11 research outputs found

    Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation

    Get PDF
    Publisher’s embargo period: Embargo set on 04.03.2019 by SR (TIS).The causal role of an area within a neural network can be determined by interfering with its activity and measuring the impact. Many current reversible manipulation techniques have limitations preventing their application, particularly in deep areas of the primate brain. Here, we demonstrate that a focused transcranial ultrasound stimulation (TUS) protocol impacts activity even in deep brain areas: a subcortical brain structure, the amygdala (experiment 1), and a deep cortical region, the anterior cingulate cortex (ACC, experiment 2), in macaques. TUS neuromodulatory effects were measured by examining relationships between activity in each area and the rest of the brain using functional magnetic resonance imaging (fMRI). In control conditions without sonication, activity in a given area is related to activity in interconnected regions, but such relationships are reduced after sonication, specifically for the targeted areas. Dissociable and focal effects on neural activity could not be explained by auditory confounds

    Long-term follow-up of IPEX syndrome patients after different therapeutic strategies : an international multicenter retrospective study

    Get PDF
    Background: Immunodysregulation polyendocrinopathy enteropathy x-linked(IPEX) syndrome is a monogenic autoimmune disease caused by FOXP3 mutations. Because it is a rare disease, the natural history and response to treatments, including allogeneic hematopoietic stem cell transplantation (HSCT) and immunosuppression (IS), have not been thoroughly examined. Objective: This analysis sought to evaluate disease onset, progression, and long-term outcome of the 2 main treatments in long-term IPEX survivors. Methods: Clinical histories of 96 patients with a genetically proven IPEX syndrome were collected from 38 institutions worldwide and retrospectively analyzed. To investigate possible factors suitable to predict the outcome, an organ involvement (OI) scoring system was developed. Results: We confirm neonatal onset with enteropathy, type 1 diabetes, and eczema. In addition, we found less common manifestations in delayed onset patients or during disease evolution. There is no correlation between the site of mutation and the disease course or outcome, and the same genotype can present with variable phenotypes. HSCT patients (n = 58) had a median follow-up of 2.7 years (range, 1 week-15 years). Patients receiving chronic IS (n 5 34) had a median follow-up of 4 years (range, 2 months-25 years). The overall survival after HSCT was 73.2% (95% CI, 59.4-83.0) and after IS was 65.1% (95% CI, 62.8-95.8). The pretreatment OI score was the only significant predictor of overall survival after transplant (P = .035) but not under IS. Conclusions: Patients receiving chronic IS were hampered by disease recurrence or complications, impacting long-term.disease-free survival. When performed in patients with a low OI score, HSCT resulted in disease resolution with better quality of life, independent of age, donor source, or conditioning regimen

    White matter tract transcranial ultrasound stimulation, a computational study

    No full text
    Low-intensity transcranial ultrasound stimulation (TUS) is poised to become one of the most promising treatments for neurological disorders. However, while recent animal model experiments have successfully quantified the alterations of the functional activity coupling between a sonicated target cortical region and other cortical regions of interest (ROIs), the varying degree of alteration between these different connections remains unexplained. We hypothesise here that the incidental sonication of the tracts leaving the target region towards the different ROIs could participate in explaining these differences. To this end, we propose a tissue level phenomenological numerical model of the coupling between the ultrasound waves and the white matter electrical activity. The model is then used to reproduce in silico the sonication of the anterior cingulate cortex (ACC) of a macaque monkey and measure the neuromodulation power within the white matter tracts leaving the ACC for five cortical ROIs. The results show that the more induced power a white matter tract proximal to the ACC and connected to a secondary ROI receives, the more altered the connectivity fingerprint of the ACC to this region will be after sonication. These results point towards the need to isolate the sonication to the cortical region and minimise the spillage on the neighbouring tracts when aiming at modulating the target region without losing the functional connectivity with other ROIs. Those results further emphasise the potential role of the white matter in TUS and the need to account for white matter topology when designing TUS protocols

    Human lateral Frontal Pole contributes to control over emotional approach-avoidance actions

