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Abstract. An axisymmetrical numerical model has been developed in order to find the temporal 
evolution of pressure, the position of the exsolution level, the velocity field, the eruption rate, and 
the amount of erupted material of a shallow, volatile-rich, felsic magma chamber during a Plinian 
central vent eruption. The overpressure necessary to trigger the eruption is assumed to result from 
crystallization-driven volatile oversaturation. We solve the resulting set of equations using a finite 
element method. The results obtained show that the pressure at the conduit entrance decreases 
exponentially as the eruption proceeds. This produces a shifting of the exsolution level, so that 
deeper parts of the chamber become progressively volatile oversaturated during the eruption. We 
assess the influence of chamber geometry and the physical properties of the magma on the 
computed parameters using several numerical examples. The results are also compared with those 
predicted by previous models from the literature and are found to be in good agreement with 
documented eruptions. The model constitutes a first attempt to numerically model the dynamics 
and the temporal evolution of the most relevant physical parameters during withdrawal from a 
closed magma chamber. 

1. Introduction 

Silicic magma is commonly stored in shallow magma 
chambers located a few kilometers below the surface of the 

Earth [Smith, 1979]. When the chamber overpressure exeeds the 
tensile strength of the surrounding rocks a volcanic eruption 
may be triggered through fractures that propagate to the surface. 
The increase in magma pressure necessary to trigger the 
eruption can be produced either by the addition of new magma 
into the chamber [Blake, 1981] or by the exsolution of volatiles 
associated with the cooling of the magma during fractional 
crystallization [Blake 1984; Tait et al., 1989]. We define a 
system as open when the eruption is due to the addition of new 
magma into the chamber and as closed when the triggering 
mechanism is crystallization-driven volatile exsolution. 

A good knowledge of the formation and dynamics of magma 
chambers is crucial to understanding how magmas evolve and 
how they subsequently erupt at the Earth surface. The dynamics 
of magma chambers prior to and during volcanic eruptions has 
become a subject of increasing interest during the recent years. 
Several analytical [Blake, 1981; 1984; Tait et al., 1989; Bower 
and Woods, 1997], experimental and numerical [Spera, 1984; 
Spera et al., 1986; Trial et al., 1992] models have been 
developed to study the withdrawal of magma from a shallow 
magma chamber. However, the dynamics of magma chambers 
during volcanic eruptions are still far from well-understood. 

The application of numerical simulations has become a useful 
tool in such studies, as they allow the variation of some of the 
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main physical parameters that control the dynamics of magma 
chambers during volcanic eruptions to be constrained. This has 
provided an opportunity to understand the significance of some 
compositional and stratigraphic variations found in pyroclastic 
deposits in terms of preeruptive gradients in the chamber and 
dynamics of the magma withdrawal process [Spera, 1984; Spera 
et al., 1986; Trial et al., 1992]. So far, all these numerical 

simulations consider the magma chamber as an open system, in 
which the magma withdrawal process is only driven by pressure 
forces associated with magma replenishment. Spera [1984] 
simulated a central vent eruption assuming that magma behaves 
as a homogeneous, Newtonian, incompressible fluid of constant 
viscosity. Trial et al. [1992] improved this model considering a 
preeruptive compositional gradient in order to account for the 
variations observed in erupted diposits. Overpressure produced 
by oversaturation of volatiles during fractional crystallization 
has also been proposed as a plausible mechanism of triggering 
explosive eruptions in felsic systems [Blake, 1984; Tait et al., 
1989]. However, no attempts have been made to simulate 
numerically the dynamics of an erupting magma chamber in 
such conditions. 

The aim of this paper is to characterize the evolution of the 
physical properties of magma inside the chamber during a 
Plinian eruption triggered by oversaturation of volatiles in a 
closed system. We develop an axisymmetrical numerical model 
of the interior of a chamber which is filled with a homogeneous, 
volatile-rich, felsic magma in which vesiculation is considered 
to have taken place prior to the eruption. The driving force that 
leads to the eruption is thus the volatile overpressure produced 
during magma cooling and crystallization. In order to find the 
pressure evolution, the evolution of the exsolution level, the 
velocity field in the chamber, and the mass discharge rate at the 
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Figure 1. Central vent eruption with axial symmetry. An elliptical magma chamber with semimajor axis a and 
semiminor axis b is located at depth H,. below the surface of the Earth. Magma flows through a conduit of radius r 
that coincides with the symmetry axis. 

conduit entrance, we solve the corresponding Navier-Stokes 
equations using a finite element method (FEM). Magma is 
treated as an incompressible Newtonian fluid below the 
exsolution level but is compressible once is vesiculated. In the 
domain above the exsolution level, magma is considered as a 
homogeneous two-phase flow, and we develope a barotropic 
state law, where density depends only on pressure, depending on 
the solubility law. 

All the results obtained depend on several parameters 
(geometry of the chamber, chemical composition of magma, 
magma properties, etc.). The application of the model allows us 
to discuss the relative significance of each of these parameters in 
the eruption process. As we compute the pressure evolution 
inside the chamber during the withdrawal process, we can 
estimate the variation of the exsolution level with time. To know 

the temporal pressure variation at the conduit entrance it is also 
important to constrain models for the conduit, which generally 
assume either a constant pressure or a linear decrease with time. 
In contrast, our model indicates that pressure at the entrance of 
the conduit decreases exponentially with time. 

2. The Model 

2.1. Physical Model 

We consider a central vent eruption with axial symmetry as 
shown in Figure 1. The domain comprises a magma chamber 
located at a depth H,. and a central conduit of radius r along the 

symmetry axis. Assuming axial symmetry, we can solve a three- 
dimensional problem in two dimensions by using cylindrical 
coordinates. 

Plinian eruptions involve conduit erosion during their initial 
stages. To avoid the coupling with this mechanical problem, we 
will assume that the magma chamber has rigid walls and that the 
conduit is not eroded by the flow. Neither the chamber nor the 
conduit geometries change during the eruption. We consider 
that the magma behaves as a Newtonian incompressible fluid 
below the exsolution level but is compressible above this level, 
where magma is assumed to be a barotropic fluid. 

