLE FOR THE FRENCH FRANC

Our exchange rate data are obtained from Datastream. The parity and realignment

data are obtained from Ungerer (1997). The sample consists of weekly observations

on the Deutschemark–French franc (DM/FF) and ECU–French franc (ECU/FF)

exchange rate. According to Honohan (1998), countries that participated in the

Exchange Rate Mechanism (ERM) managed their currencies against the ECU

(European Currency Unit, a basket of participating currencies), not against a bilateral

currency. The applied literature has, however, focused on bilateral target zones (in

particular the DM/FF example). To evaluate this distinction, we include both

exchange rates in the analysis. Exchange rates are taken at the close of Wednesday

trading. Figure 6 plots the French franc exchange rate with its bilateral and ERM

limits over the period 2nd of May 1979 through 30th of June 1993 against the

Deutschemark and ECU, respectively. The width of the target zone is 4.5 percent of

the parity rate – symmetrically distributed. The six (DM/FF), respectively fourteen

(ECU/FF), jumps illustrate the realignments in the parity rate during this period.

Excluding these realignments there are 734 (726 for the ECU/FF) weekly

observations for the DM/FF, 2 (47 for the ECU/FF) of which fall outside the stated

target zones. The ‘position in the zone’ variable, x2t, is constructed using the relative

position of St-1 in the DM/FF target zone at time t using x S C U Lt t2 12= − −−1 6 1 6 .

Note that C, U and L are not constant over the observation period, but are constant

between realignments.



15

0.
30

0.
35

0.
40

05/02/1979 05/02/1981 05/02/1983 05/02/1985 05/02/1987 05/02/1989 05/02/1991 05/02/1993

0.
30

0.
35

0.
40

05/02/1979 05/02/1981 05/02/1983 05/02/1985 05/02/1987 05/02/1989 05/02/1991 05/02/1993

0.
30

0.
35

0.
40

05/02/1979 05/02/1981 05/02/1983 05/02/1985 05/02/1987 05/02/1989 05/02/1991 05/02/1993

(a)

0.
14

0.
15

0.
16

0.
17

05/02/1979 05/02/1981 05/02/1983 05/02/1985 05/02/1987 05/02/1989 05/02/1991 05/02/1993

0.
14

0.
15

0.
16

0.
17

05/02/1979 05/02/1981 05/02/1983 05/02/1985 05/02/1987 05/02/1989 05/02/1991 05/02/1993

0.
14

0.
15

0.
16

0.
17

05/02/1979 05/02/1981 05/02/1983 05/02/1985 05/02/1987 05/02/1989 05/02/1991 05/02/1993

(b)

Figure 6: French franc exchange rates (a) against Deutschemark (b) against ECU.

4.1 Inference assuming a perfectly credible target zone (α* = 0)

We begin with an analysis of the fully credible target zone model for the DM/FF data.

A ‘griddy’ Gibbs sampler was run for the model in Section 3 conditional on α* = 0.

Rao-Blackwellised density estimates of the marginal posterior probability densities

for the drift coefficient, β1, the ‘position in the zone’ coefficient, β2, and the scale

parameter, σ, were obtained and is shown for β2 in Figure 7a .  Each of the marginal

posterior distributions are roughly symmetric and unimodal.  Hence, these marginal

distributions can be well summarised by their median (which roughly equals the mean

and mode of the respective distribution) and upper and lower probability quantiles to

indicate where the majority of probability lies. These values are given in column three

of Table 1. Note that since α*  = 0 corresponds to a perfectly credible zone, any

observations which fall outside the stated zone are ignored and do not contribute to

the analysis.
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Figure 7: Marginal posterior density estimates for  parameters β2 and  α*. (a)-(c) relate to DM/FF data
and (d)-(f) correspond to ECU/FF data.

4.2 A measure of target zone credibility

Next, to assess the credibility of the DM/FF target zone given our observed exchange

rate series, the model in Section 3 is estimated, where in this case we include α* as an

unknown parameter. Then, the Gibbs sampler as described in Section 3 were used,

resulting in the Rao-Blackwellised density estimates of the marginal posterior

probability densities. The marginal posterior distributions for β1, β2 and σ are each

roughly symmetric and unimodal. Again, the marginal distributions can be well

summarised by their median and upper and lower probability 5%, and these figures

are given in column four of Table 1. The marginal posterior distribution for the β2 and

α* parameters are shown in Figure 7b and 7c, respectively. Notice that the

‘credibility’ of the target zone, measured by 1-α*, appears to be quite high, and hence

the estimates for the other parameters are not greatly affected. We have also included

in Table 1 the posterior quantile estimates of β and σ for the other extreme case of no

truncation, that is when α* = 1. In this case, all data points (excluding realignments)
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are included and all of the errors are normally distributed (without truncation). This

corresponds to a (Bayesian) linear regression of the exchange rate returns on the

constant and ‘position in the zone’ variables. The means of the regression coefficient

posterior distributions correspond to the ordinary least squares (OLS) estimates for

those parameters.
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Figure 8: Posterior function estimate of the expected error curve as a function of the position in the

zone, E S
t t

ε β σ α| , , , *−10 5 , with lower 5%, 50% and upper 5% pointwise posterior quantiles.