    No full text
    Contains fulltext : 217511.pdf (publisher's version ) (Open Access)Regulation of emotional behavior is essential for human social interactions. Recent work has exposed its cognitive complexity, as well as its unexpected reliance on portions of the anterior prefrontal cortex (aPFC) also involved in exploration, relational reasoning, and counterfactual choice, rather than on dorsolateral and medial prefrontal areas involved in several forms of cognitive control. This study anatomically qualifies the contribution of aPFC territories to the regulation of prepotent approach-avoidance action-tendencies elicited by emotional faces, and explores a possible structural pathway through which this emotional action regulation might be implemented.We provide converging evidence from task-based fMRI, diffusion-weighted imaging, and functional connectivity fingerprints for a novel neural element in emotional regulation. Task-based fMRI in human male participants (N = 40) performing an emotional approach-avoidance task identified aPFC territories involved in the regulation of action-tendencies elicited by emotional faces. Connectivity fingerprints, based on diffusion-weighted imaging and resting-state connectivity, localized those task-defined frontal regions to the lateral frontal pole (FPl), an anatomically-defined portion of the aPFC that lacks a homologous counterpart in macaque brains. Probabilistic tractography indicated that 10-20% of inter-individual variation in emotional regulation abilities is accounted for by the strength of structural connectivity between FPl and amygdala. Evidence from an independent replication sample (N = 50; 10 females) further substantiated this result. These findings provide novel neuroanatomical evidence for incorporating FPl in models of control over human action-tendencies elicited by emotional faces.Significance statementSuccessful regulation of emotional behaviors is a prerequisite for successful participation in human society, as is evidenced by the social isolation and loss of occupational opportunities often encountered by people suffering from emotion-regulation disorders such as social-anxiety disorder and psychopathy. Knowledge about the precise cortical regions and connections supporting this control is crucial for understanding both the nature of computations needed to successfully traverse the space of possible actions in social situations, and the potential interventions that might result in efficient treatment of social-emotional disorders. This study provides evidence for a precise cortical region (FPl) and a structural pathway (the ventral amygdalofugal bundle) through which a cognitively complex form of emotional action regulation might be implemented in the human brain.10 p

    Ultrasound modulation of macaque prefrontal cortex selectively alters credit assignment–related activity and behavior

    No full text
    International audienceCredit assignment is the association of specific instances of reward to the specific events, such as a particular choice, that caused them. Without credit assignment, choice values reflect an approximate estimate of how good the environment was when the choice was made—the global reward state—rather than exactly which outcome the choice caused. Combined transcranial ultrasound stimulation (TUS) and functional magnetic resonance imaging in macaques demonstrate credit assignment–related activity in prefrontal area 47/12o, and when this signal was disrupted with TUS, choice value representations across the brain were impaired. As a consequence, behavior was no longer guided by choice value, and decision-making was poorer. By contrast, global reward state–related activity in the adjacent anterior insula remained intact and determined decision-making after prefrontal disruption

    La maison d'arrĂȘt de Briey : dĂ©tenus politiques par Fanny Lebigot

    No full text
    Photo MinistĂšre de la Justice SituĂ©e en ville Ă  80km de Nancy, dans les hauts de Briey, la prison a Ă©tĂ© construite en 1906. Elle a Ă©tĂ© une maison d’arrĂȘt jusqu’en 1974 puis un Quartier de Haute SĂ©curitĂ© (QHS) jusqu’en 1982 (date de fermeture de ce type d’établissement). Par la suite, elle redevient maison d’arrĂȘt. Depuis 1990, l’établissement fait office de Centre de Semi-LibertĂ©. En 1996, sa capacitĂ© d’accueil est passĂ©e de 15 Ă  25 personnes. Enfin depuis 2004, le CSL est habilitĂ© pour Ă©crou..

    What is special about the human arcuate fasciculus? Lateralization, projections, and expansion

    No full text
    Evolutionary adaptations of the human brain are the basis for our unique abilities such as language. An expansion of the arcuate fasciculus (AF), the dorsal language tract, in the human lineage involving left lateralization is considered canonical, but this hypothesis has not been tested in relation to other architectural adaptations in the human brain. Using diffusion-weighted MRI, we examined AF in the human and macaque and quantified species differences in white matter architecture and surface representations. To compare surface results in the two species, we transformed macaque representations to human space using a landmark-based monkey-to-human cortical expansion model. We found that the human dorsal AF, but not the ventral inferior fronto-occipital fasciculus (IFO), is left-lateralized. In the monkey AF is not lateralized. Moreover, compared to the macaque, human AF is relatively increased with respect to IFO. A comparison of human and transformed macaque surface representations suggests that cortical expansion alone cannot account for the species differences in the surface representation of AF. Our results show that the human AF has undergone critical anatomical modifications in comparison with the macaque AF. More generally, this work demonstrates that studies on the human brain specializations underlying the language connectome can benefit from current methodological advances in comparative neuroanatomy.status: publishe
    corecore