The problem may be approached without considering 
temperature because magmas have a large thermal capacity and 
the host rock has a low thermal conductivity so that temperature 
variations inside the chamber occur on timescales which are 

orders of magnitude greater than the duration of an eruption 
[Dobran, 1992]. Therefore we assume that the chamber behaves 

as a thermaly isolated system during the eruption. This 
assumption would not be so valid in modeling the conduit, 
where cooling of the magmatic mixture by up to 100øC may 
occur [Buresti and Casarosa, 1989]. 

As water is by far the most abundant gas species in felsic 
magmas, it is considered as the only gas phase. Water content is 
a parameter of the model, and its value depends upon the 
magma chamber depth and the lithostatic pressure. We choose a 
water content which ensures that the chamber is partially 
vesiculated prior to eruption, in order to reproduce a situation 
where the triggering mechanism of the eruption could be the 
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volatile oversaturation. Finally, we assume a chemically 
homogeneous magma composition for the whole chamber. It 
should be said that this homogeneous composition is a major 
limitation of the model, because most magma chambers are 
zoned systems with compositional gradients [Huppert and 
Sparks, 1984]. 

2.2. Governing Equations 

The governing equations for this problem are the Navier- 
Stokes equations, which are derived in continuum mechanics 
from general principles of mass, energy, and momentum 
conservation. The energy conservation equation is not needed in 
our model because temperature is assumed to be a constant 
inside the chamber during the withdrawal process. A barotropic 
state law can be therefore established in this region. However, 
even fbr barotropic flows, the energy conservation equation 
remains coupled to the mechanical ones due to the Joule effect. 
If this contribution is not considered in the energy equation, the 
use of a barotropic state law will uncouple the thermal equation 
from the mechanical ones. Therefore only mass and momentum 
equations are required in our case. Using a spatial notation and 
Cartesian coordinates, they can be written as follows: 

fit = (p,pul,PU2, 'OU3 ) (7) 
are transported by means of convection through the convective 
fluxes 

C i = p u i , p uiu I + (5il P, p UiU 2 + (5i2 P, p UiU 3 + (5i3 P (8) 

and by means of diffusion through the diffusive fluxes 

D i = 0 ,--'ril -r i 2'--'ri 3 (9) 

The source term is 

•T = --(O,p gl ,P g2,P g3) (10) 

where gi is the ith component of the gravity acceleration vector. 
Then, in this conservative form, the equations to solve are 

Continuity equation 

o•t 
•+•(Ui) -- 0 (11) 

c) x i 

Continuity equation (mass conservation) 

c•p c) (pu ) k 

c) t c) x k 
=0 (1) 

Momentum equation (momentum conservation) 

c) crii I c) u.i c) u.i ) •+ pgj = p 6)x i c) t 
(2) 

Navier-Poisson law (constitutive equation) 

(3) 

Barotropic state law 

p = p ( P ) (4) 

where (see notation section) p is density, /,t is viscosity, P is 
pressure, ui is the ith component of the velocity vector, ty,..j are 
the components of the Cauchy stress tensor, and gj is the jth 
component of the gravity. In all the equations of this paper, 
indices run from 1 to 2 or 3 (space dimensions) and repeated 
indices always imply summation. The proposed barotropic state 
law for magmas inside the chamber (4) is discussed in the 
section 2.3. Defining the viscous stress tensor r (excluding 
pressure isotropic term in ty) as 

1 

'rii = ø'(i - 3 ø'kk6ii = ø'(i + P6ii (5) 
the set of equations can be expressed in its pure conservative 
form 

•+•+•+S =0 (6) 
8 t 6) X i 6) X i 

where the conservative variables (mass and momentum) 

Momentum equation 

c) t 6) X i oh Xi ß . 
(12) 

Barotropic state law 

p =p (P) (13) 

where U - p •/ is the momentum vector. In a two-dimensional 
space (or in a three-dimensional space with axial symmetry), 
equations (11)-(13) form a set of four equations with four 
unknowns: density ( p ), pressure ( P ), and the velocity 
components. 

2.3. The State Law 

In order to close the problem, a state law (4) is required. For 
high-viscosity magmas above the exsolution level, the level 
where exsolution due to melt oversaturation begins, and below 
the fragmentation level, where the flow is characterized by a 
mixture of gas with pyroclasts and lithics, the mixture can be 
considered as a bubbly flow, characterized by a liquid 
continuum with dispersed gas bubbles and crystals in thermal 
and mechanical equilibrium [Papale, 1996]. In this bubbly flow 
regime, the pressure difference between both phases (liquid and 
the gas bubbles within) can be ignored [Sparks, 1978]. The gas 
bubbles and the liquid are in mechanical equilibrium and can be 
considered to move at the same velocity along the conduit 
because buoyancy effects are negligible compared to viscous 
drag, even for centimetric bubble sizes (notwithstanding this, 
the formation of large bubbles in high-viscosity magmas is 
unlikely because growth by coalescence is impeded). We aim to 
find a state law fbr the mixture inside the magma chamber and 
in the lowermost part of the conduit, that is, in the bubbly flow 
regime domain, where the mixture is a continous medium with 
density: 

p = ocpg + (1 - oc) p.•, = ocpz,, + (1 - oc) p• (14) 
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with o• being the gas volume fraction, pg being the gas density, 
p., being the density of the melt (containing dissolved volatiles) 
and Pt being the liquid density. In (14) it is assumed that the 
dissolved volatiles do not change the bulk density of the liquid. 
This homogeneous approximation for the mixture is commonly 
assumed in the literature [Wilson et al., 1980; Giberti and 
Wilson, 1990], at least in the lowermost part of the conduit and 
for high-viscosity magmas. The gas phase is assumed to behave 
as a perfect gas [Vergniolle and Jaupart, 1986], with 

P = pgQr (15) 

where T is temperature, px, is the gas density, and Q is a gas 
constant (Q=461.66 J/øK kg for water). For the liquid 
component, a linearized expression in terms of the 
compressibility modulus ,B can be assumed [Blake, 1984]: 

