3,510 research outputs found

    Cluster algebras and Grassmannians of type G2

    Full text link
    We prove a conjecture of Geiss, Leclerc and Schr\"{o}er, producing cluster algebra structures on multi-homogeneous coordinate ring of partial flag varieties, for the case G2G_2. As a consequence we sharpen the known fact that coordinate ring of the double Bruhat cell Ge,w0G^{e,w_0} is an upper cluster algebra, by proving that it is a cluster algebra.Comment: minor typos correcte

    Phonons in magnon superfluid and symmetry breaking field

    Full text link
    Recent experiments [1],[2] which measured the spectrum of the Goldstone collective mode of coherently precessing state in 3He-B are discussed using the presentation of the coherent spin precession in terms of the Bose-Einstein condensation of magnons. The mass in the spectrum of the Goldstone boson -- phonon in the superfluid magnon liquid -- is induced by the symmetry breaking field, which is played by the RF magnetic fieldComment: 2 pages, JETP Letters style, no figures, version accepted in JETP Letter

    Radiation of a relativistic electron with non-equilibrium own Coulomb field

    Get PDF
    The condition and specific features of the non-dipole regime of radiation is discussed in the context of the results of the recent CERN experiment NA63 on measurement of the radiation power spectrum of 149 GeV electrons in thin tantalum targets. The first observation of a logarithmic dependence of radiation yield on the target thickness that was done there is the conclusive evidence of the effect of radiation suppression in a thin layer of matter, which was predicted many years ago, and which is the direct manifestation of the radiation of a relativistic electron with non-equilibrium own Coulomb field. The special features of the angular distribution of the radiation and its polarization in a thin target at non-dipole regime are proposed for a new experimental study

    Applications of BGP-reflection functors: isomorphisms of cluster algebras

    Full text link
    Given a symmetrizable generalized Cartan matrix AA, for any index kk, one can define an automorphism associated with A,A, of the field Q(u1,>...,un)\mathbf{Q}(u_1, >..., u_n) of rational functions of nn independent indeterminates u1,...,un.u_1,..., u_n. It is an isomorphism between two cluster algebras associated to the matrix AA (see section 4 for precise meaning). When AA is of finite type, these isomorphisms behave nicely, they are compatible with the BGP-reflection functors of cluster categories defined in [Z1, Z2] if we identify the indecomposable objects in the categories with cluster variables of the corresponding cluster algebras, and they are also compatible with the "truncated simple reflections" defined in [FZ2, FZ3]. Using the construction of preprojective or preinjective modules of hereditary algebras by Dlab-Ringel [DR] and the Coxeter automorphisms (i.e., a product of these isomorphisms), we construct infinitely many cluster variables for cluster algebras of infinite type and all cluster variables for finite types.Comment: revised versio

    Foreign trade and marketing processes in the context of sustainable development

    Get PDF
    Purpose: The article aims to study foreign economic and trade relations between the countries of Central and Eastern Europe, the CIS and the Western European countries. In addition, the study improves forms of foreign economic cooperation between the countries and suggests the stages of its implementation in the integration group. Design/Methodology/Approach: Central and Eastern European countries are experiencing the increase and acceleration of the labour migration to Western European countries, which has a negative impact on their medium-and long-term development. As a theoretical and methodological basis, the article uses historical-logical, dialectical principles and contradictions, the method of the scientific abstraction. The process-system approach, which was used in the study of foreign economic relations between the partner countries, gained special importance in the argument of the need to implement stages. Findings: Authors presented the form of the foreign economic cooperation between the countries as the geostrategic economic block and the stages of its implementation. As the study shows, these stages will help to smooth out the economic inequality between the Central and Eastern regions of Europe and Western European countries. Practical implications: In practice, authors investigate the phased implementation of the geostrategic economic bloc form, which will reduce inequality between the partner countries of the European Union. Originality/Value: The economic inequality between developed and developing countries of the European Union is increasing every year, which can lead to the transformation of the integration group, so it is necessary to develop new forms and mechanisms of foreign economic relations between the partner countries.peer-reviewe

