1,375 research outputs found

    Kink stability, propagation, and length scale competition in the periodically modulated sine-Gordon equation

    Get PDF
    We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program which are not compatible with the existence of a radiative threshold, predicted by earlier calculations. Second, we carry out a perturbative calculation which helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it accurately reproduces the observed kink dynamics. Fourth, we report on a novel occurrence of length scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.Comment: 19 pages, REVTeX 3.0, 24 figures available from A S o

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Polarography of Te (IV) Anions in Neutral Solutions in Presence of 2,2'- Dipyridyl and Fe(dipy)3 2+ - Complexes

    Get PDF
    The electroreduction of Te (IV) ions in neutral non-buffer solutions containing 2,2'-dipyridyl (4в‹…10-5- 4в‹…10-3 M) or tris-dipyridyl iron (II) complexes is studied by the polarographic method. NaF (0.01-0.5 M) or NaNO3 (0.1-1 M) are used as supporting electrolytes. The mechanism of electrochemical reactions of Te (IV) anions on mercury electrodes in the presence of the additives is discussed. The electroreduction of Te (IV) anions is shown to proceed through electron transfer and proton addition. The obtained results point to a considerable influence of electric double layer structure on electrochemical reactions of Te (IV) ions in the presence of inorganic and specifically adsorbed organic compounds in the electrolyte. It is shown, that 2,2'-dipyridyl does not form complexes with Te (IV) anions. Having been adsorbed on the surface of mercury electrode, 2,2'-dipyridyl complexes increase negative ОЁ'-potential that results in a shift of Te (IV) electroreduction wave to more negative potentials and decrease in the current of Te (IV) wave and peak at -1.19 V. It is shown that 2,2'-dipyridyl molecules at Оµ > 0, (Оµ вЂ“ charge of an electrode) are adsorbed in plane orientation, and at Оµ < 0, plane or vertical. Vertically adsorbed molecules cause a significant decrease in the double layer capacitance. At negative potentials orientation of 2,2'-dipyridyl molecules changes from plane to vertical with the increasing 2,2'-dipyridyl concentration. This change of orientation results in a typical maximum capacitance emerging in the potential range of -0.7 to -1.2 V. It is shown that the supporting electrolyte, 2,2'-dipyridyl and Fe(dipy)32+ В have influence on the electroreduction of Te (IV) anions in neutral non-buffer solutions through a change in the ОЁ'-potential of mercury electrode

    NGC 5548 in a Low-Luminosity State: Implications for the Broad-Line Region

    Get PDF
    We describe results from a new ground-based monitoring campaign on NGC 5548, the best studied reverberation-mapped AGN. We find that it was in the lowest luminosity state yet recorded during a monitoring program, namely L(5100) = 4.7 x 10^42 ergs s^-1. We determine a rest-frame time lag between flux variations in the continuum and the Hbeta line of 6.3 (+2.6/-2.3) days. Combining our measurements with those of previous campaigns, we determine a weighted black hole mass of M_BH = 6.54 (+0.26/-0.25) x 10^7 M_sun based on all broad emission lines with suitable variability data. We confirm the previously-discovered virial relationship between the time lag of emission lines relative to the continuum and the width of the emission lines in NGC 5548, which is the expected signature of a gravity-dominated broad-line region. Using this lowest luminosity state, we extend the range of the relationship between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population of reverberation-mapped AGNs as a whole.Comment: 24 pages, 3 tables, 7 figures, accepted for publication in Ap

    The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping

    Get PDF
    We present new observations leading to an improved black hole mass estimate for the Seyfert 1 galaxy NGC 4593 as part of a reverberation-mapping campaign conducted at the MDM Observatory. Cross-correlation analysis of the H_beta emission-line light curve with the optical continuum light curve reveals an emission-line time delay of 3.73 (+-0.75) days. By combining this time delay with the H_beta line width, we derive a central black hole mass of M_BH = 9.8(+-2.1)x10^6 M_sun, an improvement in precision of a factor of several over past results.Comment: 22 pages, 3 tables, 5 figures, accepted for publication in Ap

    Unsupervised Bayesian linear unmixing of gene expression microarrays

    Get PDF
    Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor

    Absence of a Zero Temperature Vortex Solid Phase in Strongly Disordered Superconducting Bi Films

    Full text link
    We present low temperature measurements of the resistance in magnetic field of superconducting ultrathin amorphous Bi films with normal state sheet resistances, RNR_N, near the resistance quantum, RQ=e2R_Q={\hbar\over {e^2}}. For RN<RQR_N<R_Q, the tails of the resistive transitions show the thermally activated flux flow signature characteristic of defect motion in a vortex solid with a finite correlation length. When RNR_N exceeds RQR_Q, the tails become non-activated. We conclude that in films where RN>RQR_N>R_Q there is no vortex solid and, hence, no zero resistance state in magnetic field. We describe how disorder induced quantum and/or mesoscopic fluctuations can eliminate the vortex solid and also discuss implications for the magnetic-field-tuned superconductor-insulator transition.Comment: REVTEX, 4 pages, 3 figure

    Dynamics of Flux Creep in Underdoped Single Crystals of Y_1-xPr_xBa_2Cu_3O_7-d

    Full text link
    Transport as well as magnetic relaxation properties of the mixed state were studied on strongly underdoped Y_1-xPr_xBa_2Cu_3O_7-d crystals. We observed two correlated phenomena - a coupling transition and a transition to quantum creep. The distribution of transport current below the coupling transition is highly nonuniform, which facilitates quantum creep. We speculate that in the mixed state below the coupling transition, where dissipation is nonohmic, the current distribution may be unstable with respect to self-channeling resulting in the formation of very thin current-carrying layers.Comment: 11 pages, 9 figures, Submitted to Phys. Rev.
    corecore