Pt = 90 (1 + ,B (e- e0)) (16) 

where Po is the density at the pressure reference P0. In order to 
find the state law, we should consider that the volatile species 
can be either dissolved in the melt or exsolved as a gas phase if 
the magma is above the exsolution level. Therefore a solubility 
law is also needed to determine the mass fraction of volatiles 

dissolved in the melt X at given thermodynamic conditions. The 
simplest relationship under magmatic conditions is a Henry's 
law equation, where the solubility of the silicate melt depends 
only on a power of the pressure: 

Z = spin (17) 

can be assumed. Using this solubility law, the critical pressure 
Pc 

Pc = m (18) 

below which gas exsolution takes place depends only on the 
volatile content (W%). For simplicity, we assume that the 
exsolution occurs instantaneously if pressure descends below 
this critical value, and no energetic contributions are considered 
during the vesiculation process. Let ma be the mass of dissolved 
gas in the melt, mt be the mass of the liquid, mx be the mass of 
gas, mv be the mass of volatiles (dissolved plus exsolved, where 
m,,=m•,+ma ), m., be the mass of the melt (liquid plus dissolved 
gas, where m.,=mt+md ), and M be the total mass 
(M=mt+mv=m.,.+mx, ). Then 

m d m d 

m d + m I m s 

is the gas mass fraction dissolved in the melt, 

my my 

M m v + m I 

is the volatile mass fraction (dissolved plus exsolved), 

mg mg 
12g -- 

M mg+ m s 

where s and m are constants depending on magma and volatile 
compositions. Following Tait et ai.,[1989], values of 
s = 4.11 x 10 -6 Pa -•/2 and m = 0.5 for H20 in a rhyolitic melt 

is the gas mass fraction, and 

W% = ng +(1-ng)X (19) 

2500 

2400 

2300 

2200 

2100 

2000 

1900 

1800 

1700 

1600 

1500 

1400 

1300 

1200 

1100 

1000 

wt % =3.5 
wt%=4 

wt%=5 

900 I I I I I I I I I I I I I I 
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

Pressure (MPa) 

Figure 2. Magma density versus pressure given by the state law (20'). The results are for a rhyolitic magma with 
T=850øC, Pt =2400kg/m• and having water contents of 3.5, 4.0, and 5.0 in weight, respectively. Note how the 
exsolution level (the level where the mixture density becomes a constant equal to Pl ) depends on the water content. 
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c) p c) (p u k ) 

8t 8xk 
=0 (2•) 

and 

•S i •P 
= M i - = R i (22) 

•t •X i 

where Ri is the ith component of the spatial operator and the 
body force and 

below exsolution level. Using equations (14) to (19) and after 
some rearrangement, one arrives at a final expression for the 
state law: 

P/ (20) 
plQT W% - sP 

1+ sPm O(P c - P) P 1- 

where 0 is the step function (defined as 0 =0 for P > Pt. and 0= 1 
for P< P,). Note that (20) is a general state law, not only 
applicable to vesiculated magmas. In general, the critical 
pressure Pt. at which gas exsolution begins will be attained 
inside the chamber depending on the chamber depth (lithostatic 
pressure) and on the volatile content. If this critical pressure is 
not attained, that is, if magma is not vesiculated, we have 0=-0 in 
(20), and the density is that of the liquid. In turn, liquid density 
p• can be considered in general either as a constant or, 
depending also on the pressure, as indicated in (16). As the 
magma has values of the compressibility modulus fi of 10-100 
GPa [Touloukian et al., 1981], we will assume that the magma 
behaves as an incompressible flow (of constant density) below 
the exsolution level. Hence liquid density p• is set as a constant 
in all computations, and the state law (20) becomes 

P = Pt = const (20') 
below the exsolution level 

I+(P•QT) W%-sP m p 1-sP • 

above the exsolution level. 

Figure 2 shows the density profile of the magma predicted by 
the equation (20.b') for a rhyolitic magma with Pt = 2400 kg/m 3 
at 850øC. Note how the magma density is constant below the 
exsolution level and descends progressivelly above this level 
due to the volatile exsolution induced by the pressure decrease. 
Equation (20') has been also recently proposed by Bower and 
Woods [1997] as a suitable state law for the magma-volatile 
mixture. 

3. Numerical Method 

3.1. Procedure 

The set of equations (11), (12), and (20) are numerically 
solved using a finite element method (FEM). The characteristics 
of the method are briefly summarized here. A full description of 
the algorithm is given by Codina et al. [1998]. Let us write the 
conservative equations (11) and (12) as 

) Mi = -• P uiu/ - •'iJ + p gi (23) 
c)x i 

First, transport equations are time discretized using a traditional 
finite differences scheme. Second, the space discretization is 
done using a Galerkin FEM method. The momentum equation 
has a convective contribution appearing in (23) that could lead 
to numerical oscillations when discretizing the space using a 
standard Galerkin formulation. In this algorithm, the equations 
with convective terms are time discretized along the 
characteristics, thus providing a consistent artificial diffusion 
when the spatial discretization is done. This leads to the 
following time-discretized equations: 

• n i 
- M i -•Uk• 

At 2 o•x• 
(24) 

At 
U i +01AU i -01At• 

•X i •X i 
(25) 

AU• Al_• c)p n+02 
At At •X i 

(26) 

where A t is the time step size, the superscripts denote time 
step level, and 01, 02 , and Os •[0,1]. Equations (24) and (26) 
come frome the splitting of the momentum equation (discretized 
in time along the characteristics). We use a fractional step 
method thus introducing a new unknown to the problem, the 
fractional momentum U. This technique was first proposed by 
Chorin [1967] and Ternam [ 1969] for incompressible flows and 
allows the use of equal interpolation spaces for pressure and 
velocity fields. The splitting of the linear momentum equation 
produces a stabilizing effect on the pressure, eliminating the 
need for compatibility conditions, the Babu•ka- Brezzi 
conditions, when the incompressible limit is reached. This is an 
important point: in our model magma behaves either as a 
compressible flow or as a incompressible flow depending on 
pressure, so that we need an algorithm able to solve for both 
kind of flows. Once time discretization is done, the weak form 

of the equations is obtained, that is, time-discretized equations 
are projected into the usual space of test functions and 
integrated over the domain f•. Integrals with spatial second- 
order derivates are integrated by parts. Finally, we can discretize 
the space using a standard Galerkin method where the test 
functions are equal to the shape functions. In order to stabilize 
the numerical scheme at high Reynolds number (convection 
dominated flows), the time derivatives are discretized along the 
characteristics [Codina et al., 1998], thus introducing the 
required artificial diffusion. This allows one to deal with high 
Reynolds number flows. Once the spatial disretization has been 