(a) DM/FF under fully credible target zone model (α* = 0); (b) DM/FF under soft target zone model;
(c) ECU/FF under fully credible target zone model (α* = 0); (d) ECU/FF under soft target zone model.

Estimates for the S-shape relationship between the ‘position in the zone’ variable and

the expected error (and hence the implied expected exchange rate) are demonstrated

in Figure 8b for the DM/FF data and the soft target zone model. The middle curve is

the estimated pointwise expected error over a grid of x2t values and the upper and

lower limits are the 0.05 and 0.95 (pointwise) quantiles of this function as computed

from the output of the Gibbs sampler. The estimated S-shape under the assumption of

α* = 0 is given in 8a. Despite differing parameter estimates, the soft target zone

posterior distribution of α* having virtually all of its probability less than α* = 0.1,

results in similar S-shape estimates. Note that under the assumption of α* = 1, the

estimated expected error is a linear function of the ‘position in the zone’ variable,

regardless of the parameter estimates for β1, β2 and σ.
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Parameter Posterior quantile
Fully credible
Target zone

α∗=0

Soft target
Zone

0<α∗<1

No truncation

α∗=1
5% 0.0001

α∗ 50% 0.0201

95% 0.0701

5% -0.00042 -0.00042 -0.00047

β1 50% -0.00024 -0.00025 -0.00031

95% -0.00007 -0.00007 -0.00015

5% -0.00074 -0.00080 -0.00112

β2 50% -0.00038 -0.00044 -0.00079

95% +0.00001 -0.00005 -0.00047

5% 0.00257 0.00257 0.00254

σ 50% 0.00270 0.00268 0.00265

95% 0.00283 0.00281 0.00277

Table 1: Posterior quantiles for parameters under three target zone models (DM/FF data).

The same analysis was completed for the ECU/FF data. The Rao-Blackwellised

marginal posterior density quantile estimates are given in Table 2. In this case, the

marginal posterior distribution for the credibility parameter, α*, has 90% of its

probability in the interval (0.64,0.82), which is remarkably different from the DM/FF

case. Figures 7d, 7e and 7f give the marginal posterior density estimates for β2

(α*=0), β2 (0<α*<1) and α*, respectively. The low credibility of the ECU/FF target

zone noticeably affects the β2 parameter. The resulting estimate of the S-shape

expected error function is given in Figure 8d. While this figure does show evidence of

an S-shape, it also shows linearity inside the stated target zone. This is not in

accordance with Honohan (1998), who alleges that the empirical verification of an S-

shape for ERM currencies is obscured by the fact that these currencies are regulated

against the ECU instead of bilaterally (e.g. DM/FF). Clearly, there is little evidence in

our results supporting the French central bank managing its currency against the ECU.

The α* values estimated from this data set are simply too large to have a significant

impact on the expected return when the last exchange rate is inside the target zone.

However, once outside the stated target zone there does appear to be an effect due to

(partial) truncation. Perhaps some intervention did indeed occur once the stated limits
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were actually exceeded. By that time, the bilateral DM/FF target zone was also

exceeded.

These results are in contrast with the S-shape estimated under the fully credible

model. When the analysis is restricted to the fully truncated errors case (α*=0), an S-

shape necessarily results in the posterior estimates of the expected returns; see Figure

8c. The width of the pointwise confidence bands is then a function of the posterior

uncertainty in β and σ (conditional on α* = 0), which is necessarily smaller than

when α* > 0 due to the exclusion of observations outside the stated target zone. More

importantly, these confidence bands are strongly influenced by the imposition of the

S-shape inside the stated target zone resulting from full truncation.

Parameter Posterior quantile
Fully credible
Target zone

α∗=0

Soft target
Zone

0<α∗<1

No truncation

α∗=1
5% 0.64

α∗ 50% 0.74

95% 0.82

5% -0.00022 -0.00024 -0.00022

β1 50% -0.00005 -0.00007 -0.00006

95% +0.00013 +0.00008 +0.00010

5% -0.00037 -0.00056 -0.00049

β2 50% +0.00004 -0.00020 -0.00020

95% +0.00042 +0.00017 +0.00009

5% 0.00227 0.00231 0.00231

σ 50% 0.00237 0.00241 0.00241

95% 0.00248 0.00252 0.00251

Table 2: Posterior quantiles for parameters under three target zone models (ECU/FF data).

