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We have examined the dynamical behavior of the kink solutions of the one-dimensional sine­
Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies 
and extends the currently available knowledge on this and related nonlinear problems in four di­
rections. First, we present the results of a numerical simulation program that are not compatible 
with the existence of a radiative threshold predicted by earlier calculations. Second, we carry out a 
perturbative calculation that helps interpr~t those previous predictions, enabling us to understand 
in depth our numerical results. Third, we apply the collective coordinate formalism to this system 
and demonstrate numerically that it reproduces accurately the observed kink dynamics. Fourth, 
we report on the occurrence of length-scale competition in this system and show how it can be 
understood by means of linear stability analysis. Finally, we conclude by summarizing the general 
physical framework that arises from our study. 

PACS number(s): 03.40.Kf, 85.25.Cp, 02.90.+p 

I. INTRODUCTION 

Technological progress has made possible the fabrica­
tion of highly ordered materials and structures for a very 
large number of applications. In parallel to those ad­
vances, it has also been realized that the special prop­
erties required for many purposes necessitate inhomo­
geneous systems. Here inhomogeneity may mean spa­
tial modulations, quasiperiodicity, or disorder of several 
kinds. In addition, there are other situations in which 
inhomogeneity is undesirable but unavoidable. In either 
case, the study of disordered systems acquires fundamen­
tal importance. This is even more so when the physical 
system in which disorder or inhomogeneity is to be stud­
ied is described by a nonlinear model. Whereas the role 
of disorder in linear problems is at least partially under­
stood, much less is known about nonlinear disordered sys­
tems. In fact, even from a mathematical viewpoint, the 
understanding of these models, often related to stochas­
tic partial differential equations (PDE's), is very limited. 
Consequently, a great deal of research has been devoted 
to this topic [1-3]. 

A major part of the work done so far regarding nonlin­
ear disordered systems has been concerned with some 
particular examples that are amenable to analytical 
treatment while capturing some essential physics. The 
sine-Gordon (SG) (actually, the whole family of non­
linear Klein-Gordon equations, including, e.g., the if>4, 
double- and quadratic-sine-Gordon equations) and non­
linear SchrOdinger (NLS) equations are often chosen as 

1063-651X/94/49(5)/4603(13)/$06.00 49 

very suitable "canonical" examples. This is due to the 
fact that the basic mathematical structure underlying 
them is well known and therefore provides a good starting 
point for theoretical work. This reason would not be suffi­
cient if these models were not also related to a large num­
ber of phenomena that occur in quasi-one-dimensional 
physical systems, as is in fact the case. In the context of 
these two models, disorder is introduced through suitably 
chosen perturbation terms (see [2] for an extensive list 
of physically relevant perturbations). This is the usual 
procedure by which inhomogeneity of any kind is stud­
ied: The equation describing the problem is established, 
the terms relevant to the considered physical situation 
are identified, and a perturbation to those terms is in­
troduced, representing the desired kind of disorder. Our 
viewpoint in this work is more generic: Although the sys­
tem we deal with is indeed related to a number of applica­
tions, our aim is that we will be able to gain insight into 
underlying mechanisms of the phenomenology of nonlin­
ear disordered systems. Therefore, we introduce a simple 
periodic perturbation which will allow us to study very 
interesting and general phenomena, such as length-scale 
competition, and will provide information relevant to the 
more complicated processes occurring in random media 
(the periodic potential can be interpreted as a "color" of 
a general noisy one). The knowledge obtained will also 
be useful to tackle other problems where detailed studies 
including analytical treatment are not possible. 

In this paper we study the behavior of one-dimensional 
(ID) SG kinks when perturbed parametrically by a spa-
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tially periodic potential. Initially, this was motivated 
by our related research (from the above general point of 
view) on the SG [4,5] and NLS [6,7] models. As a prelim­
inary step to the investigation of SG breather dynamics 
[4] on these kind of potentials, it is natural to first seek 
a good understanding of kink dynamics. Therefore we 
undertook that study, both analytically and numerically. 
Our point of departure was early theoretical work [8-10] 
on this problem, which we summarize for completeness 
in Sec. Il. In particular, it had been predicted that a cer­
tain critical velocity exists at which the radiative power 
emitted by the kink would diverge. Below that critical 
velocity, radiation would be zero, and above it, it would 
decrease with increasing speed (see Ref. [2] for a sum­
mary). Those results were obtained at a time where the 
main aim was to develop a perturbative approach to deal 
with soliton problems. That, and the fact that comput­
ers were not the easily available tool they are nowadays, 
meant that those results were never analyzed in depth 
or numerically checked. Therefore, as a first stage of our 
study, we devised a number of numerical experiments to 
check them, and we found no numerical evidence for the 
predicted divergence. In view of this result, we carried 
out an improved perturbative calculation, in the sense 
that it allowed us to interpret correctly the earlier re­
sults in Refs. [8-10] and to show that, although the ear­
lier analyses were correct, the predicted divergence was 
actually unphysical. This theoretical analysis is reported 
in detail in Sec. Ill: A preliminary short report has been 
given elsewhere [11]. The work done to that point sug­
gested to us the idea that, opposite to what was believed 
to date, SG kink dynamics on a periodic potential could 
be essentially that of a (pseudorelativistic) particle. We 
thus applied a simple collective coordinate formalism to 
the problem, and it turned out to describe soli ton be­
havior very accurately, even predicting unexpected new 
phenomena. The analytical approach and the numerical 
simulations are contained in Sec. IV. Finally, to com­
plete our program studying length-scale competition and 
its effects in nonlinear disordered systems, we performed 
further numerical experiments to clarify whether robust 
objects such as kinks, which according to our collective 
coordinate theory behave mostly like particles, can still 
exhibit the destabilizing effect of length-scale competi­
tion. We found that this was actually the case. Fur­
thermore, the simplicity of kinks allowed us to carry out 
a (numerical) linear stability analysis which provided us 
with a clear explanation for the numerically observed fea­
tures. We collect our results on this question in Sec. V. To 
conclude, we summarize the facts that we have learned, 
which considerably enhance the understanding of sine­
Gordon kink propagation in disordered media and shed 
light on the so far unexplained phenomenon of length­
scale competition. Our results are also of relevance to 
many nonlinear systems of physical interest, mainly in 
three directions: First, all non-numerically validated or 
nonphysically interpreted predictions obtained through 
perturbative calculations should be treated with a de­
gree of caution. Second, the collective coordinate formal­
ism yields a very simple and accurate way to deal with 
perturbed nonlinear problems, especially those in which 

the perturbation enters parametrically rather than addi­
tively. And third, length-scale competition is an ubiq­
uitous phenomenon that may be responsible for many 
instabilities arising in different nonlinear disordered sys­
tems. 

