3,510 research outputs found
Cluster algebras and Grassmannians of type G2
We prove a conjecture of Geiss, Leclerc and Schr\"{o}er, producing cluster
algebra structures on multi-homogeneous coordinate ring of partial flag
varieties, for the case . As a consequence we sharpen the known fact that
coordinate ring of the double Bruhat cell is an upper cluster
algebra, by proving that it is a cluster algebra.Comment: minor typos correcte
Phonons in magnon superfluid and symmetry breaking field
Recent experiments [1],[2] which measured the spectrum of the Goldstone
collective mode of coherently precessing state in 3He-B are discussed using the
presentation of the coherent spin precession in terms of the Bose-Einstein
condensation of magnons. The mass in the spectrum of the Goldstone boson --
phonon in the superfluid magnon liquid -- is induced by the symmetry breaking
field, which is played by the RF magnetic fieldComment: 2 pages, JETP Letters style, no figures, version accepted in JETP
Letter
Radiation of a relativistic electron with non-equilibrium own Coulomb field
The condition and specific features of the non-dipole regime of radiation is discussed in the context of the results of the recent CERN experiment NA63 on measurement of the radiation power spectrum of 149 GeV electrons in thin
tantalum targets. The first observation of a logarithmic dependence of radiation yield on the target thickness that was done there is the conclusive evidence of the effect of radiation suppression in a thin layer of matter, which was predicted many years ago, and which is the direct manifestation of the radiation of a relativistic electron with non-equilibrium own Coulomb field. The special features of the angular distribution of the radiation and its polarization in a thin target at non-dipole regime are proposed for a new experimental study
Applications of BGP-reflection functors: isomorphisms of cluster algebras
Given a symmetrizable generalized Cartan matrix , for any index , one
can define an automorphism associated with of the field of rational functions of independent indeterminates It is an isomorphism between two cluster algebras associated to the
matrix (see section 4 for precise meaning). When is of finite type,
these isomorphisms behave nicely, they are compatible with the BGP-reflection
functors of cluster categories defined in [Z1, Z2] if we identify the
indecomposable objects in the categories with cluster variables of the
corresponding cluster algebras, and they are also compatible with the
"truncated simple reflections" defined in [FZ2, FZ3]. Using the construction of
preprojective or preinjective modules of hereditary algebras by Dlab-Ringel
[DR] and the Coxeter automorphisms (i.e., a product of these isomorphisms), we
construct infinitely many cluster variables for cluster algebras of infinite
type and all cluster variables for finite types.Comment: revised versio
Foreign trade and marketing processes in the context of sustainable development
Purpose: The article aims to study foreign economic and trade relations between the countries of Central and Eastern Europe, the CIS and the Western European countries. In addition, the study improves forms of foreign economic cooperation between the countries and suggests the stages of its implementation in the integration group.
Design/Methodology/Approach: Central and Eastern European countries are experiencing the increase and acceleration of the labour migration to Western European countries, which has a negative impact on their medium-and long-term development. As a theoretical and methodological basis, the article uses historical-logical, dialectical principles and contradictions, the method of the scientific abstraction. The process-system approach, which was used in the study of foreign economic relations between the partner countries, gained special importance in the argument of the need to implement stages.
Findings: Authors presented the form of the foreign economic cooperation between the countries as the geostrategic economic block and the stages of its implementation. As the study shows, these stages will help to smooth out the economic inequality between the Central and Eastern regions of Europe and Western European countries.
Practical implications: In practice, authors investigate the phased implementation of the geostrategic economic bloc form, which will reduce inequality between the partner countries of the European Union.