Finally, in Figure 9 we also report the posterior expected αt values for the DM/FF in

panel (a), and for the ECU/FF in panel (b), for the soft target zone model. These plots

further corroborate our suspicion that French franc intervention did not take place

against the ECU, but against the Deutschemark instead. Interestingly, the ECU-panel

shows much less ‘action’ (even after taking into account the difference in scale) than

the DM-panel. There were many more exceedences in the ECU/FF as compared to the

DM/FF. Despite this, the αt values in Figure 9 seem to indicate that the DM/FF
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moved closer to the edge of its stated target zone more frequently, without actually

exceeding it.  The ECU/FF, on the other hand, frequently surpassed the stated limits,

without reverting quickly to the target zone. This is in line with the higher estimated

credibility and stronger S-shape for the DM/FF than for the ECU/FF.
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Figure 9: Posterior expected αt values for (a) DM/FF; and  (b) ECU/FF under the soft target zone
model. The X-marks indicate actual exceedences of the exchange rate outside the stated target zone.
The R-marks indicate actual realignments in central parity.

These results were confirmed using different starting values for the Gibbs Sampler, as

well as different random seeds. No appreciable differences were seen. After an initial

‘burn-in’ period of 250 iterations, 1000 consecutive iterations of the Gibbs sampler

were used to obtain the summaries provided here. First order autocorrelations for all

cases considered are given in Table 3, and all higher order autocorrelations were

negligible.

DM/FF ECU/FF
Parameter α∗=0 0<α∗<1 α∗=0 0<α∗<1

α∗ 0.052 0.029

β1  0.042 0.031 0.222 0.132

β2 0.017  0.089 0.183 0.113

σ 0.009 0.025 0.018 0.041

Table 3: First order autocorrelations from Gibbs sampler output.
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5. CONCLUSION

The empirical verification of the non-linear relationship between the observed

exchange rate and its fundamental value has been notoriously difficult. So far, very

little evidence has been found for a significant S-shape. In this investigation we

extend a basic version of the discrete time fully credible target zone model proposed

by Bekaert and Gray (1998) to incorporate soft target zones. We describe a means for

computing a Bayesian analysis of the proposed model and demonstrate the approach

on weekly Deutschemark-French franc and ECU-French franc exchange rate data.

Our results point towards evidence of strong non-linearity in the expected exchange

rate for the Deutschemark-French franc exchange rate. However, there appears to be

little evidence of non-linearity in the ECU-French franc exchange rate. This seems to

validate the empirical literature with its focus on bilateral target zones instead of a

multilateral (ECU) target zone.

Imposing full truncation of the error terms assumes a perfectly credible target zone. If

in fact some data are observed outside the stated zone, those values will necessarily be

excluded from an analysis that assumes a perfectly credible zone. As shown in our

ECU/FF example, imposing this assumption can result in estimates of the expected

exchange rate that will appear to have a high degree of non-linearity inside the stated

zone that may not be justifiable if points outside the target zone have been excluded

from the analysis.

The model and analysis presented in this paper are a first step towards an empirical

soft target zone model. We have necessarily kept the specification of the regression

relationship simple so as to focus on incorporating ‘softness’ into the credibility of the

stated target zone. The next step is to apply this model to other data sets to gain a

greater appreciation for the usefulness of this specification of non-credibility, and in

particular to consider the interpretation of the range of values of α* obtained from this

type of analysis.

Incorporating fat-tailed distributions, such as using a t-distribution instead of a normal

distribution, would not significantly impact on the current method of computing a
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Bayesian analysis. Conditional on knowing the position in the zone, the returns in our

target zone model do not have a constant variance. In particular, consider for example

the fully credible model with truncated normal errors. The returns having the last

exchange rate near the limit of the target zone will have a smaller observed variance

than those whose last exchange rate are at the central parity. Adding time-varying

volatility is more difficult because the usual specifications, such as GARCH errors,

rely on unconstrained error structures. Instead, we would like to give a time varying

specification for the volatility for the underlying (non-truncated) error distributions

corresponding to the exchange rate fundamental process. To some extent we control

for the typical GARCH behaviour of exchange rate returns by choosing a weekly

sampling interval. Conditional heteroskedasticity, while highly significant at a daily

sampling frequency, tends to dissipate rapidly under aggregation. Also, it may be

useful to relax the specification to allow for greater underlying volatility nearer to the

edges of the target zone to account for the uncertainty as to whether or not the central

bank will intervene.
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