8,015 research outputs found
Periodic forcing in viscous fingering of a nematic liquid crystal
We study viscous fingering of an air-nematic interface in a radial Hele-Shaw
cell when periodically switching on and off an electric field, which reorients
the nematic and thus changes its viscosity, as well as the surface tension and
its anisotropy (mainly enforced by a single groove in the cell). We observe
undulations at the sides of the fingers which correlate with the switching
frequency and with tip oscillations which give maximal velocity to smallest
curvatures. These lateral undulations appear to be decoupled from spontaneous
(noise-induced) side branching. We conclude that the lateral undulations are
generated by successive relaxations between two limiting finger widths. The
change between these two selected pattern scales is mainly due to the change in
the anisotropy. This scenario is confirmed by numerical simulations in the
channel geometry, using a phase-field model for anisotropic viscous fingering.Comment: completely rewritten version, more clear exposition of results (14
pages in Revtex + 7 eps figures
Quantitative Phase Field Model of Alloy Solidification
We present a detailed derivation and thin interface analysis of a phase-field
model that can accurately simulate microstructural pattern formation for
low-speed directional solidification of a dilute binary alloy. This advance
with respect to previous phase-field models is achieved by the addition of a
phenomenological "antitrapping" solute current in the mass conservation
relation [A. Karma, Phys. Rev. Lett 87, 115701 (2001)]. This antitrapping
current counterbalances the physical, albeit artificially large, solute
trapping effect generated when a mesoscopic interface thickness is used to
simulate the interface evolution on experimental length and time scales.
Furthermore, it provides additional freedom in the model to suppress other
spurious effects that scale with this thickness when the diffusivity is unequal
in solid and liquid [R. F. Almgren, SIAM J. Appl. Math 59, 2086 (1999)], which
include surface diffusion and a curvature correction to the Stefan condition.
This freedom can also be exploited to make the kinetic undercooling of the
interface arbitrarily small even for mesoscopic values of both the interface
thickness and the phase-field relaxation time, as for the solidification of
pure melts [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The
performance of the model is demonstrated by calculating accurately for the
first time within a phase-field approach the Mullins-Sekerka stability spectrum
of a planar interface and nonlinear cellular shapes for realistic alloy
parameters and growth conditions.Comment: 51 pages RevTeX, 5 figures; expanded introduction and discussion; one
table and one reference added; various small correction
Measuring Spatial Dynamics in Metropolitan Areas
This paper introduces a new approach to measuring neighborhood change. Instead of the traditional method of identifying “neighborhoods†a priori and then studying how resident attributes change over time, our approach looks at the neighborhood more intrinsically as a unit that has both a geographic footprint and a socioeconomic composition. Therefore, change is identified when both as- pects of a neighborhood transform from one period to the next. Our approach is based on a spatial clustering algorithm that identifies neighborhoods at two points in time for one city. We also develop indicators of spatial change at both the macro (city) level as well as local (neighborhood) scale. We illustrate these methods in an application to an extensive database of time-consistent census tracts for 359 of the largest metropolitan areas in the US for the period 1990-2000.
β-decay half-lives and β-delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N = 126
Background: There have been measurements on roughly 230 nuclei that are β-delayed neutron emitters. They
range from 8
He up to 150La. Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter
has been measured beyond A = 150. Therefore, new data are needed, particularly in the region of heavy nuclei
around N = 126, in order to guide theoretical models and help understand the formation of the third r-process
peak at A ∼ 195.
Purpose: To measure both β-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl,
Pb, and Bi isotopes beyond N = 126.
Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS
fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β
decays. An array of 30 3
He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with
high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time
correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching
ratios were derived by using the binned maximum-likelihood method.
Results: Twenty new β-decay half-lives are reported for 204−206Au, 208–211Hg,
211–216Tl,
215–218Pb, and 218–220Bi,
nine of them for the first time. Neutron emission probabilities are reported for 210,211Hg and 211–216Tl.