20,888 FOLCH ET AL.: NUMERICAL MODEL FOR CENTRAL VENT ERUPTIONS 

performed, the equations can be written in matrix form: 

• 
At 

/xt = (32) 
4e 

F 1 K• n+•3 (27) h 2 h 

+ Ol/Xt L = P2 (28) ß 

Ma At 

M• = M•-G • 'n+ø2 + •3 (29) 
At At 

where U, P, and U are the vectors of nodal unknows and 
M, K, G, and L are the standard mass matrix, the matrix 
coming from the viscous and convective terms in the fractional 
momentum equation, the matrix coming from the gradient 
operator, and the matrix coming from the Laplacian operator 
respectively. The matrix Ma in the discrete version of the 
continuity equation (28) is defined as 

Ma ,t.'/ -- •l a N i N jdfl (30) 
where Ni is the shape function associated to the ith node of the 
FE mesh and ot depends on the state law considered. Using the 
state law (20), one gets 

Ql 

W% - s(pn) m (31) 
pn + plQT 0 (Pc- pn) 

1- s(pn) m 

Finally, the nodal vectors F•, F2, and F3 denote a vector which 
is known when solving each time step in any particular 
equation. These vectors contain terms with boundary integrals in 
which some boundary conditions are prescribed. Each time step 
is solved as follows: (1) Calculate a time increment At; (2) 
calculate the fractional momentum using equation (27); (3) 
calculate the pressure using equation (28); (4) calculate the 
density using the state law (20), and (5) calculate the momentum 
using equation (29). Some remarks concerning the 
implementation of the algorithm are required. Three parameters 
0•, 02 , and 0s, with Oi • [0,1] have been introduced when 
discretizing in time the momentum equation (0s), the continuity 
equation (01), and during the splitting (02). Depending on its 
values the algorithm becomes explicit, semi-implicit or fully 
implicit. If 02=0.•=0, the algorithm is explicit. In this case, the 
incompressible regime cannot be dealt with, since it can be 
shown that (28) becomes an identity when a = pt/p in (31). This 
reflects the fact that pressure must be treated implicitly for 
incompressible flows. If 0< 02<-1 and 0,•=0, the scheme is 
semi-implicit, and either pressure or density can be considered 
as unknows except in the incompressible limit. The semi- 
implicit scheme can be applied either in compressible flows or 
in incompressible flows and using the same interpolation 
functions for velocity and pressure (density) fields. In our case, 
the implicit scheme with the pressure as unknown is used for 
two reasons. First, because the state law (20) gives density as a 
function of pressure directly, while pressure as a function of 
density cannot easily be obtained, and second, because neither 
the boundary conditions at the outlet or the initial conditions are 
known in terms of density. The critical time step A t for a 
convection-diffusion equation can be computed as [Hirsch, 
1990] 

where F., is a safety factor (less than 1 in the explicit scheme) 
and h is the characteristic element dimension. For the continuity 
equation, e = 0, while for the momentum equation, e= #/p, # 
being the viscosity. If a stationary problem were considered, 
discrete time advance could be different for each equation and 
could be local or global. In our case, the time advance must be 
uniform because a transient problem is studied. Substituting 
typical magmatic values in (32), one gets A t --F.,./10, so that 
the maximum time step able to ensure the stability of the 
algorithm is extremely small. Due to this limitation, we 
performed all simulations using the fully implicit option 
(O•=Os=O), where F.,. can achive values up to 20 without any 
stability problem. Due to the small critical time step, one has to 
solve the whole set of equations to advance just 2s in real time. 
Thousands of time steps are required to simulate the entire 
withdrawal process. Examples of the reliability of the code are 
given in Zienkiewicz et al. [ 1995]. 

3.2. Boundary and Initial Conditions 

Magma inside the chamber is always in a subsonic regime 
[Spera, 1984]. Under these circumstances, either pressure or 
density must be prescribed as a boundary condition at the 
computational outlet [e.g., Hirsch, 1990]. The coupling between 
the modeling of magma ascent, magma chamber processes, and 
the mechanical problem of host rock behavior should be 
considered because the processes which occur in each of these 
domains affect the dynamics of the others. When each of these 
domains (chamber, conduit, and host rock) is modeled as an 
isolated system, some unknown boundary condition must be 
assumed. Thus, for instance, most of the conduit models found 

in the literature assume a pressure at the conduit entrance when 
in fact it is an unknown of the problem. In our computations, the 
outlet is set at 500 m above the entrance of the conduit, and 
therefore the computational outlet does not coincide with the 
physical one (the vent). We cut the computational domain in the 
middle of the conduit in order to ensure the validity of equation 
(20), that is, in order to keep the flow within the bubbly flow 
regime (see the appendix). Pressure at the computational outlet 
is prescribed to the lithostatic, despite the fact that conduit 
models predict a magma pressure drop below the lithostatic 
value inside the conduit [Papale and Dobran, 1993, 1994]. 
However, this assumption can be justified in gross terms 
because the average stress field within the conduit cannot be too 
far t¾om lithostatic in order for it to remain open against 
compression of the country rocks. Another possibility would be 
to not cut the conduit and therefore to set the pressure at the 
vent. This would probably produce a more realistic boundary 
condition. However, as discussed in the appendix, the state law 
(20) would not be realistic physically because the assumption of 
homogeneity would not be valid above the fragmentation level. 

