162 research outputs found
Lattice models and Landau theory for type II incommensurate crystals
Ground state properties and phonon dispersion curves of a classical linear
chain model describing a crystal with an incommensurate phase are studied. This
model is the DIFFOUR (discrete frustrated phi4) model with an extra
fourth-order term added to it. The incommensurability in these models may arise
if there is frustration between nearest-neighbor and next-nearest-neighbor
interactions. We discuss the effect of the additional term on the phonon
branches and phase diagram of the DIFFOUR model. We find some features not
present in the DIFFOUR model such as the renormalization of the
nearest-neighbor coupling. Furthermore the ratio between the slopes of the soft
phonon mode in the ferroelectric and paraelectric phase can take on values
different from -2. Temperature dependences of the parameters in the model are
different above and below the paraelectric transition, in contrast with the
assumptions made in Landau theory. In the continuum limit this model reduces to
the Landau free energy expansion for type II incommensurate crystals and it can
be seen as the lowest-order generalization of the simplest Lifshitz-point
model. Part of the numerical calculations have been done by an adaption of the
Effective Potential Method, orginally used for models with nearest-neighbor
interaction, to models with also next-nearest-neighbor interactions.Comment: 33 pages, 7 figures, RevTex, submitted to Phys. Rev.
Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere
International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215β100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS βversion 2.2β processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations
Ξ±V Integrin Induces Multicellular Radioresistance in Human Nasopharyngeal Carcinoma via Activating SAPK/JNK Pathway
BACKGROUND:Tumor cells acquire the capacity of resistance to chemotherapy or radiotherapy via cell-matrix and cell-cell crosstalk. Integrins are the most important cell adhesion molecules, in which Ξ±V integrin mainly mediating the tight contact between tumor cells. METHODOLOGY/PRINCIPAL FINDINGS:To investigate the role of Ξ±V integrin in multi-cellular radioresistance (MCR) of human nasopharyngeal carcinoma (NPC), we performed immunohistochemistry and Western blotting to find that the expression of Ξ±V integrin in the tumor tissue of radioresistant patients is much higher than that in radiosensitive patients. In vitro, we cultured human NPC cell line CNE-2 cells as multi-cellular spheroids (MCSs) or as monolayer cells (MCs), and found that the expression of Ξ±V integrin in MCSs is significantly higher than that in MCs. MTT, flow cytometry and clonogenic survival assays showed that MCSs are less sensitive to X-ray irradiation than MCs while blocking of Ξ±V integrin in MCSs dramatically reversed their radioresistance. Furthermore, as detected by Western blotting, MCSs displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway in presence of irradiation. Blocking of Ξ±V integrin in MCSs decreased the expression of phosphorylated JNK. Additionally, blocking of SAPK/JNK signaling pathway synergistically induced apoptosis of MCSs exposed to irradiation by increasing the expression of cleaved caspase-3. In vivo, we found that irradiation combined with Ξ±V integrin blocking treatment significantly enhanced the radiosensitivity of NPC xenografts. CONCLUSIONS:Our results indicate a novel role of Ξ±V integrin in multi-cellular radioresistance of NPCs
Surgical impact on brain tumor invasion: A physical perspective
It is conventional strategy to treat highly malignant brain tumors initially with cytoreductive surgery followed by adjuvant radio- and chemotherapy. However, in spite of all such efforts, the patients' prognosis remains dismal since residual glioma cells continue to infiltrate adjacent parenchyma and the tumors almost always recur. On the basis of a simple biomechanical conjecture that we have introduced previously, we argue here that by affecting the 'volume-pressure' relationship and minimizing surface tension of the remaining tumor cells, gross total resection may have an inductive effect on the invasiveness of the tumor cells left behind. Potential implications for treatment strategies are discussed
Differential Analysis of Ovarian and Endometrial Cancers Identifies a Methylator Phenotype