Originality/Value: The economic inequality between developed and developing countries of the European Union is increasing every year, which can lead to the transformation of the integration group, so it is necessary to develop new forms and mechanisms of foreign economic relations between the partner countries.peer-reviewe
Q-systems, Heaps, Paths and Cluster Positivity
We consider the cluster algebra associated to the -system for as a
tool for relating -system solutions to all possible sets of initial data. We
show that the conserved quantities of the -system are partition functions
for hard particles on particular target graphs with weights, which are
determined by the choice of initial data. This allows us to interpret the
simplest solutions of the Q-system as generating functions for Viennot's heaps
on these target graphs, and equivalently as generating functions of weighted
paths on suitable dual target graphs. The generating functions take the form of
finite continued fractions. In this setting, the cluster mutations correspond
to local rearrangements of the fractions which leave their final value
unchanged. Finally, the general solutions of the -system are interpreted as
partition functions for strongly non-intersecting families of lattice paths on
target lattices. This expresses all cluster variables as manifestly positive
Laurent polynomials of any initial data, thus proving the cluster positivity
conjecture for the -system. We also give an alternative formulation in
terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure
Cluster algebras of type
In this paper we study cluster algebras \myAA of type . We solve
the recurrence relations among the cluster variables (which form a T--system of
type ). We solve the recurrence relations among the coefficients of
\myAA (which form a Y--system of type ). In \myAA there is a
natural notion of positivity. We find linear bases \BB of \myAA such that
positive linear combinations of elements of \BB coincide with the cone of
positive elements. We call these bases \emph{atomic bases} of \myAA. These
are the analogue of the "canonical bases" found by Sherman and Zelevinsky in
type . Every atomic basis consists of cluster monomials together
with extra elements. We provide explicit expressions for the elements of such
bases in every cluster. We prove that the elements of \BB are parameterized
by \ZZ^3 via their --vectors in every cluster. We prove that the
denominator vector map in every acyclic seed of \myAA restricts to a
bijection between \BB and \ZZ^3. In particular this gives an explicit
algorithm to determine the "virtual" canonical decomposition of every element
of the root lattice of type . We find explicit recurrence relations
to express every element of \myAA as linear combinations of elements of
\BB.Comment: Latex, 40 pages; Published online in Algebras and Representation
Theory, springer, 201
Parameterized Complexity of Secluded Connectivity Problems
The Secluded Path problem models a situation where a sensitive information
has to be transmitted between a pair of nodes along a path in a network. The
measure of the quality of a selected path is its exposure, which is the total
weight of vertices in its closed neighborhood. In order to minimize the risk of
intercepting the information, we are interested in selecting a secluded path,
i.e. a path with a small exposure. Similarly, the Secluded Steiner Tree problem
is to find a tree in a graph connecting a given set of terminals such that the
exposure of the tree is minimized. The problems were introduced by Chechik et
al. in [ESA 2013]. Among other results, Chechik et al. have shown that Secluded
Path is fixed-parameter tractable (FPT) on unweighted graphs being
parameterized by the maximum vertex degree of the graph and that Secluded
Steiner Tree is FPT parameterized by the treewidth of the graph. In this work,
we obtain the following results about parameterized complexity of secluded
connectivity problems.
We give FPT-algorithms deciding if a graph G with a given cost function
contains a secluded path and a secluded Steiner tree of exposure at most k with
the cost at most C.
We initiate the study of "above guarantee" parameterizations for secluded
problems, where the lower bound is given by the size of a Steiner tree.
We investigate Secluded Steiner Tree from kernelization perspective and
provide several lower and upper bounds when parameters are the treewidth, the
size of a vertex cover, maximum vertex degree and the solution size. Finally,
we refine the algorithmic result of Chechik et al. by improving the exponential
dependence from the treewidth of the input graph.Comment: Minor corrections are don
Discrete integrable systems, positivity, and continued fraction rearrangements
In this review article, we present a unified approach to solving discrete,
integrable, possibly non-commutative, dynamical systems, including the - and
-systems based on . The initial data of the systems are seen as cluster
variables in a suitable cluster algebra, and may evolve by local mutations. We
show that the solutions are always expressed as Laurent polynomials of the
initial data with non-negative integer coefficients. This is done by
reformulating the mutations of initial data as local rearrangements of
continued fractions generating some particular solutions, that preserve
manifest positivity. We also show how these techniques apply as well to
non-commutative settings.Comment: 24 pages, 2 figure
- …