87 research outputs found

    Elevated antioxidant defence in the brain of deep-diving pinnipeds

    Get PDF
    While foraging, marine mammals undertake repetitive diving bouts. When the animal surfaces, reperfusion makes oxygen readily available for the electron transport chain, which leads to increased production of reactive oxygen species and risk of oxidative damage. In blood and several tissues, such as heart, lung, muscle and kidney, marine mammals generally exhibit an elevated antioxidant defence. However, the brain, whose functional integrity is critical to survival, has received little attention. We previously observed an enhanced expression of several antioxidant genes in cortical neurons of hooded seals (Cystophora cristata). Here, we studied antioxidant gene expression and enzymatic activity in the visual cortex, cerebellum and hippocampus of harp seals (Pagophilus groenlandicus) and hooded seals. Moreover, we tested several genes for positive selection. We found that antioxidants in the first line of defence, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione (GSH) were constitutively enhanced in the seal brain compared to mice (Mus musculus), whereas the glutaredoxin and thioredoxin systems were not. Possibly, the activity of the latter systems is stress-induced rather than constitutively elevated. Further, some, but not all members, of the glutathiones-transferase (GST) family appear more highly expressed. We found no signatures of positive selection, indicating that sequence and function of the studied antioxidants are conserved in pinnipeds

    Thermal modeling of the respiratory turbinates in arctic and subtropical seals

    Get PDF
    Mammals possess complex structures in their nasal cavities known as respiratory turbinate bones, which help the animal to conserve body heat and water during respiratory gas exchange. We considered the function of the maxilloturbinates of two species of seals, one arctic (Erignathus barbatus), one subtropical (Monachus monachus). By means of a thermo-hydrodynamic model that describes the heat and water exchange in the turbinate region we are able to reproduce the measured values of expired air temperatures in grey seals (Halichoerus grypus), a species for which experimental data are available. At the lowest environmental temperatures, however, this is only possible in the arctic seal, and only if we allow for the possibility of ice forming on the outermost turbinate region. At the same time the model predicts that for the arctic seals, the inhaled air is brought to deep body temperature and humidity conditions in passing the maxilloturbinates. The modeling shows that heat and water conservation go together in the sense that one effect implies the other, and that the conservation is most efficient and most flexible in the typical environment of both species. By controlling the blood flow through the turbinates the arctic seal is able to vary the heat and water conservation substantially at its average habitat temperatures, but not at temperatures around −40 °C. The subtropical species has simpler maxilloturbinates, and our model predicts that it is unable to bring inhaled air to deep body conditions, even in its natural environment, without some congestion of the vascular mucosa covering the maxilloturbinates. Physiological control of both blood flow rate and mucosal congestion is expected to have profound effects on the heat exchange function of the maxilloturbinates in seals

    Examining the accuracy of trackways for predicting gait selection and speed of locomotion

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-03-11, accepted 2020-05-20, registration 2020-05-21, pub-electronic 2020-05-27, online 2020-05-27, collection 2020-12Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/G011338/1Funder: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación; doi: http://dx.doi.org/10.13039/501100004299Abstract: Background: Using Froude numbers (Fr) and relative stride length (stride length: hip height), trackways have been widely used to determine the speed and gait of an animal. This approach, however, is limited by the ability to estimate hip height accurately and by the lack of information related to the substrate properties when the tracks were made, in particular for extinct fauna. By studying the Svalbard ptarmigan moving on snow, we assessed the accuracy of trackway predictions from a species-specific model and two additional Fr based models by ground truthing data extracted from videos as the tracks were being made. Results: The species-specific model accounted for more than 60% of the variability in speed for walking and aerial running, but only accounted for 19% when grounded running, likely due to its stabilizing role while moving faster over a changing substrate. The error in speed estimated was 0–35% for all gaits when using the species-specific model, whereas Fr based estimates produced errors up to 55%. The highest errors were associated with the walking gait. The transition between pendular to bouncing gaits fell close to the estimates using relative stride length described for other extant vertebrates. Conversely, the transition from grounded to aerial running appears to be species specific and highly dependent on posture and substrate. Conclusion: Altogether, this study highlights that using trackways to derive predictions on the locomotor speed and gait, using stride length as the only predictor, are problematic as accurate predictions require information from the animal in question