11. BRIEF SUMMARY 
OF PREVIOUS RESULTS 

We start by describing the picture of SG kink propa­
gation on parametric periodic potentials which has been 
accepted to date. The problem, which has been studied 
by Mkrtchyan and Shmidt [8] and Malomed and Tribel­
sky [9,10], is given by a perturbed SG equation of the 
form 

Utt - U"'''' + [1 + Ecos(kx)]sinu = ° (1) 

(modeling, for instance, a long Josephson junction with 
modulated critical current, to mention just one applica­
tion); the question posed was whether kinks can propa­
gate freely in such a system, and if so, to describe this 
propagation. We will only record here a short summary 
of previous work. The reader is referred to the original 
papers [8-10] for details. 

Mkrtchyan and Shmidt [8] used a Green's function per­
turbation technique (GFPT). They derived a linearized 
equation for the first order correction to a kink mov­
ing with constant velocity, computed the Green's func­
tion corresponding to its homogeneous version, and then 
used it to obtain the desired correction by integrating the 
source term with that Green's function. They then no­
ticed that radiation appeared only above a critical kink 
velocity Vthr = (1+k 2)-1/2. At that particular value, the 
correction diverges, and the authors explain that their 
calculation becomes invalid in that region as, of course, 
it assumed the correction was small. On the other hand, 
the approach of Malomed and Tribelsky [9,10] was quite 
different. Its basis was the inverse scattering perturba­
tion theory (ISPT). A meaningful summary of this kind 
of calculation would be quite lengthy and hence we will 
omit it here, referring the reader to Ref. [2], which is 
mostly devoted to describing ISPT in detail. Let us just 
mention that the idea is that, if the amount of radia­
tion emitted by the kink is small, as it should be if the 
perturbation is small, then the spectral density of the 
emitted energy can be computed following a Taylor ex­
pansion, and the total radiated energy is then derived by 
integration over all modes. Again, the result was that 
there was a critical velocity Vthr = (1 + k 2 ) -1/2 such that 
kinks traveling with velocities v < Vthr did not emit any 
radiation at all, whereas in the opposite case the amount 
of emitted radiation decreased as v --+ 1, diverging when 
v = Vthr' Always within the framework of ISPT, Mal­
omed and Tribelsky [10] were also able to show that dis­
sipation could play a regularizing role, suppressing the 
divergence. As the results in Ref. [8] agreed with those 
in Refs. [9,10], the existence of this threshold for radia­
tion with its associated divergence was accepted, and the 
question of kink propagation on periodic potentials was 
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regarded as basically solved. As mentioned above, it has 
to be borne in mind that the main issue of those early 
researches was to establish the proper foundations for a 
perturbative theory for solitons. Hence the question of 
the physical meaning and origin of the divergence was 
not addressed. Another unexplained point arises already 
from 18PT, which allows computation of the radiation 
nature. When this is done in our case, the radiation 
wave numbers turn out to be related to the perturbation 
one by a complicated equation (see, e.g., [2]), which, in 
particular, implies that radiation is emitted with a non­
intuitive wave number k- 1 at the divergence. This pre­
diction is difficult to understand physically. Let us recall 
at this point that a particlelike picture of kink propaga­
tion had been developed and had been largely successful 
so far [12) when compared to numerical experiments. If 
18PT predictions for the radiation wave numbers were 
true, the reason for them must come from the wave na­
ture of kinks. Consequently, the particle picture should 
be regarded as a major simplification and valid only in 
limited cases. 

Ill. KINK PROPAGATION 
ON PERIODIC MEDIA 

A. Numerical results 

With the above scenario (and the question it poses) in 
mind, we carried out a number of numerical simulations 
looking in the first place for the proposed threshold. All 
the simulations we will be reporting on throughout the 
paper have been carried out taking periodic boundary 
conditions. The integration was performed with two dif­
ferent procedures, an adaptation of the energy conserving 
8trauss-Vazquez finite-difference scheme [13) and a fifth 
order, adaptive step size, Runge-Kutta integration [14) of 
the discretization of the PDE. The results were indepen­
dent of the procedure, which is a satisfactory checking. 
We performed a careful search, paying attention to the 
fact that the predicted value was a first order calcula­
tion and that it may not be quantitatively accurate. On 
the other hand, the finite width of the simulated system 
may also be of relevance at this point, as its radiation 
spectrum structure is not identical to the continuum, in­
finite system [in particular, the lowest frequency in the 
model is restricted to be W!in = 1 + (211"/ L)2, L being the 
length of the system). Hence we monitored the amount 
of radiation emitted by the kink by making simulations 
with many different initial conditions, sweeping a range 
of initial velocities; if there was a threshold somewhere, 
there should be a change in the radiating power of the 
kink as it moved through it. The result was negative: No 
evidence for a threshold was found, even when the search 
was performed for a large range of initial velocities with a 
resolution of 10-2 for some choices of k. Examples of the 
outcome of the simulations are shown in Fig. 1 for three 
values of the potential wavelength: (a) of the order and 
(b) and (c) smaller than the kink width ('" 6 in our di­
mensionless units) at v = Vthr. It has to be stressed that 
the predicted divergence does not depend on the strength 
of the perturbing potential E, but we also tried to make 
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FIG. 1. Absence ofradiative divergence for kinks propagat­
ing in the spatially periodic SG model. Parameters are (a) 
k = 27r/5, initial velocity v = Vthr = 0.387726 ... ; (b) k = 7r, 
initial velocity v = Vthr = 0.091999 ... ; (c) k = 27r, initial 
velocity v = Vthr = 0.024704 ... [corresponding wavelengths 
are (a) 5, (b) 2, and (c) 1]. In all three cases, € = 0.4. The 
amplitude of the emitted radiation is very small; due to the 
periodic boundary conditions, it can be seen reentering the 
simulation interval without any appreciable interaction with 
the kink. Only half of the simulation interval is shown in plots 
(b) and (c) to enlarge details. Time increases upwards with 
final time t = 100. The potential is indicated by the dashed 
line (amplitude not to scale). 
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FIG_ 2. Instantaneous center of mass positions as obtained 
from the simulations in Fig. 1. Dot-dashed line, k = 211"/5; 
dashed line, k = 11"; solid line, k = 211". 