    Q-systems, Heaps, Paths and Cluster Positivity

    Full text link
    We consider the cluster algebra associated to the QQ-system for ArA_r as a tool for relating QQ-system solutions to all possible sets of initial data. We show that the conserved quantities of the QQ-system are partition functions for hard particles on particular target graphs with weights, which are determined by the choice of initial data. This allows us to interpret the simplest solutions of the Q-system as generating functions for Viennot's heaps on these target graphs, and equivalently as generating functions of weighted paths on suitable dual target graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the QQ-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the ArA_r QQ-system. We also give an alternative formulation in terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure

    Cluster algebras of type A2(1)A_2^{(1)}

    Get PDF
    In this paper we study cluster algebras \myAA of type A2(1)A_2^{(1)}. We solve the recurrence relations among the cluster variables (which form a T--system of type A2(1)A_2^{(1)}). We solve the recurrence relations among the coefficients of \myAA (which form a Y--system of type A2(1)A_2^{(1)}). In \myAA there is a natural notion of positivity. We find linear bases \BB of \myAA such that positive linear combinations of elements of \BB coincide with the cone of positive elements. We call these bases \emph{atomic bases} of \myAA. These are the analogue of the "canonical bases" found by Sherman and Zelevinsky in type A1(1)A_{1}^{(1)}. Every atomic basis consists of cluster monomials together with extra elements. We provide explicit expressions for the elements of such bases in every cluster. We prove that the elements of \BB are parameterized by \ZZ^3 via their g\mathbf{g}--vectors in every cluster. We prove that the denominator vector map in every acyclic seed of \myAA restricts to a bijection between \BB and \ZZ^3. In particular this gives an explicit algorithm to determine the "virtual" canonical decomposition of every element of the root lattice of type A2(1)A_2^{(1)}. We find explicit recurrence relations to express every element of \myAA as linear combinations of elements of \BB.Comment: Latex, 40 pages; Published online in Algebras and Representation Theory, springer, 201

    Parameterized Complexity of Secluded Connectivity Problems

    Get PDF
    The Secluded Path problem models a situation where a sensitive information has to be transmitted between a pair of nodes along a path in a network. The measure of the quality of a selected path is its exposure, which is the total weight of vertices in its closed neighborhood. In order to minimize the risk of intercepting the information, we are interested in selecting a secluded path, i.e. a path with a small exposure. Similarly, the Secluded Steiner Tree problem is to find a tree in a graph connecting a given set of terminals such that the exposure of the tree is minimized. The problems were introduced by Chechik et al. in [ESA 2013]. Among other results, Chechik et al. have shown that Secluded Path is fixed-parameter tractable (FPT) on unweighted graphs being parameterized by the maximum vertex degree of the graph and that Secluded Steiner Tree is FPT parameterized by the treewidth of the graph. In this work, we obtain the following results about parameterized complexity of secluded connectivity problems. We give FPT-algorithms deciding if a graph G with a given cost function contains a secluded path and a secluded Steiner tree of exposure at most k with the cost at most C. We initiate the study of "above guarantee" parameterizations for secluded problems, where the lower bound is given by the size of a Steiner tree. We investigate Secluded Steiner Tree from kernelization perspective and provide several lower and upper bounds when parameters are the treewidth, the size of a vertex cover, maximum vertex degree and the solution size. Finally, we refine the algorithmic result of Chechik et al. by improving the exponential dependence from the treewidth of the input graph.Comment: Minor corrections are don

    Discrete integrable systems, positivity, and continued fraction rearrangements

    Full text link
    In this review article, we present a unified approach to solving discrete, integrable, possibly non-commutative, dynamical systems, including the QQ- and TT-systems based on ArA_r. The initial data of the systems are seen as cluster variables in a suitable cluster algebra, and may evolve by local mutations. We show that the solutions are always expressed as Laurent polynomials of the initial data with non-negative integer coefficients. This is done by reformulating the mutations of initial data as local rearrangements of continued fractions generating some particular solutions, that preserve manifest positivity. We also show how these techniques apply as well to non-commutative settings.Comment: 24 pages, 2 figure
    • …
    corecore