177 research outputs found

    The demography of fine roots in response to patches of water and nitrogen

    Full text link
    Fine root demography was quantified in response to patches of increased water and nitrogen availability in a natural, second-growth, mixed hardwood forest in northern Michigan, USA. As expected, the addition of water and water plus nitrogen resulted in a significant overall increase in the production of new fine roots. New root production was much greater in response to water plus nitrogen when compared with water alone, and the duration of new root production was related to the length of resource addition in the water plus nitrogen treatments; the average difference in new root length between the 20 vs. 40 d additions of water plus nitrogen amounted to almost 600%. Roots produced in response to the additions of water and water plus nitrogen lived longer than roots in the control treatments. Thus, additions of water and water plus nitrogen influenced both the proliferation of new roots and their longevity, with both proliferation and longevity related to the type and duration of resource supply. Results suggest that root longevity and mortality may be plastic in response to changes in soil resource availability, as is well known for root proliferation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65770/1/j.1469-8137.1993.tb03905.x.pd

    Electrocardiographic Criteria for Left Ventricular Hypertrophy in Children

    Get PDF
    Previous studies to determine the sensitivity of the electrocardiogram (ECG) for left ventricular hypertrophy (LVH) in children had their imperfections: they were not done on an unselected hospital population, several criteria used in adults were not applied to children, and obsolete limits of normal for the ECG parameters were used. Furthermore, left ventricular mass (LVM) was taken as the reference standard for LVH, with no regard for other clinical evidence. The study population consisted of 832 children from whom a 12-lead ECG and an M-mode echocardiogram were taken on the same day. The validity of the ECG criteria was judged on the basis of an abnormal LVM index, either alone or in combination with other clinical evidence. The ECG criteria were based on recently established age-dependent normal limits. At 95% specificity, the ECG criteria have low sensitivities (<25%) when an elevated LVM index is taken as the reference for LVH. When clinical evidence is also taken into account, the sensitivity improved considerably (<43%). Sensitivities could be further improved when ECG parameters were combined. The sensitivity of the pediatric ECG in detecting LVH is low but depends strongly on the definition of the reference used for validation

    Impediment in upper airway stabilizing forces assessed by phrenic nerve stimulation in sleep apnea patients

    Get PDF
    BACKGROUND: The forces developed during inspiration play a key role in determining upper airway stability and the occurrence of nocturnal breathing disorders. Phrenic nerve stimulation applied during wakefulness is a unique tool to assess Upper airway dynamic properties and to measure the overall mechanical effects of the inspiratory process on UA stability. OBJECTIVES: To compare the flow/pressure responses to inspiratory and expiratory twitches between sleep apnea subjects and normal subjects. METHODS: Inspiratory and expiratory twitches using magnetic nerve stimulation completed in eleven untreated sleep apnea subjects and ten normal subjects. RESULTS: In both groups, higher flow and pressure were reached during inspiratory twitches. The two groups showed no differences in expiratory twitch parameters. During inspiration, the pressure at which flow-limitation occurred was more negative in normals than in apneic subjects, but not reaching significance (p = 0.07). The relationship between pharyngeal pressure and flow adequately fitted with a polynomial regression model providing a measurement of upper airway critical pressure during twitch. This pressure significantly decreased in normals from expiratory to inspiratory twitches (-11.1 ± 1.6 and -15.7 ± 1.0 cm H(2)O respectively, 95% CI 1.6–7.6, p < 0.01), with no significant difference between the two measurements in apneic subjects. The inspiratory/expiratory difference in critical pressure was significantly correlated with the frequency of nocturnal breathing disorders. CONCLUSION: Inspiratory-related upper airway dilating forces are impeded in sleep apnea patients

    Filament Depolymerization Can Explain Chromosome Pulling during Bacterial Mitosis

    Get PDF
    Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a ParA protein structure elongates from the new cell pole, binds to a ParB-decorated chromosome, and then retracts via disassembly, pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can robustly pull the chromosome that disassembles it. We perform Brownian dynamics simulations with a simple, physically consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is “self-diffusiophoretic”: by disassembling ParA, ParB generates a ParA concentration gradient so that the ParA concentration is higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA gradient and across the cell. We find that translocation is most robust when ParB binds side-on to ParA filaments. In this case, robust translocation occurs over a wide parameter range and is controlled by a single dimensionless quantity: the product of the rate of ParA disassembly and a characteristic relaxation time of the chromosome. This time scale measures the time it takes for the chromosome to recover its average shape after it is has been pulled. Our results suggest explanations for observed phenomena such as segregation failure, filament-length-dependent translocation velocity, and chromosomal compaction

    Variations in Stress Sensitivity and Genomic Expression in Diverse S. cerevisiae Isolates

    Get PDF
    Interactions between an organism and its environment can significantly influence phenotypic evolution. A first step toward understanding this process is to characterize phenotypic diversity within and between populations. We explored the phenotypic variation in stress sensitivity and genomic expression in a large panel of Saccharomyces strains collected from diverse environments. We measured the sensitivity of 52 strains to 14 environmental conditions, compared genomic expression in 18 strains, and identified gene copy-number variations in six of these isolates. Our results demonstrate a large degree of phenotypic variation in stress sensitivity and gene expression. Analysis of these datasets reveals relationships between strains from similar niches, suggests common and unique features of yeast habitats, and implicates genes whose variable expression is linked to stress resistance. Using a simple metric to suggest cases of selection, we found that strains collected from oak exudates are phenotypically more similar than expected based on their genetic diversity, while sake and vineyard isolates display more diverse phenotypes than expected under a neutral model. We also show that the laboratory strain S288c is phenotypically distinct from all of the other strains studied here, in terms of stress sensitivity, gene expression, Ty copy number, mitochondrial content, and gene-dosage control. These results highlight the value of understanding the genetic basis of phenotypic variation and raise caution about using laboratory strains for comparative genomics

