601 research outputs found

    The Unified Method: I Non-Linearizable Problems on the Half-Line

    Full text link
    Boundary value problems for integrable nonlinear evolution PDEs formulated on the half-line can be analyzed by the unified method introduced by one of the authors and used extensively in the literature. The implementation of this general method to this particular class of problems yields the solution in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the complex kk-plane (the Fourier plane), which has a jump matrix with explicit (x,t)(x,t)-dependence involving four scalar functions of kk, called spectral functions. Two of these functions depend on the initial data, whereas the other two depend on all boundary values. The most difficult step of the new method is the characterization of the latter two spectral functions in terms of the given initial and boundary data, i.e. the elimination of the unknown boundary values. For certain boundary conditions, called linearizable, this can be achieved simply using algebraic manipulations. Here, we present an effective characterization of the spectral functions in terms of the given initial and boundary data for the general case of non-linearizable boundary conditions. This characterization is based on the analysis of the so-called global relation, on the analysis of the equations obtained from the global relation via certain transformations leaving the dispersion relation of the associated linearized PDE invariant, and on the computation of the large kk asymptotics of the eigenfunctions defining the relevant spectral functions.Comment: 39 page

    Non-Linear Evolution Equations with Non-Analytic Dispersion Relations in 2+1 Dimensions. Bilocal Approach

    Full text link
    A method is proposed of obtaining (2+1)-dimensional non- linear equations with non-analytic dispersion relations. Bilocal formalism is shown to make it possible to represent these equations in a form close to that for their counterparts in 1+1 dimensions.Comment: 13 pages, to be published in J. Phys.

    An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion

    Full text link
    We study a class of 1+1 quadratically nonlinear water wave equations that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation, yet still preserves integrability via the inverse scattering transform (IST) method. This IST-integrable class of equations contains both the KdV equation and the CH equation as limiting cases. It arises as the compatibility condition for a second order isospectral eigenvalue problem and a first order equation for the evolution of its eigenfunctions. This integrable equation is shown to be a shallow water wave equation derived by asymptotic expansion at one order higher approximation than KdV. We compare its traveling wave solutions to KdV solitons.Comment: 4 pages, no figure

    Integrable nonlinear equations on a circle

    Full text link
    The concept of integrable boundary value problems for soliton equations on R\mathbb{R} and R+\mathbb{R}_+ is extended to bounded regions enclosed by smooth curves. Classes of integrable boundary conditions on a circle for the Toda lattice and its reductions are found.Comment: 23 page

    Extension of Hereditary Symmetry Operators

    Full text link
    Two models of candidates for hereditary symmetry operators are proposed and thus many nonlinear systems of evolution equations possessing infinitely many commutative symmetries may be generated. Some concrete structures of hereditary symmetry operators are carefully analyzed on the base of the resulting general conditions and several corresponding nonlinear systems are explicitly given out as illustrative examples.Comment: 13 pages, LaTe

    A tree of linearisable second-order evolution equations by generalised hodograph transformations

    Full text link
    We present a list of (1+1)-dimensional second-order evolution equations all connected via a proposed generalised hodograph transformation, resulting in a tree of equations transformable to the linear second-order autonomous evolution equation. The list includes autonomous and nonautonomous equations.Comment: arXiv version is already officia

    Spectral decomposition for the Dirac system associated to the DSII equation

    Full text link
    A new (scalar) spectral decomposition is found for the Dirac system in two dimensions associated to the focusing Davey--Stewartson II (DSII) equation. Discrete spectrum in the spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum. We show that these embedded eigenvalues are structurally unstable under small variations of the initial data. This instability leads to the decay of localized initial data into continuous wave packets prescribed by the nonlinear dynamics of the DSII equation

    On the Dirichlet to Neumann Problem for the 1-dimensional Cubic NLS Equation on the half-line

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Nonlinearity. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0951-7715/28/9/3073Initial-boundary value problems for 1-dimensional `completely integrable' equations can be solved via an extension of the inverse scattering method, which is due to Fokas and his collaborators. A crucial feature of this method is that it requires the values of more boundary data than given for a well-posed problem. In the case of cubic NLS, knowledge of the Dirichet data su ces to make the problem well-posed but the Fokas method also requires knowledge of the values of Neumann data. The study of the Dirichlet to Neumann map is thus necessary before the application of the `Fokas transform'. In this paper, we provide a rigorous study of this map for a large class of decaying Dirichlet data. We show that the Neumann data are also su ciently decaying and that, hence, the Fokas method can be applied

    The matrix Kadomtsev--Petviashvili equation as a source of integrable nonlinear equations

    Full text link
    A new integrable class of Davey--Stewartson type systems of nonlinear partial differential equations (NPDEs) in 2+1 dimensions is derived from the matrix Kadomtsev--Petviashvili equation by means of an asymptotically exact nonlinear reduction method based on Fourier expansion and spatio-temporal rescaling. The integrability by the inverse scattering method is explicitly demonstrated, by applying the reduction technique also to the Lax pair of the starting matrix equation and thereby obtaining the Lax pair for the new class of systems of equations. The characteristics of the reduction method suggest that the new systems are likely to be of applicative relevance. A reduction to a system of two interacting complex fields is briefly described.Comment: arxiv version is already officia

    Linearizability of the Perturbed Burgers Equation

    Full text link
    We show in this letter that the perturbed Burgers equation ut=2uux+uxx+ϵ(3α1u2ux+3α2uuxx+3α3ux2+α4uxxx)u_t = 2uu_x + u_{xx} + \epsilon ( 3 \alpha_1 u^2 u_x + 3\alpha_2 uu_{xx} + 3\alpha_3 u_x^2 + \alpha_4 u_{xxx} ) is equivalent, through a near-identity transformation and up to order \epsilon, to a linearizable equation if the condition 3α1−3α3−3/2α2+3/2α4=03\alpha_1 - 3\alpha_3 - 3/2 \alpha_2 + 3/2 \alpha_4 = 0 is satisfied. In the case this condition is not fulfilled, a normal form for the equation under consideration is given. Then, to illustrate our results, we make a linearizability analysis of the equations governing the dynamics of a one-dimensional gas.Comment: 10 pages, RevTeX, no figure
    • …
    corecore