154 research outputs found

    Intensification of production, low emission pathways and sustainable strategies for backyard, layer and broiler chickens

    Get PDF
    Meat and eggs produced by chickens represent an important economic resource in many economies. In future, global greenhouse gas (GHG) emissions produced by chickens will increase due to greater food demand. This study analyses the GHG emissions of chickens and identifies sustainable policy strategies for production intensification and GHG reduction. It advances beyond previous studies by combining GHG reduction and improving meat and egg production rather than reporting mitigation options only, and can thus provide low-emission pathways. The contemporaneous intensification of chicken production and GHG emission reduction are feasible for broiler, layer and backyard chickens in Moldova. For farmers, this important goal can be achieved by using feeds of good quality and high digestibility. An efficient utilization of feeds for backyard chickens (by a dietary replacement of 10% dry matter (DM) intake of fresh grass with 10% DM intake of barley) had the effect of reducing the total emissions to 78179, 79682 and 81238 tons of carbon dioxide-equivalent/year (t CO2-eq/year), increasing meat production to 2376, 2422 and 2469 t carcass weight/year and increasing egg production (in shell) to 47846, 48793, and 49741 t eggs/year with an increase of chickens of 2%, 6% and 10% per year, respectively. Policymakers can do a great deal to support the abatement of chicken emissions by developing long-term strategies, and regulations that are aimed towards mitigation targets and technologies. To effectively maximize emission reduction and increase production, however, policymakers must overcome the existing national barriers.Keywords: feed, greenhouse gas, manure, mitigation, polic

    Association of the IL-10 gene family locus on chromosome 1 with juvenile idiopathic arthritis (JIA)

    Get PDF
    The cytokine IL-10 and its family members have been implicated in autoimmune diseases and we have previously reported that genetic variants in IL-10 were associated with a rare group of diseases called juvenile idiopathic arthritis (JIA). The aim of this study was to fine map genetic variants within the IL-10 cytokine family cluster on chromosome 1 using linkage disequilibrium (LD)-tagging single nucleotide polymorphisms (tSNPs) approach with imputation and conditional analysis to test for disease associations

    Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci.

    Get PDF
    IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide, but its etiologic mechanisms are still poorly understood. Different prevalences among ethnic groups and familial aggregation, together with an increased familial risk, suggest important genetic influences on its pathogenesis. A locus for familial IgAN, called "IGAN1," on chromosome 6q22-23 has been described, without the identification of any responsible gene. The partners of the European IgAN Consortium organized a second genomewide scan in 22 new informative Italian multiplex families. A total of 186 subjects (59 affected and 127 unaffected) were genotyped and were included in a two-stage genomewide linkage analysis. The regions 4q26-31 and 17q12-22 exhibited the strongest evidence of linkage by nonparametric analysis (best P=.0025 and .0045, respectively). These localizations were also supported by multipoint parametric analysis, in which peak LOD scores of 1.83 ( alpha =0.50) and 2.56 ( alpha =0.65) were obtained using the affected-only dominant model, and by allowance for the presence of genetic heterogeneity. Our results provide further evidence for genetic heterogeneity among families with IgAN. Evidence of linkage to multiple chromosomal regions is consistent with both an oligo/polygenic and a multiple-susceptibility-gene model for familial IgAN, with small or moderate effects in determining the pathological phenotype. Although we identified new candidate regions, replication studies are required to confirm the genetic contribution to familial IgA

    Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis

    Get PDF
    Background: Multiple sclerosis (MS) is a common disease of the central nervous system and a major cause of disability amongst young adults. Genome-wide association studies have identified many novel susceptibility loci including rs2248359. We hypothesized that genotypes of this locus could increase the risk of MS by regulating expression of neighboring gene, CYP24A1 which encodes the enzyme responsible for initiating degradation of 1,25-dihydroxyvitamin D3. Methods: We investigated this hypothesis using paired gene expression and genotyping data from three independent datasets of neurologically healthy adults of European descent. The UK Brain Expression Consortium (UKBEC) consists of post-mortem samples across 10 brain regions originating from 134 individuals (1231 samples total). The North American Brain Expression Consortium (NABEC) consists of cerebellum and frontal cortex samples from 304 individuals (605 samples total). The brain dataset from Heinzen and colleagues consists of prefrontal cortex samples from 93 individuals. Additionally, we used gene network analysis to analyze UKBEC expression data to understand CYP24A1 function in human brain. Findings: The risk allele, rs2248359-C, is strongly associated with increased expression of CYP24A1 in frontal cortex (p-value=1.45×10−13), but not white matter. This association was replicated using data from NABEC (p-value=7.2×10−6) and Heinzen and colleagues (p-value=1.2×10−4). Network analysis shows a significant enrichment of terms related to immune response in eight out of the 10 brain regions. Interpretation: The known MS risk allele rs2248359-C increases CYP24A1 expression in human brain providing a genetic link between MS and vitamin D metabolism, and predicting that the physiologically active form of vitamin D3 is protective. Vitamin D3's involvement in MS may relate to its immunomodulatory functions in human brain. Finding: Medical Research Council UK; King Faisal Specialist Hospital and Research Centre, Saudi Arabia; Intramural Research Program of the National Institute on Aging, National Institutes of Health, USA

    A candidate regulatory variant at the TREM gene cluster associates with decreased Alzheimer's disease risk and increased TREML1 and TREM2 brain gene expression