Boundary and initial conditions considered in our problem 
are schematically illustrated in Figure 3. The no-slip condition 
(velocity vector equal to zero) is imposed at the chamber walls 
(u = v = 0), while only the horizontal component of the 
velocity is set to zero at the symmetry axis (x- 0). Initial 
values are assigned to the velocity field and pressure. Magma is 
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Figure 3. Schematic cartoon showing boundary and initial conditions. The computational domain is shown in grey. 
Pressure is the lithostatic value at the computational outlet (located at depth Ho above the conduit entrance), and a 
no-slip condition ( u = v = 0 ) is imposed at the chamber walls. The initial pressure profile is the lithostatic plus an 
overpressure AP. This overpressure is the driving force in triggering the eruption and is assumed to be equal to the 
tensile strenght of the host rock inside the chamber and to decreasse linearly along the conduit. 

assumed to be at rest before the eruption, so that the initial 
velocity field is set to zero in the whole domain. The initial 
pressure distribution is assumed to be lithostatic with an 
overpressure inside the chamber equal to the tensile strength of 
the host rock. The conduit has an initial overpressure that 
decreases linearly from a value equal to the tensile strenght of 
the rock at the inlet to zero at the computational outlet. It should 
be pointed out that the flow is induced by the pressure gradient 
in the conduit and is therefore not a departure from a state of 
equilibrium unstable, as would, for example, be the case for 
thermal convection. The magnitude of the pressure gradient at 
the begining of the conduit depends on how the overpressure in 
the chamber is dissipated along the conduit, and this in turn 
depends on its degree of obturation. We have assumed that this 
overpressure is dissipated across 500 m. It might be thought that 
the initial pressure gradient is balanced by a porosity-like force 
with a small porosity coefficient and a negligible initial velocity. 
It is in this state that the sudden opening of the conduit takes 
place. A constant overpressure within the conduit with a sudden 
drop to zero at the computational outlet could also be assumed 
for the sudden conduit opening. However, the high-pressure 
gradient in such situation at t = 0 gives rise to numerical 
instabilities. 

4. Numerical Results 

We have focused on modeling magma chambers during 
Plinian central vent eruptions in order to find how pressure, 
density, and mass discharge rate at the conduit entrance evolve 
with time. Many numerical simulations have been done 
considering different values for the parameters involved. Any 
numerical simulation is done by defining a chamber-conduit 
configuration and the magma properties (initial overpressure, 
viscosity, volatile content, etc.). The relevant quantities are 
computed over time as the simulated eruption proceeds. The 
eruption rate is obtained by computing the integral 

lpV.d 
s 

over the conduit section S, where p is the mixture density given 
in (20') and • is the velocity. The integral of the eruption rate 
with respect to time gives the total mass erupted. The position of 
the exsolution level is given by the critical pressure P,., found 
using (18). In order for the overpressure to exist in a closed 
system, the exsolution level must occur inside the chamber 
before the eruption. Therefore the gas content is determined 
from an assumed lithostatic pressure or a magma chamber depth. 
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Figure 4. Density profiles for an ellipsoidal magma chamber with a major axis a=2.5 km, a minor axis b=0.5 km, a 
volume V=4/3rm2b _-- 14 km 3, and a conduit radius of 25 m. The density is given in kg/m 3. Volatile content is set to 
4.3 in wt% and the lithostatic pressure at the computational outlet is 105 MPa. The nonvesiculated magma has a 
density p = Pt = 2400 kg/m 3 (a) Density profile at the onset of the eruption (t = 0) when only the uppermost part of 
the chamber is vesiculated. (b) Density profile after 22 hours of simulated eruption. Note the drop in the exsolution 
level due to the pressure decrease as the eruption proceeds. 

4.1. A General Overview 

In this section, the results for a particular numerical 
simulation are shown as an example of applicability of the 
model. Although the results presented are obtained by applying 
the model to a particular case, we stress those characteristics 
which are expected to be found in other simulations. A rhyolitic 
magma having Pt = 2400 kg/m 3, T = 850øC, s = 4.11 x 10 -6 
Pa -•/2, m = 0.5 and a water content of 4.3 in wt% is assumed. 
The hypothetical shallow magma chamber is elliptical and has a 
major axis a=2.5km, a minor axis b=0.5km, a volume 
V=4/3•a2b --14 km 3, and a conduit radius of 25 m. The chamber 
has an initial pressure equal to the lithostatic pressure plus an 
overpressure AP = 10 MPa. This overpressure is a typical 
value of the tensile strength of the host rocks [Touloukian et al., 

1981]. Note that this is an approximation because there is no 
straightforward relation between the overpressure within an 
ellipsoidal reservoir and the tensile stress induced in the elastic 
medium surrounding. The effect of the initial overpressure is 
discussed below. The lithostatic pressure at the computational 
outlet is set to 105 MPa. Note that we set the lithostatic pressure 
rather than the chamber depth H,. in order to avoid assumptions 
about the host rock mean density. Thus, if the host rock density 
were 2500 kg/m 3, the computational outlet should be located at 
4280 m below the Earth surface (H,.=4780 m); if the host rock 
density were 2800 kg/m 3, the computational outlet should be 
located at 3820 m below the Earth surface (H,.=4320 m). 

All the numerical experiments yield similar results: the initial 
overpressure decreases exponentially as the eruption proceeds 
until it becomes zero and the eruption ceases. This pressure 
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Figure 5. Results using the same chamber geometry and magma properties as in Figure 4. (a) Eruption rate as a 
function of time. (b) Position of the exsolution level as the eruption proceeds. The origin of the vertical axis is set at 
the top of the chamber (4 km below the surface) with the positive direction being downward. 

decrease produces a drop in the exsolution level so that deeper 
parts of the chamber become progressively volatile 
oversaturated as the eruption proceeds. The upper oversaturated 
magma layer thus becomes progressivelly thicker and less dense. 
Figure 4 shows the density distribution for this elliptical magma 
chamber at the onset of the eruption and after 22 hours, when 
the initial overpressure has decreased by an order of magnitude. 

Note that due to the pressure variations the position of the 
exsolution level descends hundreds of meters as the eruption 
proceeds. Figure 5 shows the eruption rate and the position of 
the exsolution level versus time for this particular simulation. A 
common characteristic of all the experiments is that the eruption 
rate reaches a peak inmediatelly after the onset of the eruption 
and then decreases exponentially as the eruption proceeds. 
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Figure 6. Velocity field inside the chamber after 22 hours of simulated eruption when using the same chamber 
geometry and magma properties as in Figures 4 and 5. Although the velocity field is unsteady, its temporal variations 
are slow so that trajectories approach streamlines. Thus Figure 6c ilustrates how a parcel of magma reaches the 
conduit entrance laterally and is then either erupted or reinjected back into the chamber. 