    Observational study on efficacy of negative expiratory pressure test proposed as screening for obstructive sleep apnea syndrome among commercial interstate bus drivers - protocol study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea (OSA) is a respiratory disease characterized by the collapse of the extrathoracic airway and has important social implications related to accidents and cardiovascular risk. The main objective of the present study was to investigate whether the drop in expiratory flow and the volume expired in 0.2 s during the application of negative expiratory pressure (NEP) are associated with the presence and severity of OSA in a population of professional interstate bus drivers who travel medium and long distances.</p> <p>Methods/Design</p> <p>An observational, analytic study will be carried out involving adult male subjects of an interstate bus company. Those who agree to participate will undergo a detailed patient history, physical examination involving determination of blood pressure, anthropometric data, circumference measurements (hips, waist and neck), tonsils and Mallampati index. Moreover, specific questionnaires addressing sleep apnea and excessive daytime sleepiness will be administered. Data acquisition will be completely anonymous. Following the medical examination, the participants will perform a spirometry, NEP test and standard overnight polysomnography. The NEP test is performed through the administration of negative pressure at the mouth during expiration. This is a practical test performed while awake and requires little cooperation from the subject. In the absence of expiratory flow limitation, the increase in the pressure gradient between the alveoli and open upper airway caused by NEP results in an increase in expiratory flow.</p> <p>Discussion</p> <p>Despite the abundance of scientific evidence, OSA is still underdiagnosed in the general population. In addition, diagnostic procedures are expensive, and predictive criteria are still unsatisfactory. Because increased upper airway collapsibility is one of the main determinants of OSA, the response to the application of NEP could be a predictor of this disorder. With the enrollment of this study protocol, the expectation is to encounter predictive NEP values for different degrees of OSA in order to contribute toward an early diagnosis of this condition and reduce its impact and complications among commercial interstate bus drivers.</p> <p>Trial registration</p> <p><it>Registro Brasileiro de Ensaios Clinicos </it>(local acronym RBEC) [Internet]: Rio de Janeiro (RJ): <it>Instituto de Informaçao Cientifica e Tecnologica em Saude </it>(Brazil); 2010 - Identifier RBR-7dq5xx. Cross-sectional study on efficacy of negative expiratory pressure test proposed as screening for obstructive sleep apnea syndrome among commercial interstate bus drivers; 2011 May 31 [7 pages]. Available from <url>http://www.ensaiosclinicos.gov.br/rg/RBR-7dq5xx/</url>.</p

    Hemispheric Asymmetry in White Matter Connectivity of the Temporoparietal Junction with the Insula and Prefrontal Cortex

    Get PDF
    The temporoparietal junction (TPJ) is a key node in the brain's ventral attention network (VAN) that is involved in spatial awareness and detection of salient sensory stimuli, including pain. The anatomical basis of this network's right-lateralized organization is poorly understood. Here we used diffusion-weighted MRI and probabilistic tractography to compare the strength of white matter connections emanating from the right versus left TPJ to target regions in both hemispheres. Symmetry of structural connectivity was evaluated for connections between TPJ and target regions that are key cortical nodes in the right VAN (insula and inferior frontal gyrus) as well as target regions that are involved in salience and/or pain (putamen, cingulate cortex, thalamus). We found a rightward asymmetry in connectivity strength between the TPJ and insula in healthy human subjects who were scanned with two different sets of diffusion-weighted MRI acquisition parameters. This rightward asymmetry in TPJ-insula connectivity was stronger in females than in males. There was also a leftward asymmetry in connectivity strength between the TPJ and inferior frontal gyrus, consistent with previously described lateralization of language pathways. The rightward lateralization of the pathway between the TPJ and insula supports previous findings on the roles of these regions in stimulus-driven attention, sensory awareness, interoception and pain. The findings also have implications for our understanding of acute and chronic pains and stroke-induced spatial hemineglect

    Trait Variation in Yeast Is Defined by Population History

    Get PDF
    A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism

    Productivity links morphology, symbiont specificity, and bleaching in the evolution of Caribbean octocoral symbioses

    Get PDF
    Many cnidarians host endosymbiotic dinoflagellates from the genus Symbiodinium. It is generally assumed that the symbiosis is mutualistic, where the host benefits from symbiont photosynthesis while providing protection and photosynthetic substrates. Diverse assemblages of symbiotic gorgonian octocorals can be found in hard bottom communities throughout the Caribbean. While current research has focused on the phylo- and population genetics of gorgonian symbiont types and their photo-physiology, relatively less work has focused on biogeochemical benefits conferred to the host and how these benefits vary across host species. Here, we examine this symbiosis among 11 gorgonian species collected in Bocas del Toro, Panama. By coupling light and dark bottle incubations (P/R) with 13C-bicarbonate tracers, we quantified the link between holobiont oxygen metabolism with carbon assimilation and translocation from symbiont to host. Our data show that P/R varied among species, and was correlated with colony morphology and polyp size. Sea fans and sea plumes were net autotrophs (P/R > 1.5) while nine species of sea rods were net heterotrophs with most below compensation (P/R < 1.0). 13C assimilation corroborated the P/R results, and maximum δ13Chost values were strongly correlated with polyp size, indicating higher productivity by colonies with high polyp SA:V. A survey of gorgonian-Symbiodinium associations revealed that productive species maintain specialized, obligate symbioses and are more resistant to coral bleaching, whereas generalist and facultative associations are common among sea rods that have higher bleaching sensitivities. Overall, productivity and polyp size had strong phylogenetic signals with carbon fixation and polyp size showing evidence of trait covariance.published_or_final_versio
    corecore