    Elevated antioxidant defence in the brain of deep-diving pinnipeds

    Get PDF
    While foraging, marine mammals undertake repetitive diving bouts. When the animal surfaces, reperfusion makes oxygen readily available for the electron transport chain, which leads to increased production of reactive oxygen species and risk of oxidative damage. In blood and several tissues, such as heart, lung, muscle and kidney, marine mammals generally exhibit an elevated antioxidant defence. However, the brain, whose functional integrity is critical to survival, has received little attention. We previously observed an enhanced expression of several antioxidant genes in cortical neurons of hooded seals (Cystophora cristata). Here, we studied antioxidant gene expression and enzymatic activity in the visual cortex, cerebellum and hippocampus of harp seals (Pagophilus groenlandicus) and hooded seals. Moreover, we tested several genes for positive selection. We found that antioxidants in the first line of defence, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione (GSH) were constitutively enhanced in the seal brain compared to mice (Mus musculus), whereas the glutaredoxin and thioredoxin systems were not. Possibly, the activity of the latter systems is stress-induced rather than constitutively elevated. Further, some, but not all members, of the glutathione-s-transferase (GST) family appear more highly expressed. We found no signatures of positive selection, indicating that sequence and function of the studied antioxidants are conserved in pinnipeds

    Does posture explain the kinematic differences in a grounded running gait between male and female Svalbard rock ptarmigan ( Lagopus muta hyperborea ) moving on snow?

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-05-05, rev-recd 2021-02-24, accepted 2021-04-20, registration 2021-04-20, pub-electronic 2021-05-05, online 2021-05-05, pub-print 2021-06Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/G011338/1, BB/I021116/1Funder: Secretaría de Educación Superior, Ciencia, Tecnología e Innovación; doi: http://dx.doi.org/10.13039/501100004299; Grant(s): AR2Q-000199-2016Abstract: The majority of locomotor research is conducted on treadmills and few studies attempt to understand the differences between this and animals moving in the wild. For example, animals may adjust their gait kinematics or limb posture, to a more compliant limb, to increase stability of locomotion to prevent limb failure or falling on different substrates. Here, using video recordings, we compared locomotor parameters (speed range, stride length, stride frequency, stance duration, swing duration and duty factor) of female Svalbard rock ptarmigan (Lagopus muta hyperborea) moving in the wild over snow to previous treadmill-based research. We also compared the absolute and body size (body mass and limb length)-corrected values of kinematic parameters to published data from males to look for any sex differences across walking and grounded running gaits. Our findings indicate that the kinematics of locomotion are largely conserved between the field and laboratory in that none of the female gaits were drastically affected by moving over snow, except for a prolonged swing phase at very slow walking speeds, likely due to toe dragging. Comparisons between the sexes indicate that the differences observed during a walking gait are likely due to body size. However, sexual dimorphism in body size could not explain the disparate grounded running kinematics of the female and male ptarmigan, which might be linked to a more crouched posture in females. Our findings provide insight into how males and females moving in situ may use different strategies to alleviate the effects of a variable substrate

    Environmental drivers of population-level variation in the migratory and diving ontogeny of an Arctic top predator

    Get PDF
    This work is an output of the ARISE project (NE/P006035/1 and NE/P00623X/1), part of the Changing Arctic Ocean programme jointly funded by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF). Fieldwork in Canada was carried out under a Canadian Council on Animal Care permit no. NAFC2017–2 and funded by Fisheries and Oceans Canada and a bursary from Department for Business, Energy and Industrial Strategy (BEIS) administered by the NERC Arctic Office. Fieldwork in the Greenland Sea was approved by the Greenland Ministry of Fisheries, Hunting and Agriculture and the Norwegian Food Safety Authority (permit no. 11546) as part of the Northeast Greenland Environmental Study Program 2017–2018 (by the Danish Centre for Environment and Energy at Aarhus University, The Greenland Institute of Natural Resources and the Environmental Agency for Mineral Resource Activities of the Government of Greenland) and financed by oil licence holders in the area.The development of migratory strategies that enable juveniles to survive to sexual maturity is critical for species that exploit seasonal niches. For animals that forage via breath-hold diving, this requires a combination of both physiological and foraging skill development. Here, we assess how migratory and dive behaviour develop over the first year of life for a migratory Arctic top predator, the harp seal Pagophilus groenlandicus, tracked using animal-borne satellite relay data loggers. We reveal similarities in migratory movements and differences in diving behaviour between 38 juveniles tracked from the Greenland Sea and Northwest Atlantic breeding populations. In both regions, periods of resident and transitory behaviour during migration were associated with proxies for food availability: sea ice concentration and bathymetric depth. However, while ontogenetic development of dive behaviour was similar for both populations of juveniles over the first 25 days, after this time Greenland Sea animals performed shorter and shallower dives and were more closely associated with sea ice than Northwest Atlantic animals. Together, these results highlight the role of both intrinsic and extrinsic factors in shaping early life behaviour. Variation in the environmental conditions experienced during early life may shape how different populations respond to the rapid changes occurring in the Arctic ocean ecosystem.Publisher PDFPeer reviewe