the effect more visible by increasing this parameter. In­
deed, in Fig. 1, € = 0.4, a value that is not very small, 
and the kinks seem unaffected except for a small amount 
of radiation and an oscillatory motion superimposed on 
its trajectory, which is shown in Fig. 2. It is interesting 
to note that the kink traveling on the short wavelength 
potential (c) appears not to be affected at all. This will 
be understood by means of the collective coordinate ap­
proach in Sec. IV. On increasing t; further, trapping be­
havior takes place, Le., kinks are trapped by the potential 
and cannot propagate, but there is no strong emission of 
radiation [for an example, see Fig. 4(b), which will be 
discussed later]. Actually, this trapping can be of two 
very different kinds, as we will discuss in Secs. IV and V. 
Another interesting remark is that we also observed that 
kinks always emit radiation, even when moving at a very 
low velocity, far below the predicted threshold. A sim­
ilar result arises from the work of Peyrard and Kruskal 
on highly discrete SG systems [15], where kinks propa­
gate on the periodic potential coming from the Peierls­
Nabarro barrier, although this comparison should not be 
taken too literally as there are some differences between 
both problems, such as the existence of a maximum al­
lowed frequency in the discrete one, for instance. It thus 
becomes evident that the features of kink propagation 
on periodic potentials are qualitatively different from the 
above perturbative analytical results. Interestingly, nu­
merical simulations on a similar perturbation of the <p4 
problem [16] seem to confirm the absence of this diver­
gence. We will elaborate more on this when presenting 
our conclusions in Sec. VI. 

B. Theory 

In order to gain insight into the numerical observa­
tions, we developed a perturbative approach for this 
problem, following a similar approach to that given by 
Fogel et al. [12]. To this end, we perform a Lorentz trans­
formation and rewrite (1) in the rest frame of the soliton 
(Le., the reference frame moving with the speed of the 
unperturbed soliton v) 

Utt - u"'''' + {I + € cos[k'Y(x + vt)]} sin u = 0, (2) 

with I == (1 - V2 )-1/2 the Lorentz factor. Here we con­
sider € « 1, so the perturbative term may be treated by 
assuming a solution of the form 

u(x, t) = uv(x) + w(1)(x, t), (3) 

where uv(x) == 4 tan-1(e"') is the unperturbed sa kink. 
For completeness, we now recall how the most appro­
priate basis in which to expand w(l) (x, t) is obtained. 
Introducing the Ansatz (3) in Eq. (2) without the pertur­
bation term, linearizing in the small quantity u(1)(x, t), 
and separating time and space by introducing U(l)(X, t) = 
f(x)e- iwt , we are left with the following eigenvalue prob­
lem for f(x): 

[- d~2 + (1 - 2sech2 x)] f(x) = w2 f(x). (4) 

This is a well known eigenvalue problem [17]; there exists 
exactly one bound state, with Wb = 0, and a continuum 
of scattering states with w~ = 1 + ,,;,2; the corresponding 
normalized eigenfunctions are 

fb(X) = 2 sechx, (5a) 
1 . 

f(";,, x) = r,ce"'''"('';'+itanhx). (5b) 
W",y27T 

These eigenfunctions have a very clear physical meaning. 
The bound state fb(X) is associated with the Goldstone 
translation mode of the soliton, whereas the continuum 
eigenfunctions f(";,, x) are the radiation modes (see [12] 
for a detailed discussion). Besides, these functions form 
an orthogonal basis since the corresponding operator is 
self-adjoint. We will make use of this fact to deal with our 
problem. In terms of this basis, the first order correction 
can be split into two parts, namely, 

u(l)(x,t) = u(trans)(x,t) +u(rad)(x,t), (6) 

where 

u(trans)(x,t) = ~<Pb(t)fb(X), (7a) 

u(rad)(x,t) = i: d";,<p(";,,t)f(,,;,,x). (7b) 

To find the amplitudes <Pb(t) and <p(K, t), one again intro­
duces the Ansatz (3) in Eq. (2), linearizes, and Fourier 
transforms in time; subsequent projection yields 

.. 100 sinhx 
<Pb(t) = 4 dx cos[k'Y(x + vt)]--3-' 

_(X) cosh x 
(8a) 

= 2 i: dx cos[k'Y(x + vt)] 

e- i "''''(,,;, - itanhx) sinhx 
x 2' (8b) vl27T (1 + ,,;,2) cosh x 

It now remains to solve Eqs. (8) and invert the various 
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transforms needed to arrive at them. In the following, we 
discuss translation and radiative parts in (6) separately. 
Let us start with the simplest one, i.e., the translation 
mode contribution. Note that (Ba) is, after performing 
the integration, nothing but the Newton's law for a time­
dependent force. Its solution may be readily found, and 
finally one obtains 

(trims) ( t) - 7r . (k t) h (9) u x, - 2v2 sinh(k-Y7r /2) sm -yv sec x. 

Recalling that we are working in the unperturbed soli­
ton reference frame, this is a localized oscillatory motion 
superimposed on its otherwise constant trajectory. Now, 
let us remark that the prefactor implies that short wave-

1 
u(rad)(x,t) == _ 

4 

It is possible to deal with the integral in (10) in the com­
plex plane: When x > 0 in the upper half plane and 
when x < 0 in the lower half plane. The pole struc­
ture of the integrand will completely determine the total 
radiative contribution. In particular, we will see that ra­
diation only appears for some special values of the system 
parameters. 

We take x > 0 in what follows (the opposite case is 
treated in the same way). Accordingly, the integral has 
to be analyzed in the upper half complex plane. The 
pole structure of the integrand is depicted in Fig. 3. All 
poles are simple and their locations are Zo == +i, Zl == 
ia == +iy'l - k2-y2v2, and z;= == ±k-y+i(2n+ 1), n being 
a non-negative integer. For the sake of clarity we treat 
each pole separately. 