Nevertheless, it should be said that many Plinian eruptions 
present phases in which the eruption rate descends progressively 
only to then reach a new peak of intensity. These Plinian phases 
are commonly associated with tapping effects [e.g., Dobran, 
1992], where the magma that reaches the conduit entrance 
changes its properties (viscosity, gas content, etc.) as the 
eruption proceeds, as a consequence of preeruptive 
heterogeneities. As we have assumed a chemically homogeneous 
magma chamber composition, our model is not able to 
reproduce such oscillations. 

Although we do not model any specific volcanic system, the 
numerical results obtained are in good agreement with values 

observed in natural systems with comparable characteristics. For 
instance, in this example, we obtain a total erupted mass of 
aproximately 3 x l012 kg. This value is comparable with those 
found in explosive volcanic eruptions: 0.6 x 1012 kg in the 1980 
Mount St. Helens eruption [Scandone and Malone, 1985], 
5- 7 x l012 kg in the Nisyros eruption [Barberi et al., 1988] or 
8.6 X l012 kg in the 79 A.D. Vesuvius eruption [Barberi et al., 
1981]. 

Figure 5b shows the depth of the exolution level versus time. 
As also illustrated in Figure 4, the position of the exsolution 
level descends as the chamber is depressurized. In this particular 
example, the exsolution level is located initially at 275 m below 
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Figure 7. Schematic cartoon showing the magma chamber geometries considered: chamber 1 is an oblate ellipsoid, 
chamber 2 is spherical, chamber 3 is a prolate ellipsoid, and chamber 4 is cylindrical. All the chambers have equal 
volume V -- 14 km 3 and equal conduit radius r = 25 m. The conduit has been cut 500 m above the chamber top to 
ensure the validity of (20'). 

the conduit entrance and moves 300 m after 22 hours, reaching 
depths of up to 600 m below the chamber top. Figure 6 shows 
the velocity field inside the chamber after 22 hours of eruption. 
The magnitude of the velocity field is determined directly by the 
initial assumed overpressure. Convection could also be driven 
by thermal effects, although in the present simulation these have 
not been taken into account. To account for these effects, 

buoyancy forces would have had to be accounted for in the 
region where the flow is incompressible. 

A common feature found during the withdrawal of a 
chemically homogeneous magma chamber is that the magma 
reaches the conduit entrance laterally as reflected in Figure 6c. 
Note that although the velocity field is unsteady, its variations 
are given in a characteristic timescale of hours. This means that 
we can safely approach the streamlines given by the trajectories 
of the particles. A volume of magma reaching this point is partly 
erupted through the conduit and partly reinjected into the 
chamber. Thus, a parcel of magma initially emplaced at the 
chamber top moves first laterally into the vicinity of the conduit 
entrance and is then either erupted or forced to descend before 
again moving up. As the parcel descends, exsolved volatiles 
within it are progressively redissolved back into the magma due 
to the pressure effect on the volatile solubility in the melt. This 

phenomenon has an important consequence: as we have 
assumed that magma behaves as an incompressible fluid below 
the exsolution level, any inflow into the undersaturated 
incompressible layer must produce an equal outflow in order to 
ensure the mass conservation. This movement is progressively 
transmired to the neighborhood of the parcels through viscous 
stresses, so that finally the whole magma chamber is affected by 
this induced movement, as reflected in Figure 6a. This is a 
common feature of all the numerical experiments, though its 
intensity and characteristics are obviously strongly dependent on 
magma viscosity and on chamber geometry. This phenomenon 
could have important consequences on the eruption products 
because magmas initially located at different depths could be 
simultaneously erupted. Trial et al. [1992] suggested that the 
presence of different compositions in the same Plinian diposits 
is not necesarily the consequence of a mixing process but may 
result from the withdrawal process itself when preeruptive 
gradients existed in the chamber. Our homogeneous flow model 
does not allow us to draw conclusions about stratified magma 
chambers with preeruptive density gradients but could explain 
some chemical heterogeneities, such as those involving trace 
element abundances, which have negligible effects on magma 
density. 



20,894 FOLCH ET AL.' NUMERICAL MODEL FOR CENTRAL VENT ERUPTIONS 

Table 1. Properties of the FEM Meshes 

Nodes Elements Boundary Element 
Elements 

Chamber I 3190 3080 218 Q 1 
Chamber 2 2680 2580 198 Q 1 
Chamber 3 2680 2580 198 Q 1 

,.. Chamber 4 2900 2775 248 QI 
All the elements are type Q1, that is, bilinear Lagrangian 
(four nodes per element). 

4.2. A Parametrical Study 

Many parameters such viscosity, gas content, magma 
chamber geometry or initial overpressure appear in the model, 
and its influences on the solution are not always clear. In this 
section, we aim to illustrate the influence of these parameters by 
showing how their values affect the results obtained in the 
numerical example previously described. 

4.2.1. Chamber Geometry. In order to assess the 
importance of chamber geometry we consider four different 
magma chambers with volume V_=14 km 3 (Figure 7). Chamber 1 
is oblate, chamber 2 spherical, chamber 3 prolate, and chamber 
4 cylindrical. In all cases, the FEM meshes are structured and 
made of linear Lagrangian elements (four nodes per element). 
They properties are summarized in Table 1. The dimensions of 
these chambers are of the same order of magnitude as natural 
shallow magma chambers but are arbitrary in representing any 
particular volcanic system. The conduit has a radius of 25 m and 
again is terminated 500 m above the chamber because the state 
law (20') may not be applicable in the uppermost parts of the 
conduit. Figure 8 shows the eruption rate at the conduit entrance 
versus time for this particular numerical experiment. An 
important result is that although shapes of the curves are similar 

in all four cases, the total mass erupted increases as the chamber 
becomes flatter and as the volumetric fraction found above the 

