104 research outputs found

    Thickness-dependence of the electronic properties in V2O3 thin films

    Full text link
    High quality vanadium sesquioxide V2O3 films (170-1100 {\AA}) were grown using the pulsed laser deposition technique on (0001)-oriented sapphire substrates, and the effects of film thickness on the lattice strain and electronic properties were examined. X-ray diffraction indicates that there is an in-plane compressive lattice parameter (a), close to -3.5% with respect to the substrate and an out-of-plane tensile lattice parameter (c) . The thin film samples display metallic character between 2-300 K, and no metal-to-insulator transition is observed. At low temperature, the V2O3 films behave as a strongly correlated metal, and the resistivity (\rho) follows the equation \rho =\rho_0 + A T^2, where A is the transport coefficient in a Fermi liquid. Typical values of A have been calculated to be 0.14 \mu\Omega cm K^{-2}, which is in agreement with the coefficient reported for V2O3 single crystals under high pressure. Moreover, a strong temperature-dependence of the Hall resistance confirms the electronic correlations of these V2O3 thin films samples.Comment: 4 pages, 4 figure

    Interesting magnetic properties of Fe1−x_{1-x}Cox_xSi alloys

    Full text link
    Solid solution between nonmagnetic narrow gap semiconductor FeSi and diamagnetic semi-metal CoSi gives rise to interesting metallic alloys with long-range helical magnetic ordering, for a wide range of intermediate concentration. We report various interesting magnetic properties of these alloys, including low temperature re-entrant spin-glass like behaviour and a novel inverted magnetic hysteresis loop. Role of Dzyaloshinski-Moriya interaction in the magnetic response of these non-centrosymmetric alloys is discussed.Comment: 11 pages and 3 figure

    A New Window of Exploration in the Mass Spectrum: Strong Lensing by Galaxy Groups in the SL2S

    Get PDF
    The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2" (produced by galaxy scale dark matter haloes) to >10" (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re around 1-2" and above 10" have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3"- 8", i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5" and 8". On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.Comment: A&A Accepted. Draft with Appendix images can be found at http://www.dark-cosmology.dk/~marceau/groups_sl2s.pd

    Research for higher degrees

    No full text

    Discovery of the intraosseous route for fluid administration

    No full text
    • 

    corecore