(i) The first pole Zo = +i is constant and does not 
change when the system parameters change. Since this 
pole is purely imaginary, it is immediately seen that the 
contribution ofthe residue at Zo is exponentially localized 
around the kink center. This term does not give rise to 
any radiation but rather to time-dependent corrections 
of the kink shape. 

(ii) The family of poles z;= depends on the perturba­
tion wave number k and on the kink velocity through 
the Lorentz factor -y. However, they always have a posi­
tive imaginary part, thus leading again to exponentially 
localized contributions. Therefore, the z;= poles also do 
not produce any true radiative correction. 

(iii) The remaining pole is the key one. If a 2 == 
1 - k2-y2V 2 > 0, the same reasoning applied to the other 
poles holds, and there is no radiation. It is worth men­
tioning that localized oscillations around the kink center, 
predicted from the contributions of zo, Zl (a real), and 
z;=, were already evident in our numerical simulations, 
as shown in Fig. 1. For fixed k, as v increases, the pole 
moves down the imaginary axis, and at the critical value 
Vthr == (1 + k2)-1/2 it lies at the origin of the complex 
plane. For kink velocities v > Vthr the pole is purely real 

length (k -t 00) perturbations will have no effect on the 
motion of the center of the soliton, which is also in good 
agreement with our simulations in Fig. 2. This behav­
ior can be understood in terms of a "smoothing" of the 
potential: The kink, having a width much larger than 
the perturbation wavelength, experiences only an effec­
tive averaged force, whose amplitude vanishes exponen­
tially for large k (see Sec. IV; see also related comments 
in [4,6]). 

Equation (Bb) for the K-mode radiative contribution 
can also be solved. After computing the integral in the 
right hand side of Eq. (Bb), one is left with the Newton's 
law for a forced harmonic oscillator. This allows the de­
termination of </1(K, t) and substitution of it in Eq. (7b) 
to find the total radiative contribution: 

I 

and then it does give rise to a radiative contribution, 
whose form is given by (with (3 == y'k2-y2v2 - 1 a real 
number) 

(rad) 7r ( i h) 
uf3 = 4-y2v2 1 - (j tan x 

[ 
ei(k-yvHf3z) e-i (k-yvt-f3z ) 1 

x cosh[7r(k-y - (3)/2] + cosh[7r(k-y + (3)/2] . 

(11) 

This expression tells us that radiation occurs whenever {3 
is real (v > Vthr), and this radiation is the superposition 
of two linear waves of different amplitudes, traveling in 
opposite directions but with the same phase velocity. 

Im(z) 
; 
I 
I 
I 
I , 
I I 

z~ • • z+ 
I 

n 
I 
I 
I 
I 
I I • • I I 
I I 
I I 
I I 
I 

zo 
I • • I I 

I z1(v<vtto) 
I 

I I 
I 

Z1(V>~J: 
-IcY Re(z) 

FIG. 3. The pole structure of the radiation contribution. 
Filled circles mark the location of the poles which give rise to 
corrections localized around the soliton. Empty circles denote 
the locations of pole Zl as the velocity changes. Only when Zl 

becomes real (v > Vthr) does it originate propagating wavelike 
corrections. See text for further explanation. 
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C. Discussion 

To this point, it appears that our perturbative cal­
culation leads exactly to the same prediction as those 
in [8,10J, namely, that there is a critical velocity Vthr == 
(1 + k2)-1/2 below which kinks do not radiate and above 
which they do. At that precise velocity, the amplitude 
of the emitted radiation diverges; notice that {3 vanishes 
as v approaches Vthr from above and consequently the 
prefactor in Eq. (11) goes to infinity. However, this ap­
parent equivalence is not so. The crucial difference arises 
when one looks more carefully at Eq. (11): As Vthr is 
approached, not only the amplitude of the emitted wave 
diverges, but also its wavelength 211"/ {3. Then, we are 
faced with something similar to an "infrared" divergence, 
and usually those do not have a real physical meaning. 
We will show immediately that this is indeed the case 
here, but let us first comment on the reasons why our 
calculation provides us with this physically relevant re­
sult that was not transparent in the previous approaches. 
As for the GFPT computation [8J, they compute the first 
order correction to the field much as we do here (actu­
ally the two approaches are basically the same in the 
beginning), but they do not use the natural translation 
mode-radiation basis, so they cannot separate the differ­
ent contributions and are therefore led to an expression 
they cannot analyze in detail; as we already pointed out, 
they merely remark that their calculations are invalid in 
the vicinity of the divergence, as they assumed the cor­
rection should be small. On the other hand, ISPT [9,lOJ 
yields a different result than ours in spite of using a suit­
able basis because the integration over "" is made in an 
incoherent fashion, i.e., integrating over emitted energy 
instead of emitted amplitude (we notice in passing that 
many ISPT results are obtained by this same means). 
When the integration over radiation modes is made co­
herently as shown here, the result changes due to the 
superposition of different modes. These reasons lead us 
to believe that, although admittedly the early perturba­
tive work was mathematically sound, the calculation we 
present here is the physically correct first order result. 

Now that we have a reliable perturbative calculation, 
we need to understand what is the nature of the diver­
gence. To make progress, it is very important to turn to 
the form of our starting Eq. (1) with dimensions, namely, 

Utt - c~u",,,, + w~[l + ( cos(kx)J sin U = 0, (12) 

where Co and Wo are a velocity and a frequency char­
acteristic of the particular physical context. Redoing 
the calculations with dimensions transforms the diver­
gence condition kl'Vthr = 1 into kl'OVthr = Wo bo = 
(1 - v 2 /c~)-1/2J. This immediately clarifies what hap­
pens: The divergence occurs when the velocity of the 
kink is such that the time it takes to travel through a 
wavelength of the potential, To = A/(')'OVthr), A = 211"/k, 
is exactly the period of the lowest frequency phonon 
To = 211"/ Wo. If the velocity is lower than Vth" the kink 
will not be able to excite phonons, whereas when its ve­
locity is higher, it can and will subsequently radiate. At 
Vthfl the excited radiation is that of the lowest phonon 

and it has infinite wavelength and velocity, as predicted 
by our calculation. This natural picture of kinks exciting 
radiation according to the frequency of their propaga­
tion through a potential wavelength becomes therefore 
the likely candidate to explain the divergence. On the 
other hand, now it also becomes clear the divergence of 
the energy at Vthr: It diverges because of the infinite con­
tribution arising from the infinite wavelength mode when 
integrated over the whole x axis. This agrees with GFPT 
and ISPT results whose only difficulty was not to specif­
ically identify the mode responsible for the divergence. 