exsolution level increases. This can be explained by the fact that 
magma is nearly incompressible below the exsolution level 
(fully incompressible in our model) but that above this level, the 
mixture containing exsolved gas becomes much more 
compressible. Thus the total mass erupted corresponds only to 
the volume change in the upper compressible layer as a response 
to the pressure variation. In consequence, those chambers 
containing more magma in the upper oversaturated layer (like 
chambers 1 and 4 in our example) will erupt a greater ma,ss of 
material for a given pressure decrease. The total erupted mass is 
obtained by computing the area below the eruption rate curves 
versus time. In this example, we achive erupted fractions of the 
initial mass of 0.090, 0.077, 0.064, and 0.078 for chambers 1 to 
4, respectively. Recently, Bower and Woods [1997] have 
predicted that in saturated magma chambers, the chamber 
overpressure is only relieved when a fraction of 0.01-0.1 of the 
initial mass in the chamber has erupted. The numerical results 
are thus in excellent agreement with those predicted by the 
analytical model of Bower and Woods [1997]. Nevertheless, the 
use of a numerical model allows us to go one step further since 
we are able not only to compute the total mass erupted but also 
the temporal variation of the eruption rate and the influence of 
the chamber geometry. 

4.2.2. Volatile Content. The influence of volatile content on 

the eruption rates and on the pressure variations is now 
considered. All the examples are obtained using magma 
chamber 1 (oblate ellipsoid), an initial overpressure of 
AP = 10 MPa, a viscosity of/,t = 105 Pa s, and a density of Pt = 
2400 kg/m 3. The eruption rates obtained and the evolution of the 
exsolution level are shown in Figure 9. Although a small change 
in the content of volatiles does not change substantially the mass 
discharge rate, it has an important effect on the position of the 
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Figure 8. Eruption rate versus time for diferent magma chamber geometries. The chambers are those shown in Figure 7. 
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Figure 9. Results using chamber 1, an initial overpressure of AP = 10 MPa, a viscosity/.t= 105 Pa s, and a liquid 
density Pt = 2400 kg/m 3. (a) Eruption rate versus time for water contents of 4.5 and 5.0 in wt %. The exponential 
decrease is only weakly dependent on volatile content. (b) Position of the exsolution level for water contents of 4.3 
and 4.5 in wt %. The origin of the vertical axis is set at the top of the chamber. Note that the shape of the function 
does not vary substantially when the volatile content is changed, although the position of the exsolution level is 
dependent on the volatile content. 
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exsolution level. A small increase in the volatile content 

produces a substantial deepening of the exsolution level. The 
total displacement is insensitive to the volatile content, but the 
initial and final positions are strongly dependent on its value. 

4.2.3. Viscosity. Figure 10 shows the effect of varying 
viscosity on the magma overpressure, the position of the 
exsolution level, and the mass discharge rate when other 
parameters are kept constants. Figure 10 illustrates that the less 
viscous the magma, the faster the chamber becomes 
depressurized. The position of the exsolution level changes 
faster tbr less viscous magmas despite the fact that the initial 
and final positions are the same for a given pressure decrease 
( AP = 10 MPa in this case). Although the total erupted mass is 
only weakly dependent on viscosity, this parameter plays a 
major role in controlling the duration of the eruption. The more 
viscous the magma, the longer the eruption and the lower the 
erupted mass peak, that is, chambers containing a less viscous 
magma are more rapidly withdrawn and have a greater intensity 
peak. 

4.2.4. Initial Overpressure. The influence of the initial 
overpressure is now considered. All of the examples presented 
are for a chamber 1 geometry (Figure 7), with a viscosity of 
/a=l 0 s Pa s, a density of p• = 2400 kg/m 3 and a water content of 
4.3 in wt %, but with initial overpressures of 5, 10, and 15 MPa 
respectivelly (Figure 11). The total drop in the exsolution level 
is strongly dependent on the initial overpressure, as is its initial 
position, while its final position is invariant. Obviously, an 
increase in the initial overpressure yields an increase in the 
displacement of the exsolution level. This leads to a greater 
erupted mass because a significant volume of magma changes 
from volatile-undersaturated (incompressible) to volatile- 
oversaturated (compressible)during the withdrawal process. 

5. Conclusions 

We have developed an axisymmetrical numerical model in 
order to find the temporal evolution of pressure, the position of 
the exsolution level, the velocity field, and the eruption rate 
during the withdrawal from a shallow volatile-rich felsic magma 
chamber, where the overpressure is due to volatile 
oversaturation. In this model, magma behaves as an 
incompressible fluid below the exsolution level and as a 
compressible gas-liquid mixture above this level. In this domain, 
magma is treated as a homogeneous two-phase flow, and we 
propose a barotropic state law (20') as suitable tbr the mixture 
under magmatic conditions. 

The resulting set of equations is solved numerically using a 
finite element method (FEM). We propose an algorithm able to 
deal simultaneously with compressible and incompressible 
flows. This uses a fractional step method which allows the use 
of equal interpolation spaces for pressure and velocity fields. 

Figure 10. (a) The magma overpressure, (b) the position of the 
exsolution level, and (c) the mass discharge rate for two different 
viscosity values of 3t = 104 Pa s and 3t = 105 Pa s, with the other 
parameters kept the same as in Figure 9. The less viscous the 
magma, the faster the chamber becomes depressurized and the 
taster is the descent of the exsolution level. Chambers containing 
less viscous magma are thus more rapidly withdrawn and have a 
greater peak intensity of erupted mass. 
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The artificial diffusion required in the equations with convective 
terms is obtained by discretizing in time along the 
characteristics. By assuming axial symmetry, we solve a three- 
dimensional problem like a two-dimensional using cylindrical 
coordinates. 

The results obtained show that the pressure at the conduit 
entrance decreases exponentially as the eruption proceeds. This 
pressure decrease produces a shifting of the exsolution level, so 
that deeper parts of the chamber become progressively volatile 
oversaturated. As previously proposed by Trial et al. [1992] for 
open magma chambers in which the trigger for the eruption is 
magma inflow into the chamber, our numerical experiments 
suggest that in closed, homogeneous magma chambers, magma 
from different depths can be erupted simultaneously. This may 
explain some chemical heterogeneities in the erupted products, 
such as different abundances of trace elements, which are not 

necessarily related to magma density. The total erupted mass 
predicted by the experiments is in good agreement with the 
results of Bowers and Woods [1997], who find that in closed 
volatile-saturated magma chambers, a mass fraction of 0.01-0.1 
of the initial mass is erupted. In adition, the numerical 
simulations allow us to predict not only the total mass erupted 
but also its temporal variation for any chamber geometry and set 
of magma properties. 