    Get PDF
    Introduction: We hypothesized that common Alzheimer's disease (AD)-associated variants within the triggering receptor expressed on myeloid (TREM) gene cluster influence disease through gene expression. Methods: Expression microarrays on temporal cortex and cerebellum from ∼400 neuropathologically diagnosed subjects and two independent RNAseq replication cohorts were used for expression quantitative trait locus analysis. Results: A variant within a DNase hypersensitive site 5′ of TREM2, rs9357347-C, associates with reduced AD risk and increased TREML1 and TREM2 levels (uncorrected P = 6.3 × 10−3 and 4.6 × 10−2, respectively). Meta-analysis on expression quantitative trait locus results from three independent data sets (n = 1006) confirmed these associations (uncorrected P = 3.4 × 10−2 and 3.5 × 10−3, Bonferroni-corrected P = 6.7 × 10−2 and 7.1 × 10−3, respectively). Discussion: Our findings point to rs9357347 as a functional regulatory variant that contributes to a protective effect observed at the TREM locus in the International Genomics of Alzheimer's Project genome-wide association study meta-analysis and suggest concomitant increase in TREML1 and TREM2 brain levels as a potential mechanism for protection from AD

    The Women's international study of long-duration oestrogen after menopause (WISDOM): a randomised controlled trial

    Get PDF
    BACKGROUND: At the time of feasibility work and final design of the trial there was no randomised control trial evidence for the long-term risks and benefits of hormone replacement therapy. Observational studies had suggested that long term use of estrogen was likely to be associated, amongst other things, with reduced risks of osteoporosis and ischaemic heart disease and increased risks of breast and endometrial cancer. Concomitant use of progestogens had been shown to protect against endometrial cancer, but there were few data showing how progestogen might affect estrogen actions on other conditions. Disease specific risks from observational studies suggested that, overall, long-term HRT was likely to be beneficial. Several studies showed that mortality from all causes was lower in HRT users than in non-users. Some secondary cardiovascular prevention trials were ongoing but evidence was also required for a range of outcomes in healthy women. The WISDOM trial was designed to compare combined estrogen and progestogen versus placebo, and estrogen alone versus combined estrogen and progestogen. During the development of WISDOM the Women's Health Initiative trial was designed, funded and started in the US. DESIGN: Randomised, placebo, controlled, trial. METHODS: The trial was set in general practices in the UK (384), Australia (94), and New Zealand (24). In these practices 284175 women aged 50–69 years were registered with 226282 potentially eligible. We sought to randomise 22300 postmenopausal women aged 50 – 69 and treat for ten years. The interventions were: conjugated equine estrogens, 0.625 mg orally daily; conjugated equine estrogens plus medroxyprogesterone acetate 2.5/5.0 mg orally daily; matched placebo. Primary outcome measures were: major cardiovascular disease, osteoporotic fractures, breast cancer and dementia. Secondary outcomes were: other cancers, all cause death, venous thromboembolism and cerebro-vascular disease. RESULTS: The trial was prematurely closed during recruitment following publication of early results from the Women's Health Initiative. At the time of closure, 56583 had been screened, 8980 entered run-in, and 5694 (26% of target of 22,300) randomised. Those women randomised had received a mean of one year of therapy, mean age was 62.8 years and total follow-up time was 6491 person years. DISCUSSION: The WISDOM experience leads to some simple messages. The larger a trial is the more simple it needs to be to ensure cost effective and timely delivery. When a trial is very costly and beyond the resources of one country, funders and investigators should make every effort to develop international collaboration with joint funding

    Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis

    Get PDF
    The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity

    Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets

    Get PDF
    Importance Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. / Objective To investigate what genes and genomic processes underlie the risk of sporadic PD. / Design and Setting This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. / Main Outcomes and Measures It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. Candidate genes are presented whose change in expression, splicing, or methylation are associated with risk of PD as well as the functional pathways and cell types in which these genes have an important role. / Results Gene-level analysis of expression revealed 5 genes (WDR6 [OMIM 606031], CD38 [OMIM 107270], GPNMB [OMIM 604368], RAB29 [OMIM 603949], and TMEM163 [OMIM 618978]) that replicated using both Coloc and TWAS analyses in both the GTEx and Braineac expression data sets. A further 6 genes (ZRANB3 [OMIM 615655], PCGF3 [OMIM 617543], NEK1 [OMIM 604588], NUPL2 [NCBI 11097], GALC [OMIM 606890], and CTSB [OMIM 116810]) showed evidence of disease-associated splicing effects. Cell-type specificity analysis revealed that gene expression was overall more prevalent in glial cell types compared with neurons. The weighted gene coexpression performed on the GTEx data set showed that NUPL2 is a key gene in 3 modules implicated in catabolic processes associated with protein ubiquitination and in the ubiquitin-dependent protein catabolic process in the nucleus accumbens, caudate, and putamen. TMEM163 and ZRANB3 were both important in modules in the frontal cortex and caudate, respectively, indicating regulation of signaling and cell communication. Protein interactor analysis and simulations using random networks demonstrated that the candidate genes interact significantly more with known mendelian PD and parkinsonism proteins than would be expected by chance. / Conclusions and Relevance Together, these results suggest that several candidate genes and pathways are associated with the findings observed in PD GWAS studies
    corecore