12,723 research outputs found

    Young Measures Generated by Ideal Incompressible Fluid Flows

    Full text link
    In their seminal paper "Oscillations and concentrations in weak solutions of the incompressible fluid equations", R. DiPerna and A. Majda introduced the notion of measure-valued solution for the incompressible Euler equations in order to capture complex phenomena present in limits of approximate solutions, such as persistence of oscillation and development of concentrations. Furthermore, they gave several explicit examples exhibiting such phenomena. In this paper we show that any measure-valued solution can be generated by a sequence of exact weak solutions. In particular this gives rise to a very large, arguably too large, set of weak solutions of the incompressible Euler equations.Comment: 35 pages. Final revised version. To appear in Arch. Ration. Mech. Ana

    Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator

    Full text link
    The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differ when the blowout is reached. Seeding the self-modulation instability suppresses the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.Comment: 8 pages, 8 figures, accepted for publication in Physics of Plasma

    Silage for Cattle Feeding in Venezuela

    Get PDF
    Silage is the most economical food to guarantee animal feeding throughout the whole year. Lack of information, economic resources, and farming equipment restrain many farmers from applying this agro technology. Based on these reasons, the present research examines the current trends in animal food conservation in Venezuela. So far, si- lage is manufactured out of entire maize plants and silos store harvested pastures, forage grass independently culti- vated, and forage-legume mixture. The last feeding variant is highly profitable due to its excellent productive results and low costs. Nutrient contents in maize silage are dry matter (28 %-35 %) and raw protein (8.3 %-15.2 %). Ru- minal degradability levels range between 76 % and 82 % due to legume content and urea supplementation  to the bulk. These findings  are consistent  with average  milk production  over 3 kg/cow/day  and milk products  sales. It should be noted that the best silage for cattle feeding consists of a grass-legume mixture in which legume content is not above 30 %

    Dense attosecond electron sheets from laser wakefields using an up-ramp density transition

    Get PDF
    Controlled electron injection into a laser-driven wakefield at a well defined space and time is reported based on particle-in-cell simulations. Key novel ingredients are an underdense plasma target with an up-ramp density profile followed by a plateau and a fairly large laser focus diameter that leads to an essentially one-dimensional (1D) regime of laser wakefield, which is different from the bubble (complete blowout) regime occurring for tightly focused drive beams. The up-ramp profile causes 1D wave breaking to occur sharply at the up-ramp-plateau transition. As a result, it generates an ultrathin (few nanometer, corresponding to attosecond duration), strongly overdense relativistic electron sheet that is injected and accelerated in the wakefield. A peaked electron energy spectrum and high charge (∼nC) distinguish the final sheet

    Recent progress of GaAsP HPD development for the MAGIC telescope project

    Full text link
    Today the Hybrid Photon Detector (HPD) is one of the few low light level (LLL) sensors that can provide an excellent single and multiple photoelectron (ph.e.) amplitude resolution. The recently developed HPDs for the MAGIC telescope project with a GaAsP photocathode, namely the R9792U-40, provide a peak quantum efficiency (QE) of more than 50% and a pulse width of ~2 nsec. In addition, the afterpulsing rate of these tubes is very low compared to that of conventional photomultiplier tubes (PMTs), i.e. the value is ~300 times lower. Photocathode aging measurements showed life time of more than 10 years under standard operating conditions of the Cherenkov Telescopes. Here we want to report on the recent progress with the above mentioned HPDs.Comment: Contribution to the 30th ICRC, Merida Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Multi-heme Cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities

    Get PDF
    Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies

    Intercalation-enhanced electric polarization and chain formation of nano-layered particles

    Full text link
    Microscopy observations show that suspensions of synthetic and natural nano-layered smectite clay particles submitted to a strong external electric field undergo a fast and extended structuring. This structuring results from the interaction between induced electric dipoles, and is only possible for particles with suitable polarization properties. Smectite clay colloids are observed to be particularly suitable, in contrast to similar suspensions of a non-swelling clay. Synchrotron X-ray scattering experiments provide the orientation distributions for the particles. These distributions are understood in terms of competing (i) homogenizing entropy and (ii) interaction between the particles and the local electric field; they show that clay particles polarize along their silica sheet. Furthermore, a change in the platelet separation inside nano-layered particles occurs under application of the electric field, indicating that intercalated ions and water molecules play a role in their electric polarization. The resulting induced dipole is structurally attached to the particle, and this causes particles to reorient and interact, resulting in the observed macroscopic structuring. The macroscopic properties of these electro-rheological smectite suspensions may be tuned by controlling the nature and quantity of the intercalated species, at the nanoscale.Comment: 7 pages, 5 figure

    WCAM: secured video surveillance with digital rights management

    Get PDF
    The WCAM project aims to provide an integrated system for secure delivery of video surveillance data over a wireless network, while remaining scalable and robust to transmission errors. To achieve these goals., the content is encoded in Motion-JPEG2000 and streamed with a specific RTP protocol encapsulation to prevent the loss of packets containing the most essential data. Protection of the video data is performed at content level using the standardized JPSEC syntax along with flexible encryption of quality layers or resolution levels. This selective encryption respects the JPEG2000 structure of the stream, not only ensuring end-to-end ciphered delivery, but also enabling dynamic content adaptation within the wireless network (quality of service, adaptation to the user's terminal). A DRM (Digital Rights Management) solution, called OpenSDRM is added to manage all authenticated peers on the WLAN (from end-users to cameras), as well as to manage the rights to access and display conditionally the video data. This whole integrated architecture addresses several security problems such as data encryption, integrity, access control and rights management. Using several protection lavers, the level of confidentiality can depend both on content characteristics and user rights, thus also addressing the critical issue of privacy.info:eu-repo/semantics/acceptedVersio
    • …
    corecore