    Why Rudolph's nose is red: Observational study

    Get PDF
    Objective: To characterise the functional morphology of the nasal microcirculation in humans in comparison with reindeer as a means of testing the hypothesis that the luminous red nose of Rudolph, one of the most well known reindeer pulling Santa Claus's sleigh, is due to the presence of a highly dense and rich nasal microcirculation. Design: Observational study. Setting: Tromsø, Norway (near the North Pole), and Amsterdam, the Netherlands. Participants: Five healthy human volunteers, two adult reindeer, and a patient with grade 3 nasal polyposis. Main outcome measures: Architecture of the microvasculature of the nasal septal mucosa and head of the inferior turbinates, kinetics of red blood cells, and real time reactivity of the microcirculation to topical medicines. Results: Similarities between human and reindeer nasal microcirculation were uncovered. Hairpin-like capillaries in the reindeers' nasal septal mucosa were rich in red blood cells, with a perfused vessel density of 20 (SD 0.7) mm/mm2. Scattered crypt or gland-like structures surrounded by capillaries containing flowing red blood cells were found in human and reindeer noses. In a healthy volunteer, nasal microvascular reactivity was demonstrated by the application of a local anaesthetic with vasoconstrictor activity, which resulted in direct cessation of capillary blood flow. Abnormal microvasculature was observed in the patient with nasal polyposis. Conclusions: The nasal microcirculation of reindeer is richly vascularised, with a vascular density 25% higher than that in humans. These results highlight the intrinsic physiological properties of Rudolph's legendary luminous red nose, which help to protect it from freezing during sleigh rides and to regulate the temperature of the reindeer's brain, factors essential for flying reindeer pulling Santa Claus's sleigh under extreme temperatures

    Pharmacokinetics of a long-acting subcutaneous eprinomectin injection in semi-domesticated reindeer (Rangifer tarandus tarandus) - a pilot study

    Get PDF
    Reindeer (Rangifer tarandus tarandus) are exposed to the pathogenic parasitic nematode Elaphostrongylus rangiferi during grazing. The severity of disease is dose-dependent. Prophylactic anthelmintic treatment is needed to improve animal health and reindeer herding sustainability. Herds are traditionally only gathered once during the summer, requiring a drug with a persistent effect. In this study we investigated the suitability of long-acting eprinomectin, given as a single subcutaneous injection at 1mg/kg bodyweight in adult reindeer and calves. Plasma and faeces concentrations were determined using ultra-high performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS). Plasma concentrations remained above the presumed effect level of 2ng/mL for 80 days, demonstrating the drug's potential. Pharmacokinetic parameters were compared to other species using allometric scaling. Calves and adults had slightly different profiles. No viable faecal nematode eggs were detected during treatment. Eprinomectin was measurable in the reindeer faeces up to 100 days, which is of environmental concern

    Tissue distribution of angiotensin-converting enzyme 2 (ACE2) receptor in wild animals with a focus on artiodactyls, mustelids and phocids

    Get PDF
    Natural cases of zooanthroponotic transmission of SARS-CoV-2 to animals have been reported during the COVID-19 pandemic, including to free-ranging white-tailed deer (Odocoileus virginianus) in North America and farmed American mink (Neovison vison) on multiple continents. To understand the potential for angiotensin-converting enzyme 2 (ACE2)-mediated viral tropism we characterised the distribution of ACE2 receptors in the respiratory and intestinal tissues of a selection of wild and semi-domesticated mammals including artiodactyls (cervids, bovids, camelids, suids and hippopotamus), mustelid and phocid species using immunohistochemistry. Expression of the ACE2 receptor was detected in the bronchial or bronchiolar epithelium of several European and Asiatic deer species, Bactrian camel (Camelus bactrianus), European badger (Meles meles), stoat (Mustela erminea), hippopotamus (Hippopotamus amphibious), harbor seal (Phoca vitulina), and hooded seal (Cystophora cristata). Further receptor mapping in the nasal turbinates and trachea revealed sparse ACE2 receptor expression in the mucosal epithelial cells and occasional occurrence in the submucosal glandular epithelium of Western roe deer (Capreolus capreolus), moose (Alces alces alces), and alpaca (Vicunga pacos). Only the European badger and stoat expressed high levels of ACE2 receptor in the nasal mucosal epithelium, which could suggest high susceptibility to ACE2-mediated respiratory infection. Expression of ACE2 receptor in the intestinal cells was ubiquitous across multiple taxa examined. Our results demonstrate the potential for ACE2-mediated viral infection in a selection of wild mammals and highlight the intra-taxon variability of ACE2 receptor expression, which might influence host susceptibility and infection
    corecore