For chambers of equal volume and magma properties, the 
qualitative behavior is insensitive to the chamber geometry. 
However, the total erupted mass increases as the chamber 
becomes flatter because fiat chambers have a major volumetric 
fraction of compressible magma. It should be pointed out that 
geometry would play a major role when considering the 
coupling with the mechanical problem. In natural systems, the 
stress field arround the chamber is directly related to its 
geometry. The stress field controls the opening, propagation and 
closure of those fractures that allow the magma to erupt. By 
assuming rigid walls, our model partially neglects the influence 
of geometry. 

A small change in the magma volatile content does not 
substantially change the mass discharge rate but has an 
important influence on the position of the exsolution level. A 
small increase in volatile content produces a substantial 
deepening of the exsolution level. The exsolution level drops 
faster in less viscous magmas although the initial and final 
positions are insensitive to viscosity. The total erupted mass is 
weakly dependent on viscosity, although viscosity plays a major 
role in controling the duration and the peak intensity of the 
eruption. An increase in the initial overpressure, here associated 
with the tensile strength of the host rock, produces an increase 
in the total displacement of the exsolution level. As a 
consequence, when the initial overpresure is high we see a 
greater erupted mass because a major volumetric fraction of 
magma changes from volatile-undersaturated (incompressible) 

Figure 11. (a) The mass discharge rate, (b) the position of the 
exsolution level, and (c) the overpressure evolution for different 
initial overpressures of 5, 10, and 15 MPa. An increase in the 
initial overpressure can be accounted for by an increase in the 
tensile strenght of the host rock. The total drop in the exsolution 
level depends strongly on the initial overpressure, although its 
final position is the same in all cases. Increasing the initial 
overpressure yields a greater erupted mass because a major 
volumetric fraction of magma changes from undersaturated to 
oversaturated during the depressurization process. 
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Figure 12. Gas volumetric fraction a predicted by the state law (20). Assuming a fragmentation threshold for 
rz=0.75 [e.g., Sparks, 1978], the domain in which the state law (20) is valid can be estimated quantitatively. Above 
the fragmentation level, at the uppermost part of the conduit, the bubbly flow regime cannot be maintained and the 
assumptions of the state law are physically unrealistic. Results for volatile contents of 2, 3, 4, and 5 in wt % 
respectively. The fragmentation level predicted by (20) is constrained to lie in the uppermost part of the conduit, even 
for high volatile contents. 

to volatile-oversaturated (compressible) during the withdrawal 
process. 

Our model constitutes a first attempt to numerically model 
the dynamics and temporal evolution of the most relevant 
physical parameters during magma withdrawal from a closed 
chamber. The relative importance of convective flow induced by 
overpressure and convective flow induced by thermal 
convection requires further study. Future models should also 
take account of chemical inhomogeneities in the magma, as well 
as the coupling with the mechanical problem. If a constitutive 
model for the host rock were coupled with this model, it should 
be possible to determine under which conditions of magma 
composition, chamber geometry, chamber depth, stress field, 
etc., a Plinian central vent eruption could generate a ring fault 
system and become a caldera-forming eruption. 

Appendix. Discussion on Boundary and Initial 
Conditions 

The barotropic state law (20) has been deduced assuming that 
the gas bubbles and the liquid are in mechanical equilibrium. As 
magma flows through the conduit, the gas bubbles grow by 
diflhsion and by decompression. Growth by coalescence is 
inhibited in silicic magmas because gas bubbles are unable to 
come in contact by desplacing surrounding high-viscosity 
magma. The volumetric fraction of gas progressively increases 
as magma ascends and eventually reaches a critical bubble 
packing leading to magma fragmentation. Above this 

fragmentation level, the bubbly regime cannot be sustained, 
assumptions of mechanical equilibrium are no longer valid, and 
the state law (20) becomes physically unrealistic. The gas 
volume fraction a can be computed combining (14), (15), and 
(20). The result is shown in Figure 12, and reflects the need to 
limit the computational domain in order to ensure the validity of 
equation (20). We set the computational outlet at 500 m above 
the conduit entrance. This is an arbitrary choice but sufficient to 
ensure the validity of the state law even for very shallow magma 
chambers. 

Notation 

We use f ,,+o =0 f "+i+(l-O) f" and Af "-- f ,,+l _ f ,, for any 
function f The superscript denotes time step level. Bold vectors 
stand for vectors of nodal unknowns, and F i denotes a vector 
which is known at the moment of solving a particular equation. 

Ho 
H, 
m 

md 

m s , 

semimajor axis (ellipsoidal chamber). 
semiminor axis (ellipsoidal chamber). 
gravity vector. 
safety factor. 
computational conduit height. 
magma chamber depth. 
solubility law exponent. 
mass of dissolved gas. 
mass of exsolved gas. 
mass of liquid magma. 
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m., mass of the melt. 
•nv mass of volatiles. 
M total mass. 

n molecular mass (18 kg/kmol for H20). 
nx, exsolved gas mass fraction. 
P pressure. 
P, critical (exsolution) pressure. 
Q gas constant. 
r conduit radius. 

R universal gas constant (8314 J/øK kmol) 
s solubility law constant. 
T temperature. 
• velocity vector. 
u x velocity component. 
U momentum vector 

U fractional momentum vector. 

v y velocity component. 
W% volatile mass fraction. 

o• gas volumetric fraction. 
,B compressibility modulus. 
AP magma overpressure. 
25 solubility law ß maximum allowable mass fraction of gas 

into solution 

• viscosity. 
p mixture density. 
px, gas density. 
Pt liquid density. 
/9.,. melt (liquid plus exsolved gas within) density. 
•'i Cauchy stress tensor components. 
v,: i viscous stress tensor components. 
0 step function. 
0i parameters of the algorithm. 
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