601 research outputs found
The Unified Method: I Non-Linearizable Problems on the Half-Line
Boundary value problems for integrable nonlinear evolution PDEs formulated on
the half-line can be analyzed by the unified method introduced by one of the
authors and used extensively in the literature. The implementation of this
general method to this particular class of problems yields the solution in
terms of the unique solution of a matrix Riemann-Hilbert problem formulated in
the complex -plane (the Fourier plane), which has a jump matrix with
explicit -dependence involving four scalar functions of , called
spectral functions. Two of these functions depend on the initial data, whereas
the other two depend on all boundary values. The most difficult step of the new
method is the characterization of the latter two spectral functions in terms of
the given initial and boundary data, i.e. the elimination of the unknown
boundary values. For certain boundary conditions, called linearizable, this can
be achieved simply using algebraic manipulations. Here, we present an effective
characterization of the spectral functions in terms of the given initial and
boundary data for the general case of non-linearizable boundary conditions.
This characterization is based on the analysis of the so-called global
relation, on the analysis of the equations obtained from the global relation
via certain transformations leaving the dispersion relation of the associated
linearized PDE invariant, and on the computation of the large asymptotics
of the eigenfunctions defining the relevant spectral functions.Comment: 39 page
Non-Linear Evolution Equations with Non-Analytic Dispersion Relations in 2+1 Dimensions. Bilocal Approach
A method is proposed of obtaining (2+1)-dimensional non- linear equations
with non-analytic dispersion relations. Bilocal formalism is shown to make it
possible to represent these equations in a form close to that for their
counterparts in 1+1 dimensions.Comment: 13 pages, to be published in J. Phys.
An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion
We study a class of 1+1 quadratically nonlinear water wave equations that
combines the linear dispersion of the Korteweg-deVries (KdV) equation with the
nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still
preserves integrability via the inverse scattering transform (IST) method.
This IST-integrable class of equations contains both the KdV equation and the
CH equation as limiting cases. It arises as the compatibility condition for a
second order isospectral eigenvalue problem and a first order equation for the
evolution of its eigenfunctions. This integrable equation is shown to be a
shallow water wave equation derived by asymptotic expansion at one order higher
approximation than KdV. We compare its traveling wave solutions to KdV
solitons.Comment: 4 pages, no figure
Integrable nonlinear equations on a circle
The concept of integrable boundary value problems for soliton equations on
and is extended to bounded regions enclosed by
smooth curves. Classes of integrable boundary conditions on a circle for the
Toda lattice and its reductions are found.Comment: 23 page
Extension of Hereditary Symmetry Operators
Two models of candidates for hereditary symmetry operators are proposed and
thus many nonlinear systems of evolution equations possessing infinitely many
commutative symmetries may be generated. Some concrete structures of hereditary
symmetry operators are carefully analyzed on the base of the resulting general
conditions and several corresponding nonlinear systems are explicitly given out
as illustrative examples.Comment: 13 pages, LaTe
A tree of linearisable second-order evolution equations by generalised hodograph transformations
We present a list of (1+1)-dimensional second-order evolution equations all
connected via a proposed generalised hodograph transformation, resulting in a
tree of equations transformable to the linear second-order autonomous evolution
equation. The list includes autonomous and nonautonomous equations.Comment: arXiv version is already officia
Spectral decomposition for the Dirac system associated to the DSII equation
A new (scalar) spectral decomposition is found for the Dirac system in two
dimensions associated to the focusing Davey--Stewartson II (DSII) equation.
Discrete spectrum in the spectral problem corresponds to eigenvalues embedded
into a two-dimensional essential spectrum. We show that these embedded
eigenvalues are structurally unstable under small variations of the initial
data. This instability leads to the decay of localized initial data into
continuous wave packets prescribed by the nonlinear dynamics of the DSII
equation
On the Dirichlet to Neumann Problem for the 1-dimensional Cubic NLS Equation on the half-line
This is an author-created, un-copyedited version of an article accepted for publication in Nonlinearity. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0951-7715/28/9/3073Initial-boundary value problems for 1-dimensional `completely integrable' equations can be solved via an extension of the inverse scattering method, which is due to Fokas and his collaborators. A crucial feature of this method is that it requires the values of more boundary data than given for a well-posed problem. In the case of cubic NLS, knowledge of the Dirichet data su ces to make the problem well-posed but the Fokas method also requires knowledge of the values of Neumann data. The study of the Dirichlet to Neumann map is thus necessary before the application of the `Fokas transform'. In this paper, we provide a rigorous study of this map for a large class of decaying Dirichlet data. We show that the Neumann data are also su ciently decaying and that, hence, the Fokas method can be applied
The matrix Kadomtsev--Petviashvili equation as a source of integrable nonlinear equations
A new integrable class of Davey--Stewartson type systems of nonlinear partial
differential equations (NPDEs) in 2+1 dimensions is derived from the matrix
Kadomtsev--Petviashvili equation by means of an asymptotically exact nonlinear
reduction method based on Fourier expansion and spatio-temporal rescaling. The
integrability by the inverse scattering method is explicitly demonstrated, by
applying the reduction technique also to the Lax pair of the starting matrix
equation and thereby obtaining the Lax pair for the new class of systems of
equations. The characteristics of the reduction method suggest that the new
systems are likely to be of applicative relevance. A reduction to a system of
two interacting complex fields is briefly described.Comment: arxiv version is already officia
Linearizability of the Perturbed Burgers Equation
We show in this letter that the perturbed Burgers equation is equivalent, through a near-identity transformation and
up to order \epsilon, to a linearizable equation if the condition is satisfied. In the case this
condition is not fulfilled, a normal form for the equation under consideration
is given. Then, to illustrate our results, we make a linearizability analysis
of the equations governing the dynamics of a one-dimensional gas.Comment: 10 pages, RevTeX, no figure
- …