Conclusions: The new β-decay half-lives are in good agreement with previous measurements on nuclei in this
region. The measured neutron emission probabilities are comparable to or smaller than values predicted by global
models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation
(RHB + RQRPA).Spanish Ministerio de Economía y Competitividad-FPA2011- 28770-C03-03, FPA2008-04972-C03-3, AIC-D2011-0705, FPA2011-24553, FPA2008-6419, FPA2010-17142, FPA2014-52823-C2-1-P, FPA2014- 52823-C2-2-P, and CPAN CSD-2007-00042 (Ingenio2010)Program Severo Ochoa-SEV-2014-0398German Helmholtz Association (Young Investigators)-VH-NG 627 (LISA-Lifetime Spectroscopy for Astrophysics)Nuclear Astrophysics Virtual Institute-VH-VI-417German Bundesministerium für Bildung und Forschung-06MT7178 / 05P12WOFNFSpanish Nuclear Security Council (CSN)-Catedra ArgosUK Science & Technology Facilities Council (STFC)-ST/F012012/
Tunable Resins with PDMS-like Elastic Modulus for Stereolithographic 3D-printing of Multimaterial Microfluidic Actuators
Stereolithographic 3D-printing (SLA) permits facile fabrication of
high-precision microfluidic and lab-on-a-chip devices. SLA photopolymers often
yield parts with low mechanical compliancy in sharp contrast to elastomers such
as poly (dimethyl siloxane) (PDMS). On the other hand, SLA-printable elastomers
with soft mechanical properties do not fulfill the distinct requirements for a
highly manufacturable resin in microfluidics (e.g., high-resolution
printability, transparency, low-viscosity). These limitations restrict our
ability to SLA-print efficient microfluidic actuators containing dynamic,
movable elements. Here we introduce low-viscous photopolymer resins based on a
tunable blend of poly(ethylene glycol) diacrylate (PEGDA, Mw~258) and poly
(ethylene glycol methyl ether) methacrylate (PEGMEMA, Mw~300) monomers. In
these blends, which we term PEGDA-co-PEGMEMA, tuning the PEGMEMA-to-PEGDA ratio
alters the elastic modulus of the printed plastics by ~400-fold, reaching that
of PDMS. Through the addition of PEGMEMA, moreover, PEGDA-co-PEGMEMA retains
desirable properties of highly manufacturable PEGDA such as low viscosity,
solvent compatibility, cytocompatibility and low drug absorptivity. With
PEGDA-co-PEGMEMA, we SLA-printed drastically enhanced fluidic actuators
including microvalves, micropumps, and microregulators with a hybrid structure
containing a flexible PEGDA-co-PEGMEMA membrane within a rigid PEGDA housing
Characterization of α‑synuclein multimer stoichiometry in complex biological samples by electrophoresis
The aberrant aggregation of α-synuclein in the brain is a hallmark of Parkinson’s disease (PD). In vivo soluble α-synuclein occurs as a monomer and several multimers, the latter of which may be important for the biological function of α-synuclein. Currently, there is a lack of reproducible methods to compare α-synuclein multimer abundance between complex biological samples. Here we developed a method, termed “multimer-PAGE,” that combines in-gel chemical cross-linking with several common electrophoretic techniques to measure the stoichiometry of soluble α-synuclein multimers in brain tissue lysates. Results show that soluble α-synuclein from the rat brain exists as several high molecular weight species of approximately 56 kDa (αS56), 80 kDa (αS80), and 100 kDa (αS100) that comigrate with endogenous lipids, detergents, and/or micelles during blue native gel electrophoresis (BN-PAGE). Co-extraction of endogenous lipids with α-synuclein was essential for the detection of soluble α-synuclein multimers. Homogenization of brain tissue in small buffer volumes (\u3e50 mg tissue per 1 mL buffer) increased relative lipid extraction and subsequently resulted in abundant soluble multimer detection via multimer-PAGE. α-Synuclein multimers captured by directly cross-linking soluble lysates resembled those observed following multimer-PAGE. The ratio of multimer (αS80) to monomer (αS17) increased linearly with protein input into multimer-PAGE, suggesting to some extent, multimers were also formed during electrophoresis. Overall, soluble α-synuclein maintains lipid interactions following tissue disruption and readily forms multimers when this lipid–protein complex is preserved. Once the multimer-PAGE technique was validated, relative stoichiometric comparisons could be conducted simultaneously between 14 biological samples. Multimer-PAGE provides a simple inexpensive biochemical technique to study the molecular factors influencing α-synuclein multimerization
Towards a quantitative phase-field model of two-phase solidification
We construct a diffuse-interface model of two-phase solidification that
quantitatively reproduces the classic free boundary problem on solid-liquid
interfaces in the thin-interface limit. Convergence tests and comparisons with
boundary integral simulations of eutectic growth show good accuracy for
steady-state lamellae, but the results for limit cycles depend on the interface
thickness through the trijunction behavior. This raises the fundamental issue
of diffuse multiple-junction dynamics.Comment: 4 pages, 2 figures. Better final discussion. 1 reference adde
A numerical model for temporal variations during explosive central vent eruptions
An axisymmetrical numerical model has been developed in order to find the temporal evolution of pressure, the position of the exsolution level, the velocity field, the eruption rate, and the amount of erupted material of a shallow, volatile‐rich, felsic magma chamber during a Plinian central vent eruption. The overpressure necessary to trigger the eruption is assumed to result from crystallization‐driven volatile oversaturation. We solve the resulting set of equations using a finite element method. The results obtained show that the pressure at the conduit entrance decreases exponentially as the eruption proceeds. This produces a shifting of the exsolution level, so that deeper parts of the chamber become progressively volatile oversaturated during the eruption. We assess the influence of chamber geometry and the physical properties of the magma on the computed parameters using several numerical examples. The results are also compared with those predicted by previous models from the literature and are found to be in good agreement with documented eruptions. The model constitutes a first attempt to numerically model the dynamics and the temporal evolution of the most relevant physical parameters during withdrawal from a closed magma chamber
- …