46 research outputs found

    Drought at the global scale in the 2nd part of the 20th century (1963-2001)

    Get PDF
    The large impacts of drought on society, economy and environment urge for a thorough investigation. A good knowledge of past drought events is important for both understanding of the processes causing drought, as well as to provide reliability assessments for drought projections for the future. Preferably, the investigation of historic drought events should rely on observations. Unfortunately, for a global scale these detailed observations are often not available. Therefore, the outcome of global hydrological models (GHMs) and off-line land surface models (LSMs) is used to assess droughts. In this study we have investigated to what extent simulated gridded time series from these large-scale models capture historic hydrological drought events. Results of ten different models, both GHMs and LSMs, made available by the WATCH project, were compared. All models are run on a global 0.5 degree grid for the period 1963-2000 with the same meteorological forcing data (WATCH forcing data). To identify hydrological drought events, the monthly aggregated total runoff values were used. Different methods were developed to identify spatio-temporal drought characteristics. General drought characteristics for each grid cell, as for example the average drought duration, were compared. These characteristics show that when comparing absolute values the models give substantially different results, whereas relative values lead to more or less the same drought pattern. Next to the general drought characteristics, some documented major historical drought events (one for each continent) were selected and described in more detail. For each drought event, the simulated drought clusters (spatial events) and their characteristics are given for one month during the event. It can be concluded that most major drought events are captured by all models. However, the spatial extent of the drought events differ substantially between the models. In general the models show a fast reaction to rainfall and therefore also capture drought events caused by large rainfall anomalies. More research is still needed, since here we only looked at a few selected number of documented drought events spread over the globe. To assess more in detail if these large-scale models are able to capture drought, additional quantitative analyses are needed together with a more elaborated comparison against observed drought events

    Global multimodel analysis of drought in runoff for the second half of the twentieth century

    Get PDF
    During the past decades large-scale models have been developed to simulate global and continental terrestrial water cycles. It is an open question whether these models are suitable to capture hydrological drought, in terms of runoff, on global scale. A multi-model ensemble analysis was carried out to evaluate if ten of such large-scale models agree on major drought events during the second half of the 20th century. Time series of monthly precipitation, monthly total runoff from ten global hydrological models, and their ensemble median have been used to identify drought. Temporal development of area in drought for various regions across the globe was investigated. Model spread was largest in regions with low runoff and smallest in regions with high runoff. In vast regions, correlation between runoff drought derived from the models and meteorological drought was found to be low. This indicated that models add information to the signal derived from precipitation and that runoff drought cannot directly be determined from precipitation data alone in global drought analyses with a constant aggregation period. However, duration and spatial extent of major drought events differed between models. Some models showed a fast runoff response to rainfall, which led to deviations from reported drought events in slowly responding hydrological systems. By using an ensemble of models, this fast runoff response was partly overcome and delay in drought propagating from meteorological drought to drought in runoff was included. Finally, an ensemble of models also allows to consider uncertainty associated with individual model structures

    Ecological association between a deprivation index and mortality in France over the period 1997 – 2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spatial health inequalities have often been analysed in terms of deprivation. The aim of this study was to create an ecological deprivation index and evaluate its association with mortality over the entire mainland France territory. More specifically, the variations with the degree of urbanicity, spatial scale, age, gender and cause of death, which influence the association between mortality and deprivation, have been described.</p> <p>Methods</p> <p>The deprivation index, 'FDep99', was developed at the '<it>commune</it>'(smallest administrative unit in France) level as the first component of a principal component analysis of four socioeconomic variables.</p> <p>Proxies of the Carstairs and Townsend indices were calculated for comparison.</p> <p>The spatial association between FDep99 and mortality was studied using five different spatial scales, and by degree of urbanicity (five urban unit categories), age, gender and cause of death, over the period 1997–2001.</p> <p>'Avoidable' causes of death were also considered for subjects aged less than 65 years. They were defined as causes related to risk behaviour and primary prevention (alcohol, smoking, accidents).</p> <p>Results</p> <p>The association between the FDep99 index and mortality was positive and quasi-log-linear, for all geographic scales. The standardized mortality ratio (SMR) was 24% higher for the <it>communes </it>of the most deprived quintile than for those of the least deprived quintile. The between-urban unit category and between-<it>région </it>heterogeneities of the log-linear associations were not statistically significant. The association was positive for all the categories studied and was significantly greater for subjects aged less than 65 years, for men, and for 'avoidable' mortality.</p> <p>The amplitude and regularity of the associations between mortality and the Townsend and Carstairs indices were lower.</p> <p>Conclusion</p> <p>The deprivation index proposed reflects a major part of spatial socioeconomic heterogeneity, in a homogeneous manner over the whole country. The index may be routinely used by healthcare authorities to observe, analyse, and manage spatial health inequalities.</p

    Drought at the global scale for the 2nd part of the 20th Century (1963-2001)

    Get PDF
    The large impacts of drought on society, economy and environment urge for a thorough investigation. A good knowledge of past drought events is important for both understanding of the processes causing drought, as well as to provide reliability assessments for drought projections for the future. Preferably, the investigation of historic drought events should rely on observations. Unfortunately, for a global scale these detailed observations are often not available. Therefore, the outcome of global hydrological models (GHMs) and o-line land surface models (LSMs) is used to assess droughts. In this study we have investigated to what extent simulated gridded time series from these large-scale models capture historic hydrological drought events. Results of ten dierent models, both GHMs and LSMs, made available by the WATCH project, were compared. All models are run on a global 0.5 grid for the period 1963-2000 with the same meteorological forcing data (WATCH forcing data). To identify hydrological drought events, the monthly aggregated total runo values were used. Dierent methods were developed to identify spatio-temporal drought characteristics. General drought characteristics for each grid cell, as for example the average drought duration, were compared. These characteristics show that when comparing absolute values the models give substantially dierent results, whereas relative values lead to more or less the same drought pattern. Next to the general drought characteristics, some documented major historical drought events (one for each continent) were selected and described in more detail. For each drought event, the simulated drought clusters (spatial events) and their characteristics are given for one month during the event. It can be concluded that most major drought events are captured by all models. However, the spatial extent of the drought events dier substantially between the models. In general the models show a fast reaction to rainfall and therefore also capture drought events caused by large rainfall anomalies. More research is still needed, since here we only looked at a few selected number of documented drought events spread over the globe. To assess more in detail if these large-scale models are able to capture drought, additional quantitative analyses are needed together with a more elaborated comparison against observed drought event
    corecore