In spite of this clarification, the most significant ques­
tion is not answered yet: Why do numerical simulations 
disagree with this calculation, which seems to allow for 
a simple and physically reasonable interpretation? By 
looking again at Figs. 1 and 2, it is easy to realize that 
the flaw of the perturbative calculation is at its very root: 
We are computing first order corrections around a kink 
moving at a constant velocity v, and this condition never 
holds. Whatever the starting position of the kink is, it 
will behave like a particle in the sense that it will be ac­
celerated or decelerated depending on whether it travels 
towards a minimum or a maximum of the potential. In 
fact, the translation mode correction itself is describing 
this: The kink velocity, in its reference frame, is not zero 
but. rather it oscillates between positive and negative val­
ues. It is not a surprise, then, that first the resonance 
condition we have obtained is never matched, and second 
that the kink emits radiation at any velocity, because it 
is accelerating or decelerating. Of course, we should note 
that this is a perturbative calculation including only first 
order terms; the possibility still remains that the diver­
gence is suppressed by higher order nonlinearities. 

IV. COLLECTIVE COORDINATE APPROACH 

The above numerical results and the subsequent per­
turbative calculation strongly suggest that SG kinks be­
have as pointlike particles in the presence of a peri­
odic parametric potential like the one we deal with here. 
Therefore, it is natural to try to describe those results by 
means of the collective coordinate formalism. This ap­
proach was first proposed in [12J and it has been applied 
recently to SG breathers on periodic potentials [5J as well 
as to NLS [7J equations with the same perturbation. In 
both cases the analytical predictions turned out to be in 
very good quantitative agreement with numerical simula­
tions: For instance, in Ref. [5] the threshold for breather 
breakup into a kink-antikink pair was predicted with an 
accuracy better than 0.1%. On the other hand, the cal­
culation in Rei- [7J predicted the appearance of the so 
called "soliton chaos," verified by simulations of the full 
PDE. In our present problem, the advantage we have is 
that, due to the simpler nature of the kink, we will be 
able to compute the effective potential not only for kinks 
at rest but also for moving kinks. 

The basic idea of the collective coordinate formalism 
is very simple: To reduce a complicated problem with an 
infinite number of degrees of freedom, posed in terms of 
a PDE, to a much less complex problem with a few de-
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grees of freedom [and correspondingly described in terms 
of ordinary differential equations (ODE's)]. There are a 
number of ways to do this, and different quantities can be 
chosen to play the role of collective coordinates describ­
ing the motion of the nonlinear excitation as a whole. 
For our problem, it is enough to simply consider the kink 
center as our collective coordinate for the kink. Its mo­
tion will be then governed by an effective potential that 
can be computed by integrating the perturbative contri­
bution to the Hamiltonian over the kink profile, i.e., 

Veff(XO, t) = € I: dx [1 - cos U.,(x - Xo, t)] cos kx, (13) 

where u.,(x - Xo, t) denotes now a kink moving with con­
stant velocity v and centered at xo. This integral can be 
easily evaluated and yields 

k7r 
Veff(XO, t) = 2€ 2 .nh(k / ) cos[k(xo + vt)]. (14) 

'Y SI 7r 2'Y 

From Eq. (14) we see that the potential experienced by 
the particle equivalent to the kink is basically the same 
perturbation potential that appears in the PDE (1), al­
though the prefactor in front of it is quite complicated. 
The simplest dependence of this prefactor is on the wave 
number. It can be immediately seen that when k ---+ 0 
(long wavelength limit) the effective potential prefactor 
reduces to 4€/'Y and subsequently Veff becomes closer to 
the perturbative one; in the opposite limit, k ---+ 00, the 
sinh term makes the effective potential vanish exponen­
tially. This is in agreement with what we have learned so 
far: Looking at Fig. 1, it can be seen that the short wave­
length potential has no effect on the kink (c), whereas the 
motion on long wavelength perturbations resemble that 
of a particle on the bare potential. To phrase in the ter­
minology introduced in Ref. [4], the behavior of the kink 
in these cases is that of a "bare" (long wavelength) or 
a "renormalized" (short wavelength) particle. It is also 
important to notice that this result agrees with the per­
turbative calculation we described in Sec. III B [see Eq. 
(9)], as it was to be expected. There we showed that the 
correction to the cent er of mass motion was basically an 
oscillatory term, implying that the velocity of the cen­
ter of mass oscillates around some mean value. This is 
precisely the same kind of trajectory followed by a point­
like particle in the potential in Eq. (14) (at least if the 
velocity is not too close to 1). 

Nevertheless, it is worth pursuing this agreement a bit 
further, by studying the threshold for kinks to propagate 
in this kind of potential. The easiest way to compute the 
threshold is by equating the kinetic energy of the kink 
to the maximum of the effective potential, provided we 
restrict ourselves to the nonrelativistic limit (v2 not too 
close to 1) to keep the kink mass constant. This will 
give us the maximum potential height over which a kink 
that starts from a point at which the perturbation is zero 
with a certain velocity is able to overcome the nearest top 
point. Using the fact that the mass of a not too fast kink 
is 8 in our units, we find that the threshold is given by 

2v2'Y2. k7r 
€thr = ~ Slnh 2'Y . (15) 

In the same way, we could have computed the thresh­
old velocity for a given strength of the potential, but we 
prefer to check our predictions this way because the pres­
ence of 'Y makes the other possibility more complicated. 
We compared this prediction to numerical simulations. 
We show an example of this comparison in Fig. 4, where 
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FIG. 4. An example of the verification of the collective co­
ordinate approach predictions. For a kink starting from a 
midpoint of a potential of wavelength 20, with velocity 0.2, 
the predicted threshold for propagation is Ethr = 0.0424. (a) 
E = 0.43 and the kink propagates; (b) E = 0.435 and the kink 
is reflected by the potential maximum; (c) center of mass mo­
tion for better comparison of both cases; solid line corresponds 
to the simulation in (a) and dashed line to that in (b). Final 
time is t = 200. Notice the absolute absence of radiation in 
this phenomenon. 
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we study the propagation of a kink with initial velocity 
0.2 (i.e., in a nonrelativistic situation) on a potential of a 
moderately long wavelength. The predicted threshold for 
kink propagation as given by Eq. (15) is €thr = 0.0424; 
from Fig. 4 we see that the numerical result is bounded 
by 0.043 < €thr < 0.0435, meaning that the error in our 
prediction is at most of 2%, which is quite satisfactory. 
We have checked several other cases, which we summa­
rize in Fig. 5; excellent agreement is always found, even 
for very large values of the perturbation potential. 