Despite improved outcomes in the past 30 years, less than half of all women diagnosed with epithelial ovarian cancer live five years beyond their diagnosis. Although typically treated as a single disease, epithelial ovarian cancer includes several distinct histological subtypes, such as papillary serous and endometrioid carcinomas. To address whether the morphological differences seen in these carcinomas represent distinct characteristics at the molecular level we analyzed DNA methylation patterns in 11 papillary serous tumors, 9 endometrioid ovarian tumors, 4 normal fallopian tube samples and 6 normal endometrial tissues, plus 8 normal fallopian tube and 4 serous samples from TCGA. For comparison within the endometrioid subtype we added 6 primary uterine endometrioid tumors and 5 endometrioid metastases from uterus to ovary. Data was obtained from 27,578 CpG dinucleotides occurring in or near promoter regions of 14,495 genes. We identified 36 locations with significant increases or decreases in methylation in comparisons of serous tumors and normal fallopian tube samples. Moreover, unsupervised clustering techniques applied to all samples showed three major profiles comprising mostly normal samples, serous tumors, and endometrioid tumors including ovarian, uterine and metastatic origins. The clustering analysis identified 60 differentially methylated sites between the serous group and the normal group. An unrelated set of 25 serous tumors validated the reproducibility of the methylation patterns. In contrast, >1,000 genes were differentially methylated between endometrioid tumors and normal samples. This finding is consistent with a generalized regulatory disruption caused by a methylator phenotype. Through DNA methylation analyses we have identified genes with known roles in ovarian carcinoma etiology, whereas pathway analyses provided biological insight to the role of novel genes. Our finding of differences between serous and endometrioid ovarian tumors indicates that intervention strategies could be developed to specifically address subtypes of epithelial ovarian cancer
Integrating BRAF/MEK inhibitors into combination therapy for melanoma
The discovery of BRAF mutations in melanoma has not yet translated into clinical success, suggesting that BRAF/MEK inhibitors will need to be combined with other agents. In the current review, we discuss other pathways likely to be important for melanoma progression and suggest possible drug combinations for future clinical testing
MicroRNA Profiling of BRCA1/2 Mutation-Carrying and Non-Mutation-Carrying High-Grade Serous Carcinomas of Ovary
BACKGROUND:MicroRNAs (miRNA) are 20 approximately 25 nucleotide non-coding RNAs that inhibit the translation of targeted mRNA, and they have been implicated in the development of human malignancies. High grade serous ovarian carcinomas, the most common and lethal subtype of ovarian cancer, can occur sporadically or in the setting of BRCA1/2 syndromes. Little is known regarding the miRNA expression profiles of high grade serous carcinoma in relation to BRCA1/2 status, and compared to normal tubal epithelium, the putative tissue of origin for high grade serous carcinomas. METHODOLOGY/PRINCIPAL FINDINGS:Global miRNA expression profiling was performed on a series of 33 high grade serous carcinomas, characterized with respect to BRCA1/2 status (mutation, epigenetic silencing with loss of expression or normal), and with clinical follow-up, together with 2 low grade serous carcinomas, 2 serous borderline tumors, and 3 normal fallopian tube samples, using miRNA microarrays (328 human miRNA). Unsupervised hierarchical clustering based on miRNA expression profiles showed no clear separation between the groups of carcinomas with different BRCA1/2 status. There were relatively few miRNAs that were differentially expressed between the genotypic subgroups. Comparison of 33 high grade serous carcinomas to 3 normal fallopian tube samples identified several dysregulated miRNAs (false discovery rate <5%), including miR-422b and miR-34c. Quantitative RT-PCR analysis performed on selected miRNAs confirmed the pattern of differential expression shown by microarray analysis. Prognostically, lower level miR-422b and miR-34c in high grade serous carcinomas were both associated with decreased disease-specific survival by Kaplan-Meier analysis (p<0.05). CONCLUSIONS/SIGNIFICANCE:High grade serous ovarian carcinomas with and without BRCA1/2 abnormalities demonstrate very similar miRNA expression profiles. High grade serous carcinomas as a group exhibit significant miRNA dysregulation in comparison to tubal epithelium and the levels of miR-34c and miR-422b appear to be prognostically important
- β¦