To conclude this section on the collective coordinate 
treatment of the problem, we discuss another prediction 
of it that it is numerically verified, relativistic effects 
playing now the relevant part. By looking again at Eq. 
(14), it can be realized that the presence of'Y in the po­
tential may give rise to singularities in the neighborhood 
of the maximum velocity v = 1. To check whether this is 
so, we integrated numerically the ODE obtained from ap­
plying second Newton's law to v"ff and found that if the 
initial conditions were those of a particle starting at the 
top of a large potential, the velocity of that particle would 
grow as it slides down the potential; of course, if the po­
tential is large enough, the velocity can reach v = 1: In 
those cases the numerical integration of the ODE broke 
down. The question then arises whether this is an arti­
fact of our collective coordinate approach or there is a 
related phenomenon in the full PDE. We actually found 
that this ODE prediction is verified, as we show in Fig. 
6. In this simulation, the initial condition was a kink 
at a maximum of the potential with initial velocity 0.1 
so as to start the motion from the stable point. As it 
moves to the nearest well, it accelerates and, eventually, 
its velocity becomes very close to 1, implying that the 
kink cannot accelerate further. Then it is trapped at an 
intermediate point of the potential instead of continuing 
its motion to the bottom. The existence of this counter­
intuitive phenomenon shows in a very dramatic way the 
value of a simple approach such as the collective coordi-
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FIG. 6. Trapping of a kink at an intermediate position in 
the potential instead of at the bottom. E = 2 and the kink 
starts with velocity 0.1. The amount of emitted radiation 
is large due to the fast acceleration of the kink in this large 
perturbation. (a) Time evolution of the kink; (b) time evo­
lution of the center of mass. The neighboring minimum is 
at x = -2.0 (indicated by the dashed line) and the kink os­
cillates around approximately x = -2.5. The final time is 
t = 50. 

nate formalism to help understand complicated nonlinear 
phenomena. 

V. LENGTH-SCALE COMPETITION 

A. Numerical experiments 

The numerical and theoretical analysis described so far 
allowed us to achieve a quite good understanding of the 
periodically perturbed SG problem, at least of the basic 
phenomenology. With that background in mind, we then 
turned to the initial motivation for this work, namely, to 
study kink propagation in periodic potential as a step 
towards the much more complicated problem of breather 
propagation on periodic media [4]. In principle, we did 
not expect length-scale competition to arise in this prob­
lem, as kinks are very robust objects (which is further 
confirmed by our above results, in particular by the suc­
cess of the collective coordinate approach). On the other 
hand, opposite to the case of the breather, kink widths 
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do not vary much when changing the only parameter gov­
erning it, the kink velocity. Of course, when approaching 
the maximum velocity, Lorentz contraction of the kinks 
will make them vanishingly small, but that is a regime in 
which is very difficult and time consuming to carry out 
good numerical simulations, so we did not address the 
problem in that limit. Therefore, the kinks we are usually 
dealing with have a width of about 6 in our dimension­
less units. Our purpose was to perform some simulations 
in the high perturbation regime to see whether any light 
could be shed on the related breather problem. 

The numerical experiments we made were as follows. 
We studied several potentials of different wavelengths, 
ranging from 0.5 to 20, i.e., from much smaller than the 
kink width to roughly three times its width. The initial 
condition was always a kink at one top of the potential; 
different velocities were considered. A summary of these 
experiments in the most interesting range of potential 
wavelengths is shown in Figs. 7 and 8. Figure 7 shows 
the motion of the center of mass of the kink on different 
potentials. The motion in the small or large wavelength 
limits has been already discussed and it is again seen 
here. However, a more interesting phenomenon is also 
evident, namely, kink trapping [or even reflection in the 
case of wavelength 3; see Fig. 8(b)]; this trapping was 
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not to be expected because kinks start from a maximum 
of the potential and with a large initial velocity (in Fig. 
7 it was 0.5). Regarding this point, we have to stress 
here that this trapping is of a different kind than the one 
discussed in the preceding section, which was clearly a 
nonradiative process. Besides, the trapping depends cru-
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cially on the wavelength of the potentiaL Thus, for in­
stance, in the case of wavelength 2 [Fig. 8(a)], the kink is 
able to propagate over six wells, whereas when the wave­
length was 4 or 5 [Figs. 8(c) and 8(d)], it was trapped 
already on the second well. This dependence clearly in­
dicates that length-scale competition is to same extent 
present also in the kink problem. This hint is further 
supported by our previous work for the breather case 
[4], which showed that this competition was most effec­
tive when the wavelength of the perturbation was around 
half the breather width or slightly larger. This is also the 
case in these simulations. Another common feature be­
tween both problems is that the outcome of a simulation 
depends very sensitively on the initial condition. This 
can be understood from the reflection case in Fig. 8(b): 
For the kink to jump back over one potential wavelength 
it is necessary that it meets the radiation it left behind 
in the appropriate phase to gain energy from it, and this 
evidently depends crucially on the initial velocity, as we 
checked in our simulations. Hence we conclude that these 
phenomena are a manifestation of length-scale competi­
tion. 

B. Linear stability analysis and discussion 

The numerical findings we have described in the pre­
ceding subsection are of great importance: The existence 
of processes governed by length-scale competition in the 
SG kink case opens the possibility of a deeper study of 
the mechanisms through which this competition affects 
the kink evolution. The relevance of this comes from the 
fact that, when studying the SG breather problem [4], we 
were not able to carry out this deeper analysis due to the 
more complicated nature of the breathers, namely, their 
intrinsic internal dynamics which severely complicate lin­
ear stability analysis. But after showing that this com­
petition also affects kinks, we can certainly study their 
linear stability analysis and, consequently, obtain an un­
derstanding of the mechanisms underlying length-scale 
competition. 

We tested the stability of the analytical continuum so­
lutions as well as of the numerical solutions in the fol­
lowing way. Let the solution to discretization of the SG 
equation (1) be Ui = u~O) + Vi, where u~O) is either the 
discretized version ofthe continuum kink or the true min­
imum energy static solution ofthe perturbed SG equation 
(1) obtained numerically and Vi is a small discrete-valued 
function whose time dependence is given by sin(wt); the 
index i runs over the N points of the discrete lattice. The 
discrete version of the perturbed problem (1) is given by 

Ui - a- 2 (Ui+l - 2Ui + ui-d + [1 + € cos(kai)] Ui = 0, 

(16) 

where a is the lattice spacing. Substituting the proposed 
form for Ui in Eq. (16) and linearizing we get 

(17) 

where v is the vector containing the Vi, i = 1, ... ,N, and 

o is an N x N matrix given by 

{ 
2 + [1. +.€ c~s(kai)] cos(uiO)), 

Oij = -1, If Z = J ± 1 
0, otherwise. 

if i = j 
(18) 

In this formulation, the modes for the linear excitations 
around the shape u(O) are obtained simply by solving for 
the eigenvalues w 2 of the matrix O. We did this for all the 
wavelengths we were studying, taking for u(O) the exact 
continuum SG kink at the top or at the bottom of the 
potential as well as the numerically obtained solutions at 
similar positions. 

The results for our numerical linear stability analysis 
are shown in Fig. 9 for some of the relevant wavelengths 
[18]. There are a number of interesting features which 
deserve comment. First, let us consider the spectra for 
the exact continuum shapes. When placed at the top of 
the potential, this gives rise to a negative lowest eigen­
value w2 , indicating that this continuum kink is not an 
exact solution of the discrete problem and has a tendency 
to relax to the correct one by emitting a burst of radi­
ation. The shape at the bottom of the potential does 
not show this negative eigenvalue but instead a single 
bound state with frequency w 2 ;:::: 0.3. This corresponds 
to a shape mode, similar to that present in unperturbed 
</>4 kinks, and it actually shows up in simulations: Initial 
data placed at a potential well (an exact continuum kink) 
exhibit a static center of mass but a general oscillating 
shape. This is easily understood if one realizes that in 
this range of potential wavelengths, different parts of the 
kink undergo the action of very different perturbation 
values (which can be even positive or negative contri­
butions). In response to these gradients, the continuum 
kink oscillates. These isolated states characteristic of the 
continuum kinks disappear when we analyze static nu­
merical solutions. It is seen from Fig. 9 that in that 
situation spectra are composed of bands. Actually, this 
is a common feature to all analyzed shapes, including 
the continuum ones, and it could be expected in view of 
the following argument: Far from the kink center, which 
only spans a small fraction of the lattice sites, the non­
linear contribution to the linearized discrete problem for 
Vi vanishes, and one is left with what is a standard Flo­
quet (Bloch) problem. The corresponding structure is 
very well known, and in fact it is very much like the ones 
we show here, with gaps at positions that depend on the 
potential wave number and gap amplitudes that depend 
on the potential strength (€). 

By comparing the spectral structure we have obtained 
to the outcome of the numerical simulations (Fig. 9) and 
especially to the radiation emission (Fig. 8), the mecha­
nism for kink destabilization can be inferred. In the case 
of small wavelength potentials, the spectrum is very sim­
ilar to the unperturbed SG one [see Fig. 9(a)]. Therefore, 
the behavior of the kink is very similar to the continuum 
one moving in a discrete lattice, the periodic potential 
then being nothing but the Peierls-Nabarro barrier, as 
we already mentioned. In that case the kink is known 
to radiate [15] and correspondingly decelerate until it is 
eventually trapped in a potential well [Fig. 8(b)]. When 
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the wavelength is smaller, the height of the effective po­
tential seen by the kink is so small [due to the sinh term 
in Eq. (14)] that this effect is hardly noticeable (hence 
the perfect constant motion of the kink on the smallest 
wavelength potential in Fig. 7). As the wavelength in­
creases, more and more modes move below the phonon 
band, inducing shape oscillations of the kink, and as a 
consequence of this motion, long wavelength radiation 
is emitted [clearly seen in Figs. 8(a) and 8(b)]. This is 
possible because in those cases there is still a large num­
ber of available modes just above the phonon band. Note 
that the lower limit of the phonon band is given by w = 1; 
lower frequencies are localized, because they cannot prop­
a~ate in the system far from the kink, where the spec­
trum structure is essentially the unperturbed one. This 
combined effect induces a rapid destabilization of the 
kink and its trapping. Finally, if the wavelength is fur­
ther increased, all the first band eventually moves below 
the phonon band [Fig. 9(d)], and hence long-wavelength 
emission is strongiy suppressed [Fig. 8(d)], which sta­
bilizes the kink, making possible its propagation. The 
effect of the shape modes coming from the first band 
is still revealed by the kink shape oscillations [see Fig. 
8(d)]. We believe that this interpretation clearly explains 
the mechanisms leading to the appearance of length-scale 
competition in SG kinks. To seek further evidence, we 
looked for the approximate value of the potential wave-

length at which the last mode in the first band crosses the 
phonon band. It is shown in Fig. 10 that this happens 
for a potential wavelength between 5.2 and 5.3. Were 
our hypothesis true, kinks would not be able to propa­
gate on the former potential and they would be able to 
do it in the latter one. The numerical simulations shown 
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in Fig. 11 confirm that this is indeed the case. Interest­
ingly, the radiation is quite different in both cases and, 
furthermore, for the trapped kink trapping occurs at the 
second potential well, indicating that the small number 
of modes available to radiate prevents a very rapid decay 
of the kink. We thus conclude that our interpretation is 
indeed correct. As a matter of fact, as this feature of the 
spectrum will also be present when considering breather 
propagation (recall that the reason for the appearance of 
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the gaps is the perturbating potential acting on the wings 
of the excitation, and the nature of the center becomes 
less relevant), our explanation of length-scale competi­
tion should also apply to breathers. The results in Ref. 
[4J are in perfect agreement with what we have described 
in this section. 

VI. CONCLUSIONS 

In this paper, we have studied kink propagation in 
ID SG systems with a spatially periodic modulation of 
its characteristic frequency. We have shown numeri­
cally that kinks can propagate steadily and mostly undis­
turbed, even for large amplitudes of the perturbation. 
Disagreement with analytical predictions previous to this 
work is resolved through a new perturbative calculation. 
By this means, the radiative divergence is shown to be 
similar to an "infrared" divergence. Our calculation pro­
vides us with a good physical understanding of the prob­
lem of free kink propagation in the periodically mod­
ulated SG system, which had not been obtained from 
the previous ones, of a more formal character. A com­
ment is in order here, regarding the fact that now the 
mathematical foundations of perturbation theory for soli­
tons are already established (mostly by pioneering works 
such as Refs. [8,9]), the emphasis of that perturbation 
theory should be focused on their physical implications. 
Therefore, perturbative calculations in nonlinear equa­
tions should be regarded as speculative if they are not 
verified through numerical simulations and, most impor­
tantly, if their physical meaning is not fully established. 
That is one of the most important points of this work: 
After an appropriate perturbative calculation, and by 
carefully considering the dimensions of the problem, we 
have been able to identify the underlying physical rea­
son for that divergence as a resonance with the lowest, 
infinite wavelength phonon mode. Moreover, motivated 
by our perturbative results, we have developed a collec­
tive coordinate approach to this problem that describes 
in a quantitatively correct way the main features of kink 
propagation, showing that the already known [4J "bare" 
and "renormalized" particle limits apply also in this case. 
The collective coordinate equations turn out to predict 
counterintuitive phenomena whose existence is confirmed 
by numerical simulations, namely, kink trapping at in­
termediate points in the potential. This is an impor­
tant success of the technique. Finally, we have shown 
that length-scale competition arises unexpectedly in this 
problem, which afforded us the opportunity to increase 
our understanding of this ubiquitous phenomenon [4,6J. 
By a detailed linear stability analysis, we have identified 
the mechanism by which length-scale competition arises 
as coming from the band structure induced by the per­
turbation potential. Again, the predictions of our theory 
have been fully confirmed (quantitatively) by the corre­
sponding numerical simulations. 

The global picture that emerges from this work is that, 
once again, SG kinks behave basically like particles and a 
collective coordinate approach can be more faithful than 
complicated perturbative results. Length-scale competi-
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tion phenomena are only relevant in a large amplitude 
perturbation regime and therefore do not interfere with 
this picture in most situations. In this respect, it has 
to be noted that a perturbative calculation describes ev­
erything beyond the center of mass dynamics: extended 
(background) contributions (see, e.g., the third reference 
in [12]); shape changes localized around the (moving) 
kink; and the radiation, i.e., emission from the kink. It 
is crucial to separate and identify these physically differ­
ent effects if one is to properly understand the dynamics 
of the considered system. Our results are likely to be 
general for kink-bearing models in view of the related 
results of [16] on the spatially periodically perturbed </>4 
model. Some remarks are in order regarding this related 
problem. The same kind of divergence is predicted by a 
perturbation theory similar to the one used here (see [19] 
for details on this approach), and again numerical simu­
lations show evidence of the unphysical character of the 
divergence: It can be seen from Fig. 4 of [16] that as the 
velocity of a decelerating kink goes through the threshold 
nothing special occurs. As a matter of fact, most of the 
reasoning we have used in the present study applies also 
to that work (with an additional feature coming from the 
shape mode of the unperturbed </>4 kink), thus reinforc­
ing the generality of our results. On the other hand, the 
discovery of length-scale competition for SG kinks has al­
lowed us to understand the underlying physical reasons 
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and helped us to gain insight on related results for the 
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FIG. 1. Absence ofradiative divergence for kinks propagat­
ing in the spatially periodic se modeL Parameters are (a) 
k = 2rr/5, initial velocity v = Vthr = 0.387726 ... ; (b) k = 1T , 

initial velocity v = Vthr = 0.091999 ... ; (c) k = 27r, initial 
velocity v = Vthr = 0.024704 ... [corresponding wavelengths 
are (a) 5, (b) 2, and (c) 11. In all three cases, < = 0.4. The 
amplitude of the emitted radiation is very small; due to the 
periodic boundary conditions, it can be seen reentering the 
simulation interval without any appreciable interaction with 
the kink. Only half of the simulation interval is shown in plots 
(b) and (c) to enlarge details. Time increases upwards with 
final time t = 100. The potential is indicated by the dashed 
line (amplitude not to scale). 
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FIG. 11. Numerical verification of the threshold for 
length-scale competition. Evolution of a kink on a poten­
tial of wavelength (a) 5.2 or (b) 5.3. (c) shows the motion of 
the center of mass in both cases for better comparison; the 
solid line corresponds to the simulation in (a) and the dashed 
line to that in (b). 
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FIG. 4. An example of the verification of the collective co­
ordinate approach predictions. For a kink starting from a 
midpoint of a potential of wavelength 20, with velocity 0.2 , 
the predicted threshold for propagation is Ethr = 0.0424. (a) 
f = 0.43 and the kink propagates; (b) f = 0.435 and the kink 
is reflected by the potential maximum; (c) center of mass mo­
tion for better comparison of both cases; solid line corresponds 
to the simulation in (a) and dashed line to that in (b). Final 
time is t = 200. Notice the absolute absence of radiation in 
this phenomenon. 
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FIG. 6. Trapping of a kink at an intermediate position in 
the potential instead of at the bottom. €. = 2 and the kink 
starts with velocity 0.1. The amount of emitted radiation 
is large due to the fast acceleration of the kink in this large 
perturbation. (a) Time evolution of the kink; (b) time evo­
lution of the center of mass. The neighboring minimum is 
at x = - 2.0 (indicated by the dashed line) and the kink os­
cillates around approximately x = - 2.5. The final time is 
t = 50. 
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FIG. 8. Time evolution for some of the kinks in Fig. 7. Wavelengths are (a) 2; (b) 3; (c) 4; and (d) 6. Notice the different 
kind of radiation emitted in each case. Notice also that the kink in (b) goes back over one maximum of the potential probably 
due to resonant interaction with radiation left behind. The final